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Major index statistics have been studied for over a century in many guises and appear

throughout algebraic combinatorics. We pursue major index statistics from two complementary

perspectives: algebraic and asymptotic. We first prove an instance of refined cyclic sieving for

the major index statistic on words with a fixed cyclic descent type. We next connect this cyclic

sieving result to Schur expansions due to Kraskiewicz–Weyman, Stembridge, and Schocker

related to certain reflection group branching rules and higher Lie modules. This leads to

a conjectured approach to a generalization of Thrall’s problem. Afterwards, we transition

between the algebraic and the probabilistic by classifying the irreducible components appearing

in some of these induced representations. The argument uses the underlying representation

theory to prove a uniform local limit theorem, answering a conjecture of Sundaram. We then

study the distribution of the major index on standard tableaux of straight shape and certain

skew shapes. In particular, we classify all possible limit laws, most of them normal, providing

a common generalization of results due to Canfield–Janson–Zeilberger, Chen–Wang–Wang,

Diaconis, Feller, Mann–Whitney, and others. We also provide a combinatorial and constructive

characterization of the irreducible representations appearing in each degree of the type A

coinvariant algebra. Finally we describe a new approach to a result of Baxter–Zeilberger

on the limiting joint distribution of the inversion number and major index on permutations

using a generating function of Roselle, answering a $300 question of Romik and Zeilberger.
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Chapter 1

INTRODUCTION

The major index statistic was introduced a century ago by MacMahon [62]. For a

permutation w = w1 · · ·wn in the symmetric group Sn, the major index of w is the sum of all

i such that wi > wi+1. For example, the identity permutation id = 1 2 · · · n has major index

0 and the “longest element” w0 = n n− 1 · · · 1 has major index 1 + 2 + · · ·+ (n− 1) =
(
n
2

)
.

Almost magically, variations on the major index appear again and again throughout algebraic

combinatorics. Baxter and Zeilberger [7] describe the major index as the “second most

important permutation statistic” (after inversion number). The following are some examples

of the many uses of major index statistics, most of which will be discussed in more detail

shortly.

1. There is a homogeneous polynomial basis for the cohomology ring of the complete flag

manifold indexed by permutations whose major index is the degree of the corresponding

polynomial [33].

2. The type A coinvariant algebra is a graded Sn-module over the complex numbers. The

multiplicity of each irreducible component in each homogeneous component is given by

counting standard tableaux by their major index [87, Prop. 4.11]

3. The stable principal specializations of several classic symmetric function bases including

the complete homogeneous and Schur bases have beautiful, compact expressions in

terms of major index generating functions [91, Prop. 7.19.11].

4. Families of irreducible complex GLn(Fq)-representations have polynomial degree as
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a function of q. These polynomials are essentially given by major index generating

functions [39, Lemma 7.4].

5. The branching rules from arbitrary cyclic subgroups of Sn are given by counting tableaux

with a given generalized major index up to a modular congruence [94, Thm. 3.3].

1.1 Generating Functions and Representation Theory

The canonical launching point for explorations of the major index is the following beautiful

generating function identity due to MacMahon.

Theorem 1.1.1 (MacMahon, [60, Art. 6]). The ordinary generating function for the major

index statistic on the symmetric group Sn is

∑
w∈Sn

qmaj(w) = [n]q! := [n]q[n− 1]q · · · [1]q

where [n]q := 1 + q + · · ·+ qn−1 = 1−qn
1−q is a q-integer.

The ordinary generating function of the inversion statistic

inv(w1 · · ·wn) := #{i < j : wi > wj}

was also known by MacMahon to be [n]q!. Consequently, the two most important permutation

statistics, inv and maj on Sn, are equidistributed. Many bijective proofs of this surprising

fact are now known, the first being due to Foata [26].

MacMahon considered major index statistics essentially from the perspective of what

would now be termed enumerative combinatorics. The representation theoretic importance

of major index statistics was realized piece by piece in the decades following MacMahon’s

explorations. To describe these connections, we require some of the basics of the representation

theory of symmetric groups. All representations will be over C.
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The conjugacy classes of the symmetric group Sn are given by cycle types. The cycle

type of a permutation is encoded in the list of the lengths of the cycles in its disjoint cycle

decomposition, written in weakly decreasing order to avoid redundancy. We call such a

list a partition of n, denoted λ ` n. The complex irreducible inequivalent representations

of a finite group are equinumerous with its conjugacy classes, but for symmetric groups

something extraordinary occurs: the irreducible representations of Sn are canonically indexed

by partitions of n. The corresponding irreducible Sλ was constructed by Alfred Young [102,

QSA IV] and are usually referred to as Specht modules1. The naturality of the construction

is perhaps best illustrated by the notion of Schur functors. These are categorifications of the

Sλ which “interpolate” between the symmetric power and exterior power endofunctors on

vector spaces. See for instance [31, §8.1] for more details.

The representation theory of symmetric groups is intimately tied to the algebra of

symmetric functions. A formal power series f(x1, x2, . . .) in infinitely many commuting

indeterminates is called symmetric if it is unchanged upon swapping any two inputs. The most

well-studied basis of symmetric functions is undoubtedly the Schur functions sλ(x1, x2, . . .),

which are again indexed by partitions. The Frobenius characteristic of an Sn-representation is

given by sending the irreducible Sλ to the Schur function sλ and extending additively. Many

problems in algebraic combinatorics originate in representation theory and are transferred to

algebra via the characteristic map. The process is often reversed as well: given a Schur-positive

symmetric function, one may ask for an intrinsic construction of a corresponding Sn-module.

One particularly straightforward class of Sn-modules is given as follows. The content of a

word w ∈ Zn≥1 is the sequence (α1, α2, . . .) where αi is the number of times the letter i appears

in w. We write such a sequence as α � n, were n is the sum of the entries in α. Let Wα

denote the set of words of content α. Permuting the letters of a word preserves its content,

so Sn acts on the set Wα, and hence also on formal C-linear combinations of elements of

Wα. This Sn-module is almost always reducible. Under the Frobenius characteristic map,

1Perhaps unfairly. This situation is deplored by Adriano Garsia [34, Rem. 1.1], who suggests Young’s
peculiar writing style doomed his earlier work to relative obscurity.
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this Sn-module corresponds with the well-known complete homogeneous symmetric function

hα := hα1hα2 · · · . The stable principal specialization of the complete homogeneous symmetric

functions have the following elegant expression in terms of the major index on Wα, which is

defined verbatim as for Sn.

Theorem 1.1.2 ([91, Prop. 7.8.3] and [60, Art. 6]). Let α � n. Then

hα(1, q, q2, . . .) =
Wmaj

α (q)

(1− q) · · · (1− qn)

where

Wmaj
α (q) :=

∑
w∈Wα

qmaj(w) =

(
n

α

)
q

:=
[n]q!

[α1]q![α2]q! · · ·
.

The Sn-module C{Wα} associated with Theorem 1.1.2 by construction has basis given by

words in Wα. Analogously, the irreducible modules Sλ have bases indexed by combinatorial

objects called standard Young tableaux, which we next describe.

(a) The Young diagram of λ.

8 7 6 3 2 1
4 3 2
3 2 1

(b) Hook lengths of cells of λ.

1 2 4 7 9 12
3 6 10
5 8 11

(c) A standard tableau of shape λ.

Figure 1.1: Constructions related to the partition λ = (6, 3, 3). The standard tableau has
descents at 2, 4, 7, 9, 10 and major index 32.

One frequently visualizes a partition λ ` n using its Young diagram, which is the upper-left
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justified arrangement of unit squares called cells where the ith row from the top has λi cells2;

see Figure 1.1a. Partitions and their Young diagrams are frequently considered synonymous.

The transpose λ′ of a partition λ is obtained by reflecting its Young diagram through the line

y = −x. The hook length of a cell c ∈ λ is the number hc of cells in λ in the same row as c to

the right of c or in the same column as c and below c, including c itself; see Figure 1.1b. A

standard tableau of shape λ ` n is a filling of the cells of the Young diagram of λ with the

numbers 1, 2, . . . , n, each used once, which increases along rows and columns; see Figure 1.1c.

The set of standard tableaux of shape λ is denoted SYT(λ). The count fλ := # SYT(λ) is

given by the famous Frame–Robinson–Thrall hook length formula [29], which we describe

shortly. The descent set of T ∈ SYT(λ) is the set of all labels i such that i+ 1 appears in a

strictly lower row of T than i; see Figure 1.1. The major index of T ∈ SYT(λ) is

maj(T ) :=
∑

i∈Des(T )

i.

We have the following beautiful analogue of Theorem 1.1.2 for Schur functions and the

irreducibles Sλ due to Stanley. The first equality was first explicitly stated by Stanley and

also occurred in unpublished work of Lusztig. For more historical details and references, see

[91, p. 401-403].

Theorem 1.1.3 ([91, Prop. 7.19.11, Cor. 7.21.3]). Let λ ` n. Then

sλ(1, q, q
2, . . .) =

SYT(λ)maj(q)

(1− q) · · · (1− qn)

where

SYT(λ)maj(q) :=
∑

T∈SYT(λ)

qmaj(T ) = qb(λ) [n]q!∏
c∈λ[hc]q

and b(λ) :=
∑

i(i− 1)λi.

2Following English notation.
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Corollary 1.1.4 (Hook Length Formula, Frame–Robinson–Thrall [29]). Let λ ` n. Then

fλ =
n!∏
c∈λ hc

.

Proof. Let q → 1 in Theorem 1.1.3.

1.2 Cyclic Sieving and Evaluations at Roots of Unity

A common theme when encountering generating functions with a q-parameter is to find

interpretations of related expressions when q is a prime-power or a complex root of unity.

For example, Green [39], building on work of Steinberg [93], gave an interpretation for

(1− q) · · · (1− qn)sλ(1, q, q2, . . .) when q is a prime-power. Using Theorem 1.1.3, Green’s inter-

pretation says SYT(λ)maj(q) is the dimension of a certain irreducible GLn(Fq)-representation.

We pause here to fill a minor gap in the literature. Steinberg’s formula [93, (2.9)] together

with Green’s work and an identity of Littlewood [39, Lemma 7.4, (41)] and Stanley’s formula,

Theorem 1.1.3, gives the following alternate product formula for SYT(λ)maj(q). We give a

direct proof of the equivalence of the two formulas.

Corollary 1.2.1. Let λ = (λ1, . . . , λk) ` n. Here we allow trailing 0’s, i.e. the length λ is at

most k. Set `i := λi + k − i. Then

qb(λ) [n]q!∏
c∈λ[hc]q

= q−(k3) [n]q!

[`1]q! · · · [`k]q!
∆([`1]q, . . . , [`k]q)

where

∆(x1, . . . , xk) :=
∏
i<j

(xi − xj)

is the Vandermonde determinant.

Proof. By definition, we have ∆([`1]q, . . . , [`k]q) =
∏

1≤i<j≤k([`i]q− [`j ]q). Note that `1 > `2 >
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· · · > `k and that [`i]q − [`j]q = q`j [`i − `j]q. The equality is thus equivalent to

qb(λ)+(k3)[`1]q! · · · [`k]q! =
∏
c∈λ

[hc]q
∏

1≤i<j≤k

q`j [`i − `j]q. (1.1)

We have

∑
1≤i<j≤k

`j =
∑

1≤j≤k

(j − 1)(λj + k − j)

=
∑

1≤j≤k

(j − 1)λj +
∑

1≤j≤k

(j − 1)(k − j)

= b(λ) +

(
k

3

)
,

so the q-shifts on either side of (1.1) cancel. Now (1.1) reduces to the first half of [91,

Lemma 7.21.1], which gives a simple bijective proof of the equality of multisets

k⋃
i=1

{1, . . . , `i} = {hc : c ∈ λ} ∪

( ⋃
1≤i<j≤k

{1, . . . , `i − `j}

)
.

We further note that the q = 1 specialization of the right-hand side of Corollary 1.2.1 arises

from the Frobenius character formula for fλ = Kλ,(1n) [31, Exercise 7.3.6]. The q = 1

specialization of Corollary 1.2.1 is [31, Exercise 4.3.9].

We now return to our theme and describe further interpretations for SYT(λ)maj(q) and

Wmaj
α (q) when evaluated at complex roots of unity. The “long cycle” σn := (1 2 · · · n) ∈ Sn is

the unique (up to conjugacy) Coxeter element in Sn and hence frequently plays a special role

in the representation theory of symmetric groups. One may then be led to ask the following.

Question 1.2.2. Given an Sn-module M , how does the restricted module M↓Sn〈σn〉 over the

cyclic group 〈σn〉 of order n decompose into irreducibles?

One may reduce Question 1.2.2 to the case when M = Sλ is irreducible. The n irre-
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ducible representations χr of the cyclic group 〈σn〉, all linear, may be identified3 with Z/n.

Consequently, Question 1.2.2 may be rephrased as follows.

Question 1.2.3. Give a rule for determining the counts

aλ,r := multiplicity of χr in Sλ↓Sn〈σn〉

where λ ` n and r ∈ Z/n.

Stembridge [94] studied the so-called cyclic exponents of complex reflection groups, which

are essentially a generalization of the counts aλ,r. He proved that the cyclic exponents for Sn

are given by counting certain tableaux by major index as follows.

Theorem 1.2.4 (Stembridge, [94, Thm. 3.3]). The cyclic exponents of Sn are given by

aλ,r = #{T ∈ SYT(λ) : maj(T ) ≡n r}

where λ ` n and r ∈ Z/n.

A straightforward argument (for instance, using the standard scalar product for Cn-

characters) can be used to show that Stembridge’s result is equivalent to the claim

χλ(σrn) = SYT(λ)maj(ωrn) (1.2)

where χλ is the trace character of Sλ, ωn is any fixed primitive nth root of unity, and λ ` n.

Later, Reiner–Stanton–White introduced the following notion of cyclic sieving, which bears a

strong resemblance to (1.2).

Definition 1.2.5 (Reiner–Stanton–White, [73]). Let W be a finite set on which a cyclic

group C generated by an element σn of order n acts. Let f(q) ∈ Z≥0[q] be a polynomial. We

3So long as we choose χr ↔ r in such a way that tensor products correspond to multiplication.
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say the triple (W,C, f(q)) exhibits the cyclic sieving phenomenon (CSP) if

#W σrn := #{w ∈ W : σrn · w = w} = f(ωrn) (1.3)

for all r ∈ Z, where ωn is any primitive nth root of unity.

Intuitively, evaluations of the polynomial f at nth roots of unity give the characters of the

C-action on W , leading to efficient techniques for counting fixed point sets. A key example

arises from words of a fixed content using the major index generating function.

Theorem 1.2.6 (Reiner–Stanton–White, [73, Prop. 4.4]). Suppose α � n and let 〈σn〉 act on

Wα by rotation. Then, the triple

(Wα, 〈σn〉,Wmaj
α (q))

exhibits the CSP.

Equivalently, Theorem 1.2.6 gives the following analogue of (1.2):

τα(σrn) = Wmaj
α (ωrn) (1.4)

where τα is the trace character of the 〈σn〉-action on Wα, or equivalently on the Sn-module

C{Wα}. The proof of Theorem 1.2.6 involves quite a bit of algebra and representation theory.

It uses Springer’s regular elements [86] and the invariant theory of complex reflection groups

[87].

It is natural to ask for a more direct, combinatorial proof of Theorem 1.2.6. With Connor

Ahlbach, we provide such a proof in Chapter 3 which has been published as [5]. An “extended

abstract” of this work appeared in [3]. We in fact prove a stronger result, which we next

describe.
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Definition 1.2.7. The cyclic descent number of a word w = w1 · · ·wn ∈ Zn≥1 is

cdes(w) := #{i ∈ Z/n : wi > wi+1}.

Here we allow a descent between wn and w1. Let w(i) denote the word w with all letters

strictly larger than i removed. The cyclic descent type of w is the sequence

CDT(w) := (cdes(w(1)), cdes(w(2))− cdes(w(1)), cdes(w(3))− cdes(w(2)), . . .).

Example 1.2.8. Suppose w = 143124114223, so

w(1) = 1111 cdes(w(1)) = 0,

w(2) = 112.1122. cdes(w(2)) = 2,

w(3) = 13.12.11223. cdes(w(3)) = 3,

w(4) = 14.3.124.114.223. cdes(w(4)) = 5,

where periods have been inserted to indicate cyclic descents. Hence, CDT(143124114223) =

(0, 2− 0, 3− 2, 5− 3) = (0, 2, 1, 2).

With these definitions in place, our refinement of Theorem 1.2.6 is as follows.

Theorem 1.2.9. Let Wα,δ denote the set of words of content α � n and cyclic descent type

δ. Then

(Wα,δ, 〈σn〉,Wmaj
α,δ (q))

exhibits the CSP.

Attempting to apply the Reiner–Stanton–White representation-theoretic argument in [73]

to this refinement encounters immediate difficulties since some of the Sn-modules it uses

are irreducible. It would be very interesting to find a representation-theoretic interpretation

of Theorem 1.2.9. The argument in Chapter 3 is completely different from that given
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by Reiner–Stanton–White. It involves first recursively constructing the sets Wα,δ using a

Carlitz-style insertion procedure and tracking changes in the major index. This results in a

product formula for Wmaj
α,δ (q) modulo qn − 1, Theorem 3.5.19. The rest of the argument is

fundamentally inductive and relies on a certain “extension lemma,” Lemma 3.3.3, which is

used to enlarge the cyclic group for which a set exhibits the CSP. The algebraic notion of

modular periodicity is introduced in Section 3.3 which avoids explicit evaluations at roots

of unity. Another interesting coarsening of Theorem 1.2.9 fixes just the number of circular

descents instead of the full cyclic descent type.

Corollary 1.2.10. Let Wα,k denote the set of words of content α � n with k cyclic descents.

Then

(Wα,k, 〈σn〉,Wmaj
α,k (q))

exhibits the CSP.

1.3 Branching Rules

Kraśkiewicz–Weyman [54] gave an earlier, different, and long-unpublished proof of (1.2)

involving results of Stanley [87, Prop. 4.11] and Lusztig (also unpublished) on the type A

coinvariant algebra as well as an intricate though beautiful argument involving `-decomposable

partitions. One of their main results is the following, which is equivalent to Theorem 1.2.4

using Frobenius reciprocity.

Theorem 1.3.1 (Kraśkiewicz–Weyman, [54]). The multiplicity of Sλ in the induced repre-

sentation χr↑Sn〈σn〉 is

aλ,r = #{T ∈ SYT(λ) : maj(T ) ≡n r}.

One may ask about the relationship between the key equation (1.2) and the cyclic sieving

result equation (1.4). They are equivalent by translating between the Schur and complete
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homogeneous bases in the following sense:

χλ(σrn) = SYT(λ)maj(ωrn) = (1− q) · · · (1− qn)sλ(1, q, q
2, . . .)|q=ωrn

τλ(σrn) = Wmaj
λ (ωrn) = (1− q) · · · (1− qn)hλ(1, q, q

2, . . .)|q=ωrn

where the first equality is (1.2), the second is Theorem 1.1.3, the third is (1.4), and the fourth

is Theorem 1.1.2. Effectively, the top line and both Kraśkiewicz–Weyman and Stembridge’s

approaches to Theorem 1.3.1 and Theorem 1.2.4 are “in the Schur basis” while the bottom

line is “in the h-basis.”

One may instead ask for an approach to Theorem 1.3.1 and Theorem 1.2.4 “in the h-basis.”

In Chapter 4, with Ahlbach, we give such an approach to Theorem 1.3.1 hinging on the cyclic

sieving result above, Theorem 1.2.6, or equivalently on (1.4). The argument is remarkably

straightforward and applies more generally to a further result of Stembridge [94, Thm. 3.3]

and a result of Schocker [81, Thm. 3.1]. It begins by generalizing an argument due to

Klyachko which quickly expresses the Schur character of the GL(Cm)-module corresponding

to the Sn-module χr↑Sn〈σn〉 under Schur–Weyl duality as a generating function on necklaces,

Proposition 4.2.5. This yields a monomial expansion for the Frobenius characteristic of

χr↑Sn〈σn〉. Turning this into a graded Frobenius series tracking branching rules for the inclusion

〈σn〉 ↪→ Sn, we are then able to directly apply cyclic sieving and the RSK algorithm to

convert from the monomial to the Schur basis. The same basic outline holds for the two

further results of Stembridge and Schocker mentioned above. The approach has several

additional benefits: it is “nearly bijective” as discussed in Section 4.3, and certain generalized

major index statistics majµ described in Definition 4.4.7 fall out very naturally from the

combinatorics of orbits and necklaces.

The representations χr↑Sn〈σn〉 are intimately related to the so-called Lie modules, which are

summarized in Section 4.2.4. The decomposition of the Lie modules into irreducibles was

considered in the 1940’s by Thrall [99] and is referred to as Thrall’s problem. Theorem 1.3.1

can be interpreted as solving this problem in an important special case. The general problem
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reduces to a difficult plethysm problem involving an induced module involving a certain

inclusion Ca o Sb ↪→ Sab. In Section 4.5, we discuss applying our general approach to the

determination of these higher Lie multiplicities. We give a monomial expansion for the

graded Frobenius series tracking all branching rules involving the inclusion Ca o Sb ↪→ Sab,

Theorem 4.5.4. In Open Problem 4.5.5, we conjecture the existence of a statistic interpolating

in a certain sense between the major index modulo n and the shape under RSK. This statistic

would allow us to turn our monomial expansion into a Schur expansion, thereby giving a

combinatorial interpretation for the higher Lie multiplicities. Unfortunately, finding such a

statistic has proven elusive outside of easy special cases.

Future work in this direction has also been begun with Ahlbach and Rhoades. We

plan to study “Euler–Mahonian” refined cyclic sieving. We for instance have a conjectured

refinement of Rhoades’ CSP on rectangular tableaux [75], with a proof in special cases.

We also have a refined CSP arising from work of Elizalde–Roichman [22]. Recent work of

Adin–Reiner–Roichman [1] offers tantalizing clues to more results in this direction, though

there are significant difficulties which have yet to be overcome.

1.4 Generating Functions and Asymptotics

The above generating function identities for hα(1, q, q2, . . .) and sλ(1, q, q2, . . .), Theorem 1.1.2

and Theorem 1.1.3, are beautiful and algebraically useful. They may also be exploited from

a probabilistic perspective. In Chapter 5, we use a blend of representation theory, generating

function identities, and explicit estimates to answer a conjecture of Sundaram, which we next

describe.

Question 1.4.1 (Sundaram [95]). Fix a cycle type λ ` n. Let Mλ consist of formal C-linear

combinations of permutations of cycle type λ. Let Sn act by conjugation on Mλ. For which λ

does every possible Sn-irreducible appear in Mλ?

Sundaram answered the question subject to a conjectured description of which irreducibles

appear when λ = (n), corresponding to permutations with a single cycle. This in turn is
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equivalent to classifying which irreducibles appear in 1↑Sn〈σn〉. By Kraśkiewicz–Weyman’s

theorem, Theorem 1.3.1, one may try to answer the question by constructing tableaux with

major index divisible by n. This approach has several issues. First, earlier work by Johnson

[46] suggested it would be combinatorially intricate. Second, it would not give an idea of

the actual magnitude of aλ,r. The approach we take in Chapter 5 is instead fundamentally

probabilistic and gives a conceptual reason behind the classification. We prove the following

local limit theorem which has been published in [97].

Theorem 1.4.2. Let λ ` n be a partition where fλ := # SYT(λ) ≥ n5 ≥ 1. Then for all r,∣∣∣∣aλ,rfλ − 1

n

∣∣∣∣ < 1

n2
.

In particular, if n ≥ 81, λ1 < n− 7, and λ′1 < n− 7, then fλ ≥ n5 and the inequality holds.

Intuitively, the result says that the statistic “major index modulo n” on SYT(λ) is

asymptotically uniformly distributed outside of a few degenerate cases. Consequently, this

value may be zero only for a small class of shapes for which fλ is particularly tiny. The

argument in Chapter 5 proceeds by classifying such shapes using a curious inequality involving

opposite hook lengths, Proposition 5.4.5. This inequality was discovered independently around

the same time by Morales–Pak–Panova, [65, Proposition 12.1]. The resulting classification

for when aλ,r = 0, Theorem 5.1.3, answers Sundaram’s conjecture, completing her approach

to Question 1.4.1. See [95] for more details.

The proof of the local limit theorem, Theorem 1.4.2, involves exploiting Kraśkiewicz–

Weyman’s result, Foulkes’ formula for the p-expansion of χr↑Sn〈σn〉, some simple manipulations

with Ramanujan sums, the generating function identity Theorem 1.1.3, a bound due to

Fomin–Lulov [27], and Stirling’s approximation. Chapter 5 also gives a new proof of a

generalization of the hook length formula; see Section 5.5. The argument gives a particularly

explicit description of the motion of hook lengths through a partition as ribbons are added.

It hinges on Lemma 5.5.2, which appears to be new and which describes changes in the
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number of hook lengths modulo ` as length ` ribbons are added. A related set of criteria for

`-decomposability of a partition is summarized in Corollary 5.5.3.

Chapter 6 and Chapter 7 continue the theme of interplay between algebraic combinatorics

and discrete probability. This interplay is neatly exemplified by a simple observation which

we next describe.

Definition 1.4.3. Let X be a real-valued random variable. The characteristic function of

X is the expectation of the corresponding random variable eisX for s ∈ R,

φX(s) := E[eisX ].

Characteristic functions are a very useful tool in asymptotic analysis. For instance, there

is a standard and surprisingly easy proof of the central limit theorem using characteristic

functions and Taylor approximations. On the other hand, ordinary generating functions arise

in discrete probability as follows.

Definition 1.4.4. Let W be a finite set, and let stat : W → Z≥0 be any function. The

probability generating function of stat on W taken uniformly at random is

P (q) :=
1

#W

∑
w∈W

qstat(w).

A simple but important observation is the following: if X is the random variable corresponding

to stat taken uniformly at random, then

φX(s) = P (eis).

Thus, compact expressions for generating functions of combinatorial statistics correspond

exactly to compact expressions for the characteristic function of the underlying random

variable. Chapter 6 and Chapter 7 largely hinge upon this interplay.

With Sara Billey and Matjaž Konvalinka, in Chapter 6 we are motivated by the following
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questions raised by Chapter 5.

Question 1.4.5. Suppose λ ` n and r ∈ Z. Let

bλ,r := #{T ∈ SYT(λ) : maj(T ) = r}.

What is the approximate distribution of bλ,r for a fixed λ?

Question 1.4.6. When is bλ,r zero?

Proceeding experimentally, if one were to pick a random partition λ and plot a histogram

of the values of maj on SYT(λ), the result would very likely be a bell curve as in Figure 6.1.

The notion of asymptotic normality allows us to make this precise. Given a real-valued random

variable X with mean µ and variance σ2 > 0, let X∗ := (X − µ)/σ be the corresponding

normalized random variable with mean 0 and variance 1.

Definition 1.4.7. A sequence of real-valued random variables X1, X2, . . . is asymptotically

normal if for all t ∈ R,

lim
n→∞

P[X∗n ≤ t] = P[Z ≤ t]

where Z has the standard normal distribution.

We show in Chapter 6 that, under very mild conditions, given a sequence of partitions

λ(1), λ(2), . . ., the sequence of major index statistics on SYT(λ(N)) is asymptotically normal,

see Theorem 6.1.3. We more generally are able to determine the limit law for a completely

arbitrary sequence of partitions, see Theorem 6.1.7. It turns out that certain degenerate

families result in uniform-sum distributions rather than normal distributions. The argument

involves first translating Theorem 1.1.3 into explicit expressions for the cumulants of maj

on SYT(λ), see Theorem 6.1.1. We then use some constructions involving reverse standard

tableaux to prove explicit asymptotic estimates for these cumulant expressions, Corollary 6.3.6

and Lemma 6.4.1. The argument is presented more generally for certain skew partitions.

This allows us to give a uniform generalization of a series of asymptotic normality results
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due to Canfield–Janson–Zeilberger [13], Chen–Wang–Wang [16], Diaconis [21, p. 128-129],

Mann–Whitney [63], and others. Future work not included in this chapter will connect its

results to the distribution of irreducible constituents in the homogeneous components of the

coinvariant algebras of very general complex reflection groups.

One may ask for a local limit theorem for the bλ,r’s analogous to Theorem 1.4.2, though

this appears quite difficult. Sufficiently powerful bounds on the characteristic function have

been found in neighborhoods around −1 and 1 using an interesting generalization of Fomin–

Lulov’s bound to non-decomposable partitions. We provide a conjectured local limit theorem,

Conjecture 6.1.10 supported by strong computational evidence.

The asymptotic description in Chapter 6 provides a satisfactory answer to Question 1.4.5

by giving us strong qualitative intuition about the distribution of maj on SYT(λ). It does

not directly answer Question 1.4.6, determining when bλ,r 6= 0. In Section 6.6, we answer

this latter question by combinatorial manipulations on tableaux, resulting in Theorem 6.1.9.

Roughly speaking, we show that there are “no internal zeroes” of the generating function

SYT(λ)maj(q), except for at most two coefficients when λ is a rectangle. The proof constructs

a map φ : SYT(λ) − E(λ) → SYT(λ), where E(λ) is a small set of “exceptional” tableaux,

with the property that maj(φ(T )) = maj(T ) + 1. The map φ is explicitly computable. The

key construction involves cyclically rotating a set of adjacent values of T in such a way that

the result is still standard and a single descent has been incremented. Sometimes this is

not possible, so we show that several additional rules may be used to handle these cases.

The argument gives SYT(λ) the structure of a poset ranked, up to a shift, by maj, see

Corollary 6.6.17. The approach also gives a combinatorial solution to the classification for

when aλ,r = 0, thereby giving an alternate proof of Theorem 5.1.3.

Returning to inv and maj in permutations, Chapter 7 discusses the following result of

Baxter and Zeilberger.

Theorem 1.4.8 (Baxter–Zeilberger, [7]). Let Xn and Yn be the normalized random variables

associated with inv and maj on Sn, respectively, taken uniformly at random. Then, for all
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s, t ∈ R,

lim
n→∞

P[Xn ≤ s, Yn ≤ t] = P[Z1 ≤ s, Z2 ≤ t]

where Z1 and Z2 are independent random variables with the standard normal distribution.

Informally speaking, inv and maj on Sn are jointly independently asymptotically normally

distributed.

The argument in [7] involves identifying leading terms in combinatorial recursions for

mixed factorial moments. Romik asked whether a generating function approach could instead

be used involving a result of Roselle [77]. Zeilberger subsequently offered a $300 reward

for such an argument, which is provided by Chapter 7. Our approach translates Roselle’s

formula into the claim that the characteristic function of (inv,maj) on Sn is the product of

the characteristic functions of inv and maj and a certain “correction factor.” The argument

involves identifying a sort of leading term of the correction factor and showing the remaining

contributions are negligible in an appropriate sense. It uses generating function manipulatorics,

Möbius inversion on the set partition lattice, and some elementary inequalities related to

Stirling numbers of the first kind. One may again ask for a local limit theorem in this context,

which is the subject of promising and ongoing research [96].

The rest of this thesis is organized as follows. Chapter 2 provides further background for use

in later sections. Chapter 3 proves our refined cyclic sieving result, quoted as Theorem 1.2.9

above. Chapter 4 discusses our approach using cyclic sieving to Kraśkiewicz–Weyman’s

theorem, Theorem 1.3.1 above, and generalizations. Chapter 5 gives our argument completing

Sundaram’s approach to Question 1.4.1. Chapter 6 analyzes the distribution and support

of maj on SYT(λ) and generalizations. Chapter 7 gives our new approach to Baxter and

Zeilberger’s result, Theorem 1.4.8.
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Chapter 2

BACKGROUND

Here we include common background for use in later chapters supplementing that given

in Chapter 1. See [91] for more.

Given a set S, we write

(
S

k

)
:= {all k-element subsets of S}, (2.1)((

S

k

))
:= {all k-element multisubsets of S}. (2.2)

We typically use #S for the cardinality of S. Set [n] := {1, 2, . . . , n}. Representatives for

Z/n will typically be taken in [n].

2.1 Words and Necklaces

A word w = w1w2 · · ·wn ∈ Zn≥1 has letters w1, . . . , wn and length |w| := n. A sequence

α = (α1, α2, . . .) where αi ∈ Z≥0 sums to n is a (weak) composition of n, denoted α � n. The

content of w is the composition where αi is the number of times i appears as a letter in w.

If the parts of a composition weakly decrease, it is called a partition, denoted λ ` n. We

frequently omit trailing zeros when writing compositions and partitions. From Chapter 1,

partitions index conjugacy classes in the symmetric group. Similarly, compositions index

orbits of words under the natural symmetric group action

σ · w1 · · ·wn := wσ−1(1) · · ·wσ−1(n)
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where σ ∈ Sn is a permutation in the symmetric group Sn. The long cycle σn := (1 2 · · · n) ∈

Sn acts by rotation as

σn · w1 · · ·wn := wnw1w2 · · ·wn−1.

The descent set of a word w = w1w2 · · ·wn ∈ Zn≥1 is

Des(w) := {i ∈ [n− 1] : wi > wi+1}

and the major index of w is

maj(w) :=
∑

i∈Des(w)

i.

The inversion number of w is

inv(w) := #{(i, j) : i < j, wi > wj}.

The set of all words with letters from Z≥1 is a monoid under concatenation. A word is

primitive if it is not a power of a smaller word. Any non-empty word w may be written

uniquely as w = vf for f ≥ 1 with v primitive. We call |v| the period of w, written period(w),

and f the frequency of w, written freq(w). An orbit of a word under rotation is a necklace,

usually denoted [w]. We have period(w) = #[w] and freq(w) · period(w) = |w|. Content,

primitivity, period, and frequency are all constant on necklaces.

Example 2.1.1. The necklace of w = 15531553 = (1553)2 is

[w] := {15531553, 55315531, 53155315, 31553155}

which has period 4 and frequency 2.

Given a composition α = (α1, . . . , αm) � n and k ∈ Z≥0 we use the following standard
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q-analogues:

[n]q := 1 + q + · · ·+ qn−1 =
qn − 1

q − 1
,

[n]q! := [n]q[n− 1]q · · · [1]q,(
n

α

)
q

:=
[n]q!

[α1]q! · · · [αm]q!
∈ Z≥0[q],((

n

k

))
q

:=

(
n+ k − 1

k

)
q

:=

(
n+ k − 1

k, n− 1

)
q

.

2.2 Tableaux

The size of a partition λ ` n is written |λ| := n. The length of λ is the number of non-zero

entries and is written `(λ). See Figure 1.1 for the Young diagram and the hook length of a

partition. We sometimes write a partition in exponential form as λ = 1m12m2 · · · ` n where

mi is the number of rows of λ of length i. In this case, the number of elements of Sn with

cycle type λ is n!
zλ

where zλ := 1m12m2 · · ·m1!m2! · · · .

A semistandard Young tableau (briefly, a tableau) of shape λ is a filling of the Young

diagram of λ with entries from Z≥1 which weakly increases along rows and strictly increases

along columns. The set of semistandard Young tableaux of shape λ is denoted SSYT(λ). The

content of P ∈ SSYT(λ), denoted cont(P ), is the composition whose j-th entry is the number

of j’s in P . The set of standard Young tableaux of shape λ, denoted SYT(λ), is the subset

of SSYT(λ) consisting of tableaux of content (1, . . . , 1) � n. The descent set of a tableau

Q ∈ SYT(λ), denoted Des(Q), is the set of all i ∈ [n− 1] such that i+ 1 lies in a lower row

of Q than i. The major index of Q is maj(Q) :=
∑

i∈Des(Q) i.

Example 2.2.1. The semistandard tableau

P =
1 1 2 3 3 4
2 3 4 4 6
3

∈ SSYT(6, 5, 1)
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has cont(P ) = (2, 2, 4, 3, 0, 1). The standard tableau

Q =
1 2 5
3 4
6

∈ SYT(3, 2, 1)

has Des(Q) = {2, 5}, and maj(Q) = 7.

2.3 Generating Functions

Given stat : W → Z≥0, we write the corresponding generating function as

W stat(q) :=
∑
w∈W

qstat(w).

We say two statistics stat, stat′ : W → Z≥0 are equidistributed on W if W stat(q) = W stat′(q),

and we say they are equidistributed modulo n on W if W stat(q) ≡ W stat′(q) (mod qn − 1). For

example, MacMahon’s result in Section 1.1 shows that inv and maj are equidistributed on Sn.

We use natural multivariable analogues of this notation as well. For example, if Wn := Zn≥1

is the set of length n words, then the joint content-major index generating function is

Wcont,maj
n (x; q) :=

∑
w∈Wn

xcont(w)qmaj(w) ∈ Z≥0[[x1, x2, . . .]][q]

where xα := xα1
1 · · ·xαmm . To give another example, for a partition λ, the Schur function sλ is

the generating function

sλ(x) := SSYT(λ)cont(x) :=
∑

T∈SSYT(λ)

xcont(T ).

This thesis is fundamentally about content and major index generating functions and their

generalizations and relations. In many instances of cyclic sieving, and all of those considered

in this thesis, f(q) is the generating function for some statistic on W .
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Chapter 3

REFINED CYCLIC SIEVING ON WORDS FOR THE MAJOR
INDEX STATISTIC

This chapter is joint work with Connor Ahlbach. A version of it has been published as [5].

An earlier “extended abstract” for this work appeared in [3].

3.1 Main Results

Since Reiner, Stanton, and White introduced the cyclic sieving phenomenon (CSP) in

2004 [73], it has become an important companion to any cyclic action on a finite set. See

Definition 1.2.5. Some remarkable examples of the CSP involve the action of a Springer regular

element on Coxeter groups [73, Theorem 1.6], the action of Schutzenberger’s promotion on

Young tableaux of fixed rectangular shape [75], and the creation of new CSPs from old using

multisets and plethysms with homogeneous symmetric functions [9, Proposition 8]. See [79]

for Sagan’s thorough introduction to the cyclic sieving phenomenon. More recent work on

the CSP includes, for instance, [6, 70, 72].

An interesting example of the CSP is Theorem 1.2.6 above. Reiner, Stanton, and White

deduced Theorem 1.2.6 from the following more general result about Coxeter systems.

Theorem 3.1.1. [73, Theorem 1.6]. Let (W,S) be a finite Coxeter system and J ⊆ S. Let

WJ be the corresponding parabolic subgroup, W J the set of minimal length representatives

for left cosets X := W/WJ , and X`(q) :=
∑

w∈WJ q`(w). Let C be a cyclic subgroup of

W generated by a Springer regular element. Then (X,C,X`(q)) exhibits the cyclic sieving

phenomenon.

Theorem 1.2.6 follows from Theorem 3.1.1 when W = Sn by identifying W/WJ with

words of fixed content α, where α is the composition recording the lengths of consecutive
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subsequences of J , and C is generated by an n-cycle. One must also use MacMahon’s result,

Theorem 1.1.1, to translate from inv to maj.

Our main result in this chapter, Theorem 1.2.9, is an example of the following notion.

Definition 3.1.2. A refinement of a CSP triple

(W,Cn,W
stat(q))

is a CSP triple

(V,Cn, V
stat(q))

where V ⊂ W has the restricted Cn-action.

If (V,Cn, V
stat(q)) refines (W,Cn,W

stat(q)), then so does (U,Cn, U
stat(q)) where U :=

W − V . Thus, a CSP refinement partitions W into smaller CSPs with the same statistic. If

W is an orbit, its only refinements are W and ∅. In Section 3.8, we define a statistic on

words, flex, which is universal in the sense that it refines to all Cn-orbits on words of length

n. We observe in Section 3.8 that such universal statistics are essentially equivalent to the

choice of a total ordering for each orbit O of W .

As in Section 1.2, we let

Wα,δ := {words w : cont(w) = α,CDT(w) = δ} (3.1)

where CDT(w) is defined in Definition 1.2.7 and Example 1.2.8. Intuitively, one computes

CDT(w) by building up w by adding all 1’s, 2’s, . . ., and counting the number of cyclic

descents introduced at each step. We restate the main result of this chapter, Theorem 1.2.9

in terms of Definition 3.1.2.

Theorem 3.1.3. Let α � n and δ be any composition. The triple

(Wα,δ, Cn,W
maj
α,δ (q))
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refines the CSP triple (Wα, Cn,W
maj
α (q)).

Indeed, we derive an explicit product formula for Wmaj
α,δ (q) mod (qn − 1) involving q-binomial

coefficients, see Theorem 3.5.19. The formula results in a q-identity similar to the Vander-

monde convolution identity, see Corollary 3.5.20. The argument involves constructing Wα,δ

algorithmically by recursively building a certain tree.

The two-letter case of Theorem 3.1.3 can be rephrased as follows. Fix n ∈ Z≥1 and

k, b ∈ Z≥0. Let Sk,b denote the set of subsets ∆ of Z/n of size k where #{i ∈ ∆ : i + 1 6∈

∆} = b. Define the statistic mbs: Sk,b → Z≥0 by identifying Z/n with {1, . . . , n} and setting

mbs(∆) :=
∑

i∈∆:i+16∈∆ i, which sums the maximum of the cyclic blocks of ∆.

Corollary 3.1.4. The triple

(Sk,b, Cn, S
mbs
k,b (q))

exhibits the CSP.

Example 3.1.5. When n = 5, k = 3, b = 2,

Sk,b = {{1, 2, 4}, {2, 3, 5}, {3, 4, 1}, {4, 5, 2}, {5, 1, 3}},

which have mbs statistic 6, 8, 5, 7, 4, respectively, so Smbs
k,b (q) = q4 + q5 + q6 + q7 + q8. We then

have Smbs
k,b (ω5) = 0, Smbs

k,b (1) = 5, in agreement with (1.3).

Theorem 8.3 in [73] and hence Theorem 1.2.6 builds on a representation-theoretic result

due to Springer [86, Proposition 4.5]. Our argument is highly combinatorial, but it is not

entirely bijective. Finding an explicit bijection would be quite interesting. See Section 3.8 for

more details.

A key building block of our proof of Theorem 3.1.3 involves cyclic sieving on multisubsets

and subsets, which was also first stated in [73]. We describe refinements of these results as

well, Theorem 3.7.4 and Theorem 3.7.11, restricting to certain gcd requirements in the subset

case. We present a completely different inductive proof of our subset refinement in the spirit
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of our proof of Theorem 3.1.3. Both our proofs of Theorem 3.1.3 and Theorem 3.7.11 use an

extension lemma, Lemma 3.3.3, which allows us to extend CSPs from smaller cyclic groups

to larger ones.

The rest of the chapter is organized as follows. In Section 3.2, we recall relevant background.

In Section 3.3, we introduce the concept of modular periodicity and prove our extension

lemma, Lemma 3.3.3. In Section 3.4, we discuss cyclic descent type. In Section 3.5, we

decompose words with fixed content and cyclic descent type and prove a product formula for

Wmaj
α,δ (q) modulo qn − 1, Theorem 3.5.19. Section 3.6 uses the results of Section 3.5 to prove

our main result, Theorem 3.1.3. Section 3.7 refines cyclic sieving on multisubsets and subsets

with respect to shifted sum statistics. In Section 3.8, we introduce the flex statistic and use

it to reinterpret Theorem 3.1.3.

3.2 Cyclic Descents and Cyclic Sieving

Recall the notions introduced in Section 2.1. We continue to use the alphabet of positive

integers Z≥1 throughout unless otherwise noted. Let Wn denote the set of words of length

n. Given α � n, the set Wα is the set of words of content α, which is a single orbit under

the Sn-action. The cyclic descent set of w is CDes(w) := {1 ≤ i ≤ n : wi > wi+1}, where the

subscripts are taken modulo n, and we write cdes(w) := # CDes(w) for the number of cyclic

descents. Any position 1 ≤ i ≤ n that is not a cyclic descent is a cyclic weak ascent.

Cyclic descents were introduced by Cellini in an algebraic context; see [15]. Since then,

cyclic descents have been used by Lam and Postnikov in studying alcoved polytopes [56]

and by Petersen in studying P -partitions [71]. We use lower dots between letters to indicate

cyclic descents and upper dots to indicate cyclic weak ascents throughout the chapter as in

the following example.

Example 3.2.1. If w = 155.3.155.3. = 1˙5˙531˙5˙53, then |w| = 8, Des(w) = {3, 4, 7},

des(w) = 3, CDes(w) = {3, 4, 7, 8}, cdes(w) = 4, maj(w) = 14, and inv(w) = 9.

A composition α = (α1, . . . , αm) is strong if αi > 0 for all i. The cyclic group Cn := 〈σn〉
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of order n generated by the long cycle σn := (1 2 · · · n) which acts on Wn by rotation.

The necklace of a word w ∈Wn is the Cn-orbit of w, denoted [w]. The notions of content,

primitivity, period, frequency, and cdes are all constant on necklaces. For instance, the

necklace in Example 2.1.1 has cdes 4.

Reiner-Stanton-White gave several equivalent conditions for a triple (W,Cn, f(q)) to

exhibit the CSP. In place of (1.3) in Definition 1.2.5, we may instead require

f(q) ≡
∑

orbits O⊂W

qn − 1

qn/|O| − 1
(mod qn − 1), (3.2)

where the sum is over all orbits O under the action of Cn on W . Note that for d | n,

qn − 1

qd − 1
=

n/d−1∑
i=0

qdi 6≡ 0 (mod qn − 1).

This means every Cn-action on a finite set W gives rise to a CSP (W,Cn, f(q)), where f(q) is

the right hand side of (3.2). We refer the interested reader to [73, Proposition 2.1] for the

proof of the equivalence of (1.3) and (3.2).

Remark 3.2.2. If (V,Cn, f(q)) exhibits the CSP, then so do both the triples (V,Cg, f(q)) and

(V,Cn, f(q−1)) when g | n by (1.3). In the latter case we have relaxed the constraint f(q) ∈

Z≥0[q] to f(q) ∈ Z≥0[q, q−1], which does no harm since (1.3) involves evaluations at roots of

unity. Further, if (V,Cn, f(q)) and (W,Cn, h(q)) exhibit the CSP, then (V
∐
W,Cn, f(q)+h(q))

and (V ×W,Cn, f(q)h(q)) exhibit the CSP, where Cn acts on V ×W by τ ·(v, w) := (τ ·v, τ ·w)

[9, Prop. 2.2].

We write [a, b] := {i ∈ Z : a ≤ i ≤ b}. Observe that the cyclic group Cn = 〈σn〉

of order n acts on [0, n − 1] by σn(i) := i + 1 (modn). This induces actions of Cn on(
[0,n−1]

k

)
and

((
[0,n−1]

k

))
by acting on values in each subset or multisubset. For example,

σ4 · {0, 0, 0, 2, 2, 3} = {0, 1, 1, 1, 3, 3}. These actions, in slightly more generality, appear in one

of the original, foundational CSP results as follows.
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Theorem 3.2.3. [73, Thm. 1.1]. In the notation above, the triples

((
[0, n− 1]

k

)
, Cn,

(
n

k

)
q

)
and

(((
[0, n− 1]

k

))
, Cn,

((
n

k

))
q

)

exhibit the CSP.

We will also have use of the following principal specializations (see [59, Example I.2.2] or

[91, Proposition 7.8.3]):

(
[0, n− 1]

k

)sum

(q) = ek(1, q, q
2, . . . , qn−1) = q(

k
2)
(
n

k

)
q

, (3.3)((
[0, n− 1]

k

)) sum

(q) = hk(1, q, q
2, . . . , qn−1) =

((
n

k

))
q

. (3.4)

Here the sum statistic denotes the sum of the elements of a subset or submultiset of Z.

Recall from Section 1.1 MacMahon’s result, that inv and maj are equidistributed on

Wα. Despite this, maj and inv are not equidistributed even modulo n on Wα,δ in general,

so (Wα,δ, Cn,W
inv
α,δ(q)) does not generally exhibit the CSP. As an explicit example, an easy

computation shows that W(2,2),(0,2) = {1212, 2121}. The corresponding major index generating

function is q2 + q4, while the inversion generating function is q1 + q3, which are not even

congruent modulo q4 − 1.

3.3 Modular Periodicity and an Extension Lemma

We now introduce the concept of modular periodicity and use it to give an extension lemma,

Lemma 3.3.3, which allows us to extend CSP’s from certain subgroups to larger groups. We

will verify the hypotheses of Lemma 3.3.3 in the subsequent sections to deduce Theorem 3.1.3.

Definition 3.3.1. We say a statistic stat : W → Z has period a modulo b on W if for all

i ∈ Z,

#{w ∈ W : stat(w) ≡b i} = #{w ∈ W : stat(w) ≡b i+ a}.
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Similarly, we say a Laurent polynomial f(q) ∈ C[q, q−1] has period a modulo b if

qaf(q) ≡ f(q) (mod qb − 1),

or equivalently if (qb − 1) | (qa − 1)f(q).

For example, 1 + 5q + q2 + 5q3 + q4 + 5q5 has period 2 modulo 6. Note that stat has

period a modulo b on W if and only if W stat(q) has period a modulo b. The following basic

properties of modular periodicity will be useful throughout the chapter.

Lemma 3.3.2. Let f(q) ∈ C[q, q−1] and a, b, c ∈ Z.

(i) If f(q) has period a modulo c and period b modulo c, then f(q) has period ua + vb

modulo c for any u, v ∈ Z. In particular, f(q) has period gcd(a, b) modulo c.

(ii) If f(q) has period a modulo b and period b modulo c, then f(q) has period a modulo c.

(iii) If f(q) has period a modulo c and b | c, then f(q) has period a modulo b.

(iv) If f(q) has period a modulo b, then so does f(q)h(q) for any Laurent polynomial h(q).

(v) If f(q) has period a modulo b and a | b, then

f(q) ≡ a

b

(
qb − 1

qa − 1

)
f(q) (mod qb − 1).

Proof. (i), (iii), (iv), and (v) are straightforward. For (ii), suppose

(qb − 1) | (qa − 1)f(q), (qc − 1) | (qb − 1)f(q).

Write qc − 1 =
∏c

k=1(q − ωkc ). If q − ωkc does not divide f(q), then it must divide qb − 1 and

hence qa − 1. It follows that

(qc − 1) | (qa − 1)f(q).
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Lemma 3.3.3. Suppose Cn = 〈σn〉 acts on W . Let g | n and Cg := 〈σn/gn 〉 ⊂ Cn. If

(i) (W,Cg, f(q)) exhibits the CSP,

(ii) f(q) has period g modulo n, and

(iii) for all Cn-orbits O ⊂W , we have n
|O| | g,

then (W,Cn, f(q)) exhibits the CSP.

Proof. Let

F (q) :=
∑

Cn-orbits O⊂W

qn − 1

qn/|O| − 1
.

By (3.2), (W,Cn, F (q)) exhibits the CSP, so (W,Cg, F (q)) also exhibits the CSP by Re-

mark 3.2.2. Thus, by (3.2) and condition (i),

f(q) = F (q) + p(q)(qg − 1) (3.5)

for some p(q) ∈ C[q]. Each summand of F (q) has period g modulo n since

(qn − 1) | (qg − 1)
qn − 1

qn/|O| − 1
,

by condition (iii). Putting this together with condition (ii), f(q) and F (q) have period g

modulo n. Using Lemma 3.3.2(v) twice along with (3.5) now gives

f(q) ≡ g

n

qn − 1

qg − 1
f(q)

=
g

n

qn − 1

qg − 1
(F (q) + p(q)(qg − 1))

≡ g

n

qn − 1

qg − 1
F (q)

≡ F (q) mod (qn − 1).
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3.4 Cyclic Descent Type

In this section, we more thoroughly introduce the cyclic descent type of a word. We also

verify hypothesis (iii) of Lemma 3.3.3 for Wα,δ for a particular g; see Lemma 3.4.2.

Let w(i) denote the subsequence of w with all letters larger than i removed. We have a

“filtration”

∅ � w(1) � w(2) � · · · � w(m−1) � w(m) = w,

where u � v means that u is a subsequence of v. We think of this filtration as building up w

by recursively adding all of the copies of the next largest letter “where they fit.” The cyclic

descent type of a word w, denoted CDT(w), is the sequence which tracks the number of new

cyclic descents at each stage of the filtration. Precisely, we have the following.

Definition 3.4.1. The cyclic descent type (CDT) of a word w is the weak composition of

cdes(w) given by

CDT(w) := (cdes(w(1)), cdes(w(2))− cdes(w(1)), . . . , cdes(w(m))− cdes(w(m−1))). (3.6)

Note that CDT is constant on necklaces since rotating w rotates each w(i) and cdes is

constant under rotations. Furthermore, cdes(w(1)) = 0 always, so CDT(w) always begins

with 0. Recall from (3.1) that

Wα,δ := {w ∈Wn : cont(w) = α, CDT(w) = δ}.

We could define Wα,δ more “symmetrically” by replacing cont with “cyclic weak ascent type,”

which would be the point-wise difference of cont and CDT. However, content is ubiquitous in

the literature, so we use it.

Lemma 3.4.2. If α = (α1, . . . , αm), δ = (δ1, . . . , δm), N ⊂ Wα,δ is a necklace, and g :=

gcd(α1, . . . , αm, δ1, . . . δm), then n
|N | | g.
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Proof. We can write N = [w] with w = u
n
|N| since freq(w) = n

|N | . Hence, using pointwise

multiplication,

cont(w) =
n

|N |
· cont(u), CDT(w) =

n

|N |
· CDT(u).

In particular, n
|N | divides α1, . . . , αm, δ1, . . . δm, so n

|N | | g.

3.5 Runs and Falls

In this section, we give a method to algorithmically construct Wα,δ and use it to prove a

product formula for Wmaj
α,δ (q), Theorem 3.5.19. We conclude the section by using this formula

to verify hypothesis (ii) of Lemma 3.3.3 for Wα,δ; see Lemma 3.5.21.

3.5.1 A Tree Decomposition for Wα,δ

We now describe a way to create words with a fixed content and CDT in terms of insertions

into runs and falls. This procedure is organized into a tree, Definition 3.5.11, whose edges

are labeled with sets and multisets. Lemma 3.5.8 describes changes in the major index upon

traversing an edge of this tree.

Definition 3.5.1. Write w = w1 · · ·wn ∈ Wn. A fall in w is a maximal set of distinct

consecutive indices i, i+ 1, . . . , j− 1, j such that wi > wi+1 > · · · > wj , where we take indices

modulo n. A run in a non-constant word w is a maximal set of distinct consecutive indices

i, i+ 1, . . . , j such that wi ≤ wi+1 ≤ · · · ≤ wj , where we take indices modulo n. The constant

word w = `n by convention has no runs, and it has n falls.

Note that each letter in w is part of a unique fall and a unique run, except when w = `n

is constant. Index falls from 0 from left to right starting at the fall containing the first letter

of w, and do the same with runs. It is easy to see that w has n− cdes(w) falls and cdes(w)

runs, since they are separated by cyclic weak ascents and cyclic descents, respectively.
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Definition 3.5.2. We write

F (w) := [0, |w| − cdes(w)− 1] and R(w) := [0, cdes(w)− 1]

for the indices of the falls and runs of w, respectively.

Example 3.5.3. Let w = 26534611 = 2˙653˙4˙61˙1˙ = 26.5.346.11 ∈ W8, where upper dots

indicate cyclic weak ascents and lower dots indicate cyclic descents. Since cdes(w) = 3, we

have F (w) = [0, 4] and R(w) = [0, 2]. The 5 falls of w are 2, 653, 4, 61, 1, with respective

indices 0, 1, 2, 3, 4. The 3 runs of w are 1126, 5, 346, with respective indices 0, 1, 2.

Definition 3.5.4. Fix a letter ` and pick a subset F of the falls F (w). Assume ` does not

appear in any of the falls in F . We insert ` into falls F by successively inserting ` into each

fall wi > wi+1 > · · · > wj in F so that wi · · · ` · · ·wj is still decreasing.

Similarly, we may fix a letter ` and pick a multisubset R of R(w) (this time ` may already

appear in a run in R). We insert ` into runs R by successively inserting ` into each run

wi ≤ wi+1 ≤ · · · ≤ wj in R so that wi · · · ` · · ·wj is still weakly increasing.

When inserting ` into a run already containing `, the resulting word is independent of

precisely which of the possible positions is used. This is the reason we insert into runs and

falls instead of positions.

Note that there is a slight ambiguity in our description of insertion into falls and runs,

since it may be possible to insert either at the beginning or at the end of w while still

satisfying the relevant inequalities. Given the choice, we always insert at the beginning of w.

Example 3.5.5. Let w = 2˙653˙4˙61˙1˙ . Insert 7 into falls of w with indices 0 and 3 to

successively obtain 72˙653˙4˙61˙1˙ and then w′ := 72˙653˙4˙761˙1˙ . Note that w′ = 7.26.5.347.6.11

has two more runs (or cyclic descents) than w. Now insert 7 into the runs of w′ with multiset of

indices {0, 2, 3, 3} to successively obtain 77.26.5.347.6.11, 77.26.57.347.6.11, 77.26.57.3477.6.11,

and w′′ := 77.26.57.34777.6.11.
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Let

W̃n = {w ∈Wn : w ends in a 1}, (3.7)

W̃α,δ = {w ∈Wα,δ : w ends in a 1}. (3.8)

We restrict to W̃n and W̃α,δ since the major index generating function is easier to find and

extends to Wmaj
α,δ (q) (mod qn − 1).

Definition 3.5.6. Fix w ∈ W̃n, a letter ` not in w, and

F ⊂ F (w) = [0, |w| − cdes(w)− 1] and R ⊂
mult.

[0, cdes(w) + |F | − 1]

where ⊂
mult.

denotes a multisubset. Let w′ be obtained by inserting ` into falls F of w. Note

that [0, cdes(w)+ |F |−1] = R(w′) indexes the runs of w′. Now let w′′ be obtained by inserting

` into runs R of w′. We say w′′ is obtained by inserting the triple (`, F,R) into w. Observe

that cdes(w′′) = cdes(w′) = cdes(w) + |F | and w′′ ∈ W̃n+|F |+|R|.

First we define the cyclic descent type δ = CDT(w) of any w ∈ Wα. Then we give a

product formula for Wmaj
α,δ (q) modulo qn − 1, Theorem 3.5.19. The q = 1 specialization gives

a formula for # Wα,δ, Proposition 3.5.16. Along the way, we describe how to build words

in Wα,δ by walking along a tree whose edges are labeled by sets and multisets. We describe

a fixed point lemma arising from the tree which will play a key role in Section 3.6. We

also introduce the notion of modular periodicity in order to transfer certain results between

different cyclic groups or moduli.

We next describe the effect of inserting a single letter on maj. We restrict to W̃n so we

preserve a cyclic weak ascent at the end and never add a letter to the end. The fact that

the increments in major index from inserting a new letter into all possible positions form a

permutation was first observed by Gupta [40]. Lemma 3.5.7 tells us exactly the increment in

major index based on which run or fall the newly inserted letter fits into.
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Lemma 3.5.7. Suppose w′ ∈ W̃n+1 is obtained by adding a letter ` to w ∈ W̃n in any position.

Then w′ is obtained by inserting ` into some run or fall of w, and

maj(w′)−maj(w) =

cdes(w)− r if ` is inserted into run r of w

cdes(w) + 1 + f if ` is inserted into fall f of w.

(3.9)

Proof. If cdes(w′) = cdes(w), then ` is inserted into some run of w, and otherwise cdes(w′) =

cdes(w) + 1 and ` is inserted into some fall of w. Inserting ` into run r of w will increment

the position of cdes(w)− r descents by 1 each, so

maj(w′)−maj(w) = cdes(w)− r.

Let comaj(w) := 1 + 2 + · · ·+ (|w| − 1)−maj(w), which is the sum of i ∈ [|w| − 1] where

wi ≤ wi+1. Inserting ` into fall f of w will increment the position of (|w| − 1)− cdes(w)− f

weak ascents by 1 each, so

comaj(w′)− comaj(w) = (|w| − 1)− cdes(w)− f,

from which it follows that

maj(w′)−maj(w) = cdes(w) + 1 + f.

Lemma 3.5.8. Suppose w′′ is obtained by inserting the triple (`, F,R) into w ∈ W̃n. Then

maj(w′′)−maj(w) =

(
|F |+ 1

2

)
+ (cdes(w))(|F |+ |R|) + |F ||R|+

∑
f∈F

f −
∑
r∈R

r. (3.10)
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Proof. Let w′ be obtained by inserting ` into falls F of w. It suffices to show

maj(w′)−maj(w) =

(
|F |+ 1

2

)
+ (cdes(w))|F |+

∑
f∈F

f (3.11)

and

maj(w′′)−maj(w′) = (cdes(w′))|R| −
∑
r∈R

r (3.12)

since cdes(w′) = cdes(w′′) = cdes(w) + |F |. Both (3.11) and (3.12) follow from iterating

Lemma 3.5.7 and recalling cdes is incremented by 1 each time we insert into a fall.

Notation 3.5.9. For the rest of this section, fix a strong composition α = (α1, . . . , αm) of

n ≥ 1 and δ = (δ1, . . . , δm) � k with δ1 = 0. We emphasize that α and δ have the same

number, m, of parts. For ` = 1, . . . ,m, let

n` := α1 + · · ·+ α`, (3.13)

k` := δ1 + · · ·+ δ`. (3.14)

For w ∈Wα,δ, we have the defining conditions |w(`)| = n` and cdes(w(`)) = k`. Furthermore,

let

S` :=

(
[0, n`−1 − k`−1 − 1]

δ`

)
, M` :=

((
[0, k` − 1]

α` − δ`

))

and

g := gcd(α1, α2, . . . , αm, δ1, δ2, . . . , δm).

If w ∈ W̃α,δ, then the set S` consists of all subsets of the falls F (w(`−1)) which, when ` is

inserted into those falls of w(`−1), result in a word w′ with k` cyclic descents. The multiset

M` similarly consists of all choices of runs R(w′) which, when ` is inserted into those runs,

result in a word with length n`.

Remark 3.5.10. We restrict to strong compositions α for notational simplicity, though the
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results in this section may easily be generalized to arbitrary weak compositions by “flattening”

weak compositions to strong ