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Summary Presenting on Malvenuto and Reutenauer’s “Duality between Quasi-Symmetric Functions and
the Solomon Descent Algebra”.

There is a bialgebra structure (QSYMQ,m, u, γ, ε) which dualizes to give a bialgebra

(QSYM∗Q, γ
∗, ε∗,m∗, u∗).

This is isomorphic as a bialgebra to the bialgebra Q〈t1, t2, . . .〉 where deg ti = i and each ti is primitive.
They are both Hopf algebras; the latter is called the concatenation Hopf algebra. Note that the main
difference between

NSYMQ := Q〈H1, H2, . . .〉
and the concatenation Hopf algebra is that the coproducts differ (rock-breaking vs. primitive).

There is a second coproduct γ′ on QSYM with counit ε′. Dualizing gives a ring structure
(QSYM∗, (γ′)∗, (ε′)∗). Gessel showed the Solomon Descent Algebras Σn have a ring structure isomorphic
to (QSYM∗n, (γ

′)∗, (ε′)∗). (Indeed, this second coproduct and counit give a second bialgebra structure
(QSYM,m, u, γ′, ε′), which gives a second bialgebra structure (QSYM∗, (γ′)∗, (ε′)∗,m∗, u∗).)

There is a different multiplication ∗ and a coproduct ∆ on Σ (with unit and counit) such that
(Σ, ∗,∆) forms a Hopf algebra isomorphic to (QSYM∗, γ∗, ε∗,m∗, u∗).

1 Remark
Outline:

1. Define QSYM∗ with bialgebra structure.

2. Show (1) is naturally isomorphic to the concatenation Hopf algebra Q〈T 〉.

3. Corollaries: QSYMQ is a free algebra and a free SYMQ-module; antipode formula for QSYM.

4. Define QSYM∗ with second algebra structure.

5. Define Solomon Descent Algebra Σ, which is naturally isomorphic to (4).

6. Define a Hopf algebra structure on Σ agreeing with (1).

Definition 2. Let T be a countable totally ordered set. QSYM(T ) is the subring of formal power series

F (T ) over Z in commuting variables T which are of finite degree and which have the property that, if
tc11 · · · t

ck
k is a monomial in F (T ) (here ci ≥ 1), then uc11 · · ·u

ck
k is a monomial in F (T ) with the same

coefficient, for any u1 < · · · < uk in T .

To each (strong) composition C = (c1, . . . , ck), we associate a quasisymmetric function MT
C in

QSYM(T ) given by
∑
t1<···<tk t

c1
1 · · · t

ck
k . These are the monomial quasisymmetric functions, and they

form a Z-basis for QSYM(T ).

Note that QSYM(X) and QSYM(Y ) are canonically isomorphic, for any totally ordered sets X
and Y (even if there is no order-preserving bijection between them). In particular, send MX

C to MY
C .
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3 Remark
Consider the tensor product QSYM(X)⊗QSYM(Y ) (tensored over Z). An element xa11 · · · ⊗ y

b1
1 · · ·

with x1 < x2 < · · · , y1 < y2 < · · · can naturally be identified with the element xa11 · · · y
b1
1 · · · of

QSYM(X ∪ Y ) where X ∪ Y is totally ordered by declaring xi < yj for all i, j. This gives a ring
isomorphism QSYM(X)⊗QSYM(Y ) ∼= QSYM(X ∪ Y ). It operates via

MX∪Y
C 7→

∑
C=AB

MX
A ⊗MY

B

where AB denotes the concatenation of compositions A and B.

Definition 4. Define γ : QSYM(T )→ QSYM(X)⊗QSYM(Y ) to be the composite

QSYM(T )
∼→ QSYM(X ∪ Y )→ QSYM(X)⊗QSYM(Y )

∼→ QSYM(T )⊗QSYM(T ).

We call γ the outer coproduct . One can check

γ(MT
C ) =

∑
C=AB

MT
A ⊗MT

B .

From now on, we drop the alphabet from the notation when disambiguation is not needed.

5 Remark
The counit ε of γ is evaluation at 0, i.e. it gives the constant coefficient. Indeed, (QSYM,m, u, γ, ε)
is a bialgebra, where m denotes the usual multiplication and u the natural inclusion Z→ QSYM.

