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Summary The Serre spectral sequence effectively computes cohomology rings for numerous classical spaces.
As a sample application, we prove the Gysin sequence and use it to compute H∗(CPn;R) ∼= R[x]/(xn+1)
(deg x = 2) explicitly. We also summarize numerous related computations, taken from McCleary’s “A
User’s Guide to Spectral Sequences.” We discuss the cohomology of homogeneous spaces with the flag
manifold as a running example, and end with some remarks on the cohomology of Grassmannians.

1 Notation
R will refer to a commutative unital ring.

If X is a topological space, H∗(X;R) denotes the singular cohomology of X with coefficients in R,
which is a graded, graded-commutative R-algebra using the cup product for multiplication.

Definition 2. A map π : E → B of topological spaces has the homotopy lifting property with respect to a

space Y if, given any homotopy G : Y × I → B and an “initial lift” ` : Y → E (meaning π` : Y → B
is G(−, 0) : Y → B), there is a “full lift” G̃ : Y × I → E (meaning πG̃ = G) starting at ` (meaning
G̃(−, 0) = `).

Definition 3. A map π : E → B with the homotopy lifting property with respect to all spaces is a

Hurewicz fibration or just a fibration . If it only has the property with respect to closed unit

spheres in Rn (equivalently, finite CW complexes) it is a Serre fibration .

E is called the total space and B is called the base space .

4 Remark
Suppose π : E → B is a fibration. Let Fb := π−1(b) for b ∈ B. If B is path-connected, each Fb
has the same homotopy type (eg. H∗(Fb, R) is constant up to isomorphism). In this case, we

write F ↪→ E
p→ B and call F the fiber , without having any particular Fb in mind.

5 Theorem (Cohomological Serre Spectral Sequence)
Suppose we have a fibration F ↪→ E

π→ B where B is path-connected and F is connected. Further
suppose B is simply-connected. Then there exists a first quadrant spectral sequence of algebras with

Ep,q2
∼= Hp(B;Hq(F ;R))⇒ H∗(E;R).

Indeed, we have a multiplicative structure on E∗,∗2 :

Ep,q2 ⊗ Ep
′,q′

2 → Ep+p
′,q+q′

2

u⊗ v 7→ u ·2 v = (−1)pq
′
u ^ v

where ^ is given as before by
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Hp(B;Hq(F ;R))⊗Hp′(B;Hq′(F ;R))

Hp+p′(B;Hq(F ;R)⊗Hq′(F ;R))

Hp+p′(B;Hq+q′(F ;R)).

^B

^F

6 Remark
The convergence is as algebras, which roughly means that each page of the spectral sequence
has a differential bigraded algebra structure which induces the next pages’ structure, and the
E∞ page is isomorphic to the induced algebra of the associated graded object of H∗(E;R). See
McCleary for details.

7 Proposition
E∗,02

∼= H∗(B;R) and E0,∗
2
∼= H∗(F ;R) as algebras, using the product structure on E∗,∗2 on the

left and the cup product structures on the right.

8 Theorem (The Gysin Sequence)
Suppose F ↪→ E

π→ B is a fibration, where B is path-connected and simply connected. If F is a

homology n-sphere for n ≥ 1, then there is an exact sequence

· · · → Hk(B;R)
γ→ Hn+1+k(B;R)

π∗→ Hn+1+k(E;R)→ Hk+1(B;R)→ · · · ,

where indeed γ(−) = z ^ − for some z ∈ Hn+1(B;R). Moreover, if n is even, then in fact 2z = 0.

9 Remark
z in the theorem is called an Euler class . If we have a sphere bundle Sn ↪→ E

π→ B and happen
to know Hn+1(B;R) has trivial 2-torsion (for n ≥ 1 even), then z = 0 so γ = 0. This severely
restricts the possible sphere bundles of spheres over spheres; indeed, the four Hopf fibrations
corresponding to the division algebras R,C,H,O give the only possible dimensions of the various
spheres involved.

Proof By definition, a homology n-sphere is a space X where Hk(X;Z) is 0, except we get one copy
of Z for k = n and one more for k = 0 (hence H∗(X;Z) = H∗(S

n;Z)). Likewise Hk(X;R) is 0,
except we get one copy of R for k = n and for k = 0. The Serre spectral sequence associated to
this fibration is thus mostly zero, since Hk(F ;R) = 0 unless k = 0, n. Indeed, the E2 page is in
part

q = n : H0(B;R) H1(B;R) H2(B;R)

· · ·

q = 0 : H0(B;R) H1(B;R) H2(B;R)

It follows that E2
∼= · · · ∼= En+1 and H(En+1, dn+1) ∼= En+2

∼= · · · ∼= E∞. That is, the E∞ page
is
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q = n :
ker dn+1

∼= Hn/F 1Hn
ker dn+1

∼= F 1Hn+1/F 2Hn+1
ker dn+1

∼= F 2Hn+2/F 3Hn+2

· · ·

q = 0 :
H0(B;R)/ im dn+1

∼= H0
H0(B;R)/ im dn+1

∼= F 1H1
H0(B;R)/ im dn+1

∼= F 2H2

Note that for k ≥ 0

0→ Ek,n∞ → Ek,n2

dk,n
n+1→ En+1+k,0

2 → En+1+k,0
∞ → 0

is an exact sequence, since

0→ ker dk,nn+1 ↪→ Ek,n2 → En+1+k,0
2 � En+1+k,0

2 / im dn+1 → 0.

Moreover, looking at a fixed antidiagonal of degree n+k for k ≥ 0, there are two places where
the containments of the filtration F ∗Hn+k might be proper, namely at F kHk+n ⊃ F k+1Hk+n

and at F k+nHk+n ⊃ 0. Thus

0→ En+k,0∞ → Hn+k → Ek,n∞ → 0

is an exact sequence, since

0→ F k+nHk+n ↪→ F kHk+n � F kHk+n/F k+1Hk+n → 0.

Splice these two sequences together via

Hn+k 0

0 Ek,n∞ Ek,n2 En+1+k,0
2 En+1+k,0

∞ 0

0 Hn+1+k

0 Ek+1,n
∞ Ek+1,n

2

0

dn+1

to get the long exact sequence

· · · → Hn+k → Ek,n2

dn+1→ En+1+k,0
2 → Hn+1+k → · · ·

which in our case is

· · · → Hn+k(E;R)→ Hk(B;R)
dn+1→ Hn+1+k(B;R)→ Hn+1+k(E;R)→ · · ·
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To describe dn+1, let h ∈ Hn(F ;R) ∼= R be a generator. Identify E∗,n2 = H∗(B;R) ⊗ h and
E∗,02 = H∗(B;R)⊗ 1, so that (for instance)

^ : E0,n
2 ⊗ Ek,02 → Ek,n2

(1⊗ h) ^ (x⊗ 1) = (−1)n deg x(x⊗ h).

dn+1 is a differential in the multiplicative sense, i.e. it satisfies a Leibniz rule (up to a sign) with
the multiplication · on E∗,∗2 . Since ^ is just · up to a sign, dn+1 satisfies a Leibniz rule with
respect to ^. Letting dn+1(1⊗ h) = z ⊗ 1 for some z ∈ Hn+1(B;R) and putting it all together,
we now compute

(−1)n deg xdn+1(x⊗ h) = dn+1((1⊗ h) ^ (x⊗ 1))

= [dn+1(1⊗ h)] ^ (x⊗ 1) + (−1)n(1⊗ h) ^ [dn+1(x⊗ 1)]

= (z ⊗ 1) ^ (x⊗ 1) + 0

= (z ^ x)⊗ 1.

(Here dn+1(x⊗ 1) = 0 since it lands below the x-axis.) Let γ(x) = (−1)n deg xdn+1(x⊗ h) to get
the map in the theorem statement.

Finally, if n is even, since h ^ h ∈ H2n(F ;R) = 0, we have

0 = dn+1(1⊗ (h ^ h))

= dn+1((1⊗ h) ^ (1⊗ h))

= (z ⊗ 1) ^ (1⊗ h) + (−1)n(1⊗ h) ^ (z ⊗ 1)

= (2z)⊗ h.

Hence 2z = 0. (If 2 = 0 in R, this is trivial.)

10 Example (H∗(CPn;R))
Claim: H∗(CPn;R) ∼= R[x]/(xn+1) with deg x = 2, for n ≥ 0.

Proof The n = 0 case is trivial. Since CP 1 ∼= S2 via stereographic projection, the graded structure
of H∗(S2;R) forces the ring structure to be trivial. So, take n > 1.

The quotient Cn+1 − {0}� (Cn+1 − {0})/∼ := CPn can be interpreted as

S1 ↪→ S2n+1 → CPn,

a fibration (indeed, a fiber bundle). CPn is in general simply-connected (and path-connected),
so the Gysin sequence applies. It starts with

0→ H0(CPn;R)
γ→ H2(CPn;R)→ H2(S2n+1;R)

→ H1(CPn;R)
γ→ H3(CPn;R)→ H3(S2n+1;R)→ · · ·

Since 2n+ 1 ≥ 5, H2(S2n+1;R) = H3(S2n+1;R) = 0. Hence x := γ(1) ∈ H2(CPn;R) generates
H2(CPn;R) ∼= R, and γ(−) = z ^ − says z = x in the notation of the Gysin sequence.
Moreover, H1(CPn;R) = 0, which can be seen in a few ways; for instance, CPn has a CW
complex decomposition with no one-dimensional cells. Hence 0 = H1(CPn;R) ∼= H3(CPn;R).
Now consider

· · · → H2k+1(S2n+1;R)→ H2k(CPn;R)
γ→ H2k+2(CPn;R)→ H2k+2(S2n+1;R)→ · · ·

If n < k, the first term is 0, and the last term is 0 generally, so γ is an isomorphism. Suppose
inductively H2k(CPn;R) ∼= R is generated by xk. γ sends a generator to a generator, so
γ(x) = x ^ xk = xk+1 generates H2k+2(CPn;R). Similarly in odd dimensions the cohomology
groups are trivial.
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On the other hand, if n = k, we have

· · · → H2n−1(CPn;R)→ H2n+1(CPn;R)→ H2n+1(S2n+1;R)

→ H2n(CPn;R)
γ→ H2n+2(CPn;R)→ H2n+2(S2n+1;R)→ · · ·

which is
0→ 0→ H2n(CPn;R)→ R

γ→ 0→ 0

where we’ve used the fact that Hi(M ;R) = 0 for a manifold M if i > dimM . It follows that
γ(xk) = x ^ xk = xk+1 = 0, completing the result.

11 Theorem
Here is a summary of cohomology computations which can also be carried out with the Leray-Serre
spectral sequence, taken from McCleary:

(i) Let SU(n) ⊂ Mn(C) be the Lie group of unitary matrices of determinant 1, called the

special unitary group . Then

H∗(SU(n);R) ∼= Λ(x3, x5, . . . , x2n−1),

where deg xi = i (throughout) and Λ refers to the exterior algebra (over R). (Recall this is
given by formal linear combinations of k-fold tensors of the generators, subject to the relation
x⊗ x = 0.)

(ii) Let Sp(n) ⊂Mn(H) be the space of linear transformations which preserve the (quaternionic)

inner product, called the symplectic group . Then

H∗(Sp(n);R) ∼= Λ(x3, x7, . . . , x4n−1).

(iii) Let SU denote the infinite special unitary group , which is the direct limit (union) of special

unitary groups SU(2) ⊂ SU(3) ⊂ · · · (with the natural inclusions). Then

H∗(SU;R) ∼= Λ(x3, x5, x7, x9, . . .).

(iv) Let Vk(Cn) denote the space of orthonormal k-frames (ordered bases) in Cn, called the

Stiefel manifold . Then

H∗(Vk(Cn);R) ∼= Λ(x2(n−k)+1, x2(n−k)+3, . . . , x2n−1).

(v) Let SO(n) ⊂ Mn(R) denote the space of orthogonal matrices of determinant 1, called the

special orthogonal group . Then H∗(SO(n);F2) has a “simple system of generators” (see below)

{x1, x2, . . . , xn−1}, deg xi = i.

(vi) Let Vk(Rn) denote the space of orthonormal k-frames in Rn. Then H∗(Vk(Rn);F2) has a simple
system of generators

{xn−k, xn−k+1, . . . , xn−1}, deg xi = i.

(vii) Let K(Z, n) denote the Eilenberg-Mac Lane spaces . Then

H∗(K(Z, n);Q) ∼=
{

Λ(xn) n odd
Q[xn] n even
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(viii) Let B SO(n) denote the classifying space (see below) of the special orthogonal group, and likewise
with other groups we’ve encountered. Similarly, a lack of “(n)” or an (∞) denotes an “infinite”
version. Then

H∗(B SO(n);F2) ∼= F2[w2, . . . , wn]

H∗(B SO;F2) ∼= F2[w2, w3, . . .]

H∗(BO(n);F2) ∼= F2[w1, . . . , wn]

H∗(BO;F2) ∼= F2[w1, w2, . . .]

H∗(RP (∞);F2) ∼= F2[w1].

Definition 12. Let H∗ be a graded-commutative algebra, taken over R. A set {y1, y2, . . .} is called a

simple system of generators if the elements 1 and xi1 · xi2 · · · with i1 < i2 < · · · form a basis over R

for H∗. (Note: this does not determine the algebra structure fully. For instance, x2i is not determined.)

13 Remark
Next we’ll discuss computing the cohomology ring of a flag manifold. This will be a rough overview
with many references and little rigor.

Definition 14. The flag manifold Flag(n) as a set consists of ordered bases of Cn, or equivalently

saturated chains of subspaces in Cn. The (complex) unitary group U(n) acts on Flag(n) in an obvious
way, and has stabilizer T (n), the diagonal (complex) matrices in U(n). Indeed, Flag(n) ∼= U(n)/T (n)

is a homogeneous space and carries a Lie group structure. Note that U(n) is compact, so Flag(n) is

as well. There is an associated fibration

T (m) ↪→ Um(C)→ U(m)/T (m).

15 Proposition
Associated to a Lie group G is a classifying space BG. Indeed, given a closed subgroup i : H ↪→ G,

there is an associated fibration
G/H ↪→ BH

Bi→ BG.

In our case, this looks like

Flag(n) ↪→ BTn
Bi→ BU(n).

16 Theorem (Borel)
Let G be a connected compact Lie group, H a closed connected subgroup of maximal rank, and k a
field of characteristic p. Suppose that p = 0 or H∗(G;Z) and H∗(H;Z) have no p-torsion. Then

H∗(G/H; k) ∼= k ⊗H∗(BG;k) H
∗(BH; k).

Proof (Statement taken from Frank Neumann’s “On the cohomology of homogeneous spaces...”,
Journal of Pure and Applied Algebra, 1999.) Borel used the Leray-Serre spectral sequence in
his Paris thesis in the early 1950’s, which is still a classic reference (though it’s in French). It
can also be proved using the Eilenberg-Moore spectral sequence, which is covered extensively in
McCleary.

17 Example
For the flag manifold, this gives

H∗(Flag(n);Q) ∼= Q⊗H∗(BU(n);Q) H
∗(BTn;Q).

A general result (Theorem 6.38 in McCleary) gives

H∗(U(n);Q) ∼= Q[y1, . . . , yn],

and another general result (Definition 8.4) gives

H∗(BU(m);Q) ∼= Q[y1, . . . , yn]Sn ,
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where here Sn is the corresponding Weyl group , with the usual action. Putting it all together,

H∗(Flag(n)) ∼= Q⊗Q[y1,...,yn]Sn Q[y1, . . . , yn]

∼=
Q[y1, . . . , yn]

(e1, . . . , en)

where y1, . . . , yn act on Q by 0 and ei is the degree i elementary symmetric polynomial on n variables.
That is, we quotient by the ideal of non-constant symmetric polynomials.

18 Example
In algebraic combinatorics, the cohomology ring of both Grassmannians and flag manifolds figure
prominently, with bases given by Schur and Schubert polynomials, respectively, both of which have

been studied extensively. For instance, for the Grassmannian Gr(k, n) of k-planes in Cn, we have

H∗(Gr(k, n);Z) ∼=
Z[x1, . . . , xk]Sk

Ik,n

where Ik,n is the ideal generated by the Schur polynomials whose diagram does not fit in a box with

k rows and n − k columns. The Schur polynomials sλ are indexed by integer partitions λ. More

precisely,

sλ :=
∑

T∈SSYT(λ)

xT ,

where SSYT(λ) is the set of all semi-standard Young tableaux of shape λ. That is, we form a

certain diagram out of λ and label boxes with numbers from 1, . . . , k so that rows weakly increase and
columns strictly increase. xT := xa11 · · ·x

ak
k where ai is the number of times the label i appears in T .

We frequently forget about the underlying topological interpretation of these polynomials, but it’s nice
to see where they come from.
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