6 Remark
QSYM is a graded Z-algebra, with homogeneous Z-basis consisting of MC of degree |C| :=

∑
ci. (We

allow M∅ = 1.) Moreover each homogeneous component QSYMn of QSYM is finite dimensional.

Definition 7. The graded dual of QSYM is

QSYM∗ :=

∞⊕
n=0

QSYM∗n

as a Z-module, where QSYM∗n := HomZ(QSYMn,Z).

8 Remark
The maps m,u, γ, ε above respect the grading, so we may dualize them as well. (Note that
(QSYM⊗QSYM)n := ⊕p+q=n QSYMp⊗QSYMq.) Since each component has finite rank, the
natural map QSYM∗p⊗QSYM∗q → (QSYMp⊗QSYMq)

∗ is an isomorphism, allowing us to view
m∗ as a coproduct with counit u∗. Similarly (QSYM∗, γ∗, ε∗,m∗, u∗) is a bialgebra.

9 Remark
Since QSYMn is finite dimensional, QSYM∗n is isomorphic as a Z-module to QSYMn. Similarly,
QSYM∗∗ is canonically isomorphic to QSYM as a bialgebra. Graded duals V ∗ of other graded
Z-modules, algebras, or coalgebras, with finite rank in each (free) component, are defined in the
same way. Note that V ∗ ⊗ V ∗ is canonically isomorphic to (V ⊗ V )∗ for such an object.

10 Remark
We have a dual Z-basis {M∗C} of QSYM∗, which is the Z-linear function QSYM → Z which
is 1 on MC and 0 on MD for D 6= C. Throughout, we use the isomorphism (of Z-modules)
QSYM

∼→ QSYM∗ given by MC 7→M∗C .

As usual, the dual is non-canonically isomorphic (as a Z-module) to the original object: we
seem to like the monomial basis, so we choose it to give a “pseduo-canonical” isomorphism.
However, we could theoretically use the fundamental basis, giving a different isomorphism, and
neither choice is clearly “correct”.
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Definition 11. If V is a Z-module, define the pairing (i.e. Z-bilinear map)

〈−,−〉 : V ∗ × V → Z
〈φ, v〉 7→ φ(v).

If the graded dual of V exists in the above sense, this naturally induces a pairing

〈− ⊗ −,−⊗−〉 : (V ∗ ⊗ V ∗)× (V ⊗ V )→ Z
〈φ⊗ ψ, v ⊗ w〉 7→ 〈φ, v〉〈ψ,w〉

= φ(v)ψ(w).

12 Remark
Suppose V,W have graded duals V ∗,W ∗. If Γ: V →W , the dual Γ∗ : W ∗ → V ∗ is defined by

(φ : W → Z) 7→ (φ ◦ Γ: V →W → Z).

In particular, Γ∗(φ)(v) = φ(Γ(v)). In terms of the pairing,

〈Γ∗(φ), v〉 = 〈φ(Γ), v〉,

and this condition characterizes Γ∗.

13 Remark
Denote the product γ∗ : QSYM∗⊗QSYM∗ → QSYM∗ by juxtaposition. It is characterized by

〈φψ, F 〉 = 〈φ⊗ ψ, γ(F )〉

for all F . Likewise, the coproduct m∗ can be defined by requiring

〈 m∗(φ) , F ⊗G〉 = 〈φ, FG〉

for all F ⊗G. The unit remains obvious. The counit is given by u∗(φ) = φ(1).

Definition 14. Let T be a set of noncommuting variables and consider the free associative Z-algebra Z〈T 〉.
Define coproduct δ(ti) = ti⊗1 + 1⊗ ti, counit ti 7→ 0, 1 7→ 1, and antipode S(t1 · · · tn) = (−1)ntn · · · t1,

which gives the concatenation Hopf algebra over Z. (This is similar to NSYM, except we use a

primitive rather than rock-breaking coproduct.)

15 Remark
Z in the above may be replaced by Q (or any field) with no change whatsoever. We use SYMQ,
QSYMQ, QSYM∗Q and the like to denote these versions.

16 Theorem (2.1)
QSYM∗Q is canonically isomorphic as a bialgebra to the concatenation Hopf algebra Q〈T 〉, where
T = {tn : n ≥ 1} and deg tn = n.

Explicitly, the isomorphism is given by

tn 7→
∑
|C|=n

(−1)`(C)−1

`(C)
M∗C =: P(n) ,

where `(C) = k for C = (c1, . . . , ck).

17 Remark
Note that Q〈T 〉 is finitely generated in each component, and indeed dim(Q〈T 〉)n is the number
of (strong) compositions of size n.

Proof There are three main steps:
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(1) M∗AM
∗
B = M∗AB .

(2) ∆(M∗(n)) =
∑
p+q=nM

∗
(p) ⊗M

∗
(q) for n ≥ 1.

(3) The elements P ∗(n) ∈ QSYM∗Q, n ≥ 1 from the theorem statement are primitive.

Note that from (1) we may define an isomorphism of algebras NSYMQ → QSYM∗Q given by
tn 7→ M∗(n). Jose asserted this is an isomorphism of Hopf algebras. (2) is a weak form of the

coalgebra isomorphism. Roughly, (3) goes from the rock-breaking coproduct on NSYM to the
primitive coproduct on Q〈T 〉.

(1) Follows since

〈M∗AM∗B ,MC〉 = 〈M∗A ⊗M∗B , γ(MC)〉

=
∑

C=A′B′

〈M∗A ⊗M∗B ,MA′ ⊗MB′〉

=
∑

C=A′B′

δAA′δBB′ = δAB,C

= 〈M∗AB ,MC〉.

Thus QSYM∗Q is freely generated as a Z-algebra by {M∗(i) : i ≥ 1}.

(2) is similar to (1) and not worth the time to discuss.

(3) begins by defining the P ∗(n) through a generating function,∑
n≥1

P ∗(n)t
n = log(1 +M∗(1)t+M∗(2)t

2 + · · · ),

where these expressions live in QSYM∗[[t]]. By comparing coefficients and using (1), the formula
from the theorem statement follows, so in particular Pn is homogeneous of degree n. These
elements are primitive:

∑
n≥1

∆(P ∗(n))t
n = ∆(log

∑
i≥0

M∗(i)t
i) = log

∑
i≥0

∆(M∗(i))t
i


= log

 ∑
p,q≥0

M∗(p)t
p ⊗M∗(q)t

q


= log

(
∑
p≥0

(M∗(p)t
p ⊗ 1)(1⊗

∑
q≥0

M∗(q)t
q)


= log

∑
p≥0

M∗(p)t
p ⊗ 1

 + log

1⊗
∑
q≥0

M∗(q)t
q


= log

∑
p≥0

M∗(p)t
p

⊗ 1 + 1⊗ log

∑
q≥0

M∗(q)t
q


=

∑
n≥1

P ∗(n)t
n ⊗ 1 + 1⊗

∑
n≥1

P ∗(n)t
n.

(The fifth equality uses the fact that log(ab) = log(a) + log(b) when a, b commute.)
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Applying exp to the generating function defining Pn, we find

M∗(n) =
∑
|C|=n

1

`(C)!
P ∗C .

Hence each M∗(i) is a polynomial combination of Pn’s, so we’ve found a primitive generating set.
Apparently it’s free; they say this follows from the formula in the theorem statement, but I
don’t see it immediately.

18 Corollary
QSYMQ has a free generating set containing a free generating set of SYMQ. In particular, QSYMQ is
a free commutative algebra and a free SYMQ-module.

Proof Identify QSYM∗Q and Q〈T 〉 as in the theorem. Define tC := tc1 · · · tck for C = (c1, . . . , ck).
Note {tC} is a Q-basis, essentially by definition. Let {PC} denote its dual basis in QSYMQ.

Take L to be the set of Lyndon compositions , which is to say, the set of compositions which

are Lyndon words (with respect to the natural ordering on P), which is to say the set of

compositions which are lexicographically smaller than all of their rotations. Then {P` : ` ∈ L}
is a free generating set for QSYM as an algebra: see Reutenauer, “Free Lie Algbras”, Theorem
6.1(i).

We claim P(n) = M(n). Since this is just the usual power symmetric functions of degree n,
these are free generators of SYMQ, giving the first part of the corollary. To prove the claim,
roughly, use the formula for M∗(n) in terms of P ∗C to write M∗D as a certain sum of P ∗C , where

the sum is over C ≤ D (ordered by refinement). Hence the transition matrix from M∗D to P ∗C is
upper triangular. Taking duals just transposes the matrix, whence PC is a sum over C ≤ D of
MD. Since C = (n) is as coarse as possible for n-compositions, the sum has one term, and in
fact the coefficient is 1.

The second part of the corollary is just saying

QSYMQ = Q[{P`}] = Q[{P(n)}][{P`} − {P(n)}] = SYMQ[{P`} − {P(n)}],

so QSYMQ is a free SYMQ-algebra, and in particular a free SYMQ-module.

Definition 19. Let FC denote the fundamental quasisymmetric function indexed by C, let I be the usual

stars and bars bijection between (strong) compositions of n and subsets of [n−1]. Courting ambiguity,

we denote both I and its inverse by the same letter I, relying on context to disambiguate. Let C
denote the reverse of the composition C. Define ω to be the involution on n-compositions given by
applying I, taking the complement in [n− 1], applying I, and reversing the resulting composition.

20 Example
ω((2, 1, 3, 2, 1)) = (2, 2, 1, 3, 1):

2 + 1 + 3 + 2 + 1 7→ ∗ ∗ | ∗ | ∗ ∗ ∗ | ∗ ∗|∗
7→ ∗| ∗ ∗ ∗ | ∗ | ∗ ∗| ∗ ∗
7→ 1 + 3 + 1 + 2 + 2

7→ 2 + 2 + 1 + 3 + 1.

21 Corollary
QSYMQ is a Hopf algebra with antipode S equivalently defined by either

S(MC) :=
∑
C≤D

(−1)`(C)MD or S(FC) := (−1)|C|Fω(C).
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Proof The concatenation Hopf algebra Q〈T 〉 from the theorem has antipode S∗ given by S∗(t1 · · · tk) =
(−1)ktk · · · t1, which is the unique anti-automorphism of Q〈T 〉 such that S∗(tn) = −tn. Hence
QSYM∗Q is a Hopf algebra with antipode S∗ determined by S∗(P ∗(n)) = −P ∗(n). Since QSYM∗∗Q
is canonically isomorphic to QSYMQ as a bialgebra, QSYMQ is a Hopf algebra with antipode
S∗∗ = S, which we now compute.

Using generating functions, one may show

S∗(M∗(n)) =
∑
|C|=n

(−1)`(C)M∗C .

It follows that
S∗(M∗D) =

∑
C≤D

(−1)`(C)M∗
C

;

the C comes from the fact that S∗ is an antiautomorphism; eg. try the D = (n,m) case.
Applying duality (and reversing all compositions in sight) gives the first formula. The second
formula follows with a little more work; see the paper for details.

Definition 22. Define ω : QSYMQ → QSYMQ to be the linear map given by ω(FC) = Fω(C).

23 Corollary
ω is an antiautomorphism of QSYMQ which extends the usual conjugation automorphism of SYMQ.

Proof Since ω(FC) = (−1)|C|S(FC), ω is an antiautomorphism. Since ω(n) = (1n), we have
ω(F(n)) = F1n , which is ω(hn) = en using the complete homogeneous and elementary symmetric
polynomials. This property characterizes the usual conjugation automorphism.

24 Remark
The theorem was useful. Our next goal is to define the Solomon Descent Algebras, recall previous
results, and endow it with a new Hopf algebra structure making it isomorphic to QSYM∗Q from above.

Definition 25. Let X,Y be countable totally ordered sets. Define XY as X × Y with lecicographic order.
Recall the canonical map Z[XY ] → Z[X ∪ Y ] given by MXY

C 7→ MX∪Y
C . Suppressing other similar

canonical maps, define a second coproduct γ′ on QSYM to be the composite

γ′ : QSYM(T )→ QSYM(T )⊗QSYM(T )

QSYM(XY )→ QSYM(X ∪ Y )→ QSYM(X)⊗QSYM(Y )

→ QSYM(Y )⊗QSYM(X).

Let ε′ be the counit determined by ε′(F(n)) = 1 and ε′(FC) = 0 for `(C) ≥ 2.

26 Remark
More concretely, Gessel showed (and Jair said)

γ′(FD(π)) =
∑
στ=π

FD(σ) ⊗ FD(τ)

where D(π) := I(Des(π)).

These operations give QSYM∗ a second bialgebra structure (QSYM,m, u, γ′, ε′).

Definition 27. Let n ≥ 0 and I ⊂ [n− 1]. Define

DI :=
∑
σ∈Sn

Des(σ)=I

σ ∈ ZSn.

Say degDi := n. Let Σn := SpanZ{DI} be the Solomon Descent Algebra . (Note: it is not obvious

that it is closed under multiplication.)

6



28 Theorem (Solomon, 1976)
Σn is a subalgebra of ZSn.

29 Remark
See for instance Schocker 2004, “The Descent Algebra of the Symmetric Group”, for a
survey of relatively recent work, a formula for the expansion coefficients, and much more.
Note he uses (ZSn)op. This algebra is also implemented in Sage; see “Descent Algebras”.
Solomon in fact defined similar algebras for all Coxeter groups.

30 Remark
Malvenuto and Reutenauer define Σ := ⊕n≥0Σn with a (non-unital) ring structure given by
στ = 0 if σ, τ do not belong to the same Sn. They claim in Theorem 3.2 that Σ is isomorphic
to QSYM∗((γ′)∗) as a not-necessarily-unital ring, but since γ′ had a counit ε′, the latter is a
unital ring, forcing the former to be as well, a contradiction. More concretely, if you compute
the product of two elements from different homogeneous components of QSYM∗ using their
bijection, you always get 0 on the Σ side, which is nonsense.

They almost surely meant the slight variation below, given by (Gessel, 1984). They do not
use this theorem for anything more than motivation.

31 Theorem (Gessel, 1984)
(QSYM∗n, (γ

′)∗) is isomorphic as a ring to Σn, with F ∗C ↔ DC .

32 Remark
Letting juxtaposition denote (γ′)∗, as before this product on QSYM∗n is characterized by

〈φψ, F 〉 = 〈φ⊗ ψ, γ′(F )〉.

Using φ = F ∗A, ψ = F ∗B , F = FC , and applying the theorem, the right-hand side is the coefficient
of FA ⊗ FB in γ′(FC) and the left-hand side is the coefficient of DC in the product DADB.
Compactly,

(γ′(FC))A⊗B = (DADB)C .

33 Theorem
Let ZS := ⊕n≥0ZSn as a Z-module. There is a product ∗ and coproduct ∆ on ZS (with unit and
counit) which make ZS into a Hopf algebra. Indeed, Σ := ⊕n≥0Σn ⊂ ZS∞ is a Hopf subalgebra, and
(QSYM∗, γ∗, ε∗,m∗, u∗) is isomorphic to Σ as a Hopf algebra via F ∗C ↔ DC .

34 Remark
Note that Σ no longer has a product induced by the group algebra in any sense.

Proof Lengthy; main tool is the “shuffle Hopf algebra”; they connect ∗ to the convolution in
End(Z〈T 〉) and consider a second (ultimately dual) bialgebra structure on ZS; see their paper
for details. We merely define the operations involved.

Definition 35. Let str denote the straightening in Sn of a word (of length n) on a totally ordered

alphabet. Call str(w) the standard permutation of w.

36 Example
PIAZZA 7→ − − 1−−2 7→ −31−−2 7→ 431−−2 7→ 431562 = str(PIAZZA).

Definition 37. For σ ∈ Sn and I ⊂ [n], let σ|I denote the word obtained from σ (viewed as a word on [n]

in one-line notation) where only letters in I are kept.

Definition 38. Define a coproduct ∆ on ZS by

∆ (σ) :=

n∑
i=0

σ|[1, i]⊗ str(σ|[i+ 1, n]).
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39 Example

∆(3124) = λ⊗ 3124 + 1⊗ str(324) + 12⊗ str(34) + 312⊗ str(4) + 3124⊗ λ
= λ⊗ 3124 + 1⊗ 213 + 12⊗ 12 + 312⊗ 1 + 3124⊗ λ.

Here λ ∈ S0 is the empty word. The associated counit is given by λ 7→ 1 and σ 7→ 0 for σ ∈ Sn
with n ≥ 1.

Definition 40. Define a product ∗ on ZS∞ as follows. For σ ∈ Sn, τ ∈ Sm, let

σ ∗ τ =
∑

uv

where the sum is over words u, v in [n + q] such that u, v together are a disjoint union of [n + q],
str(u) = σ, and str(v) = τ .

41 Example
12 ∗ 12 = 1234 + 1324 + 1423 + 2314 + 2413 + 3412.

Evidently λ is the identity.
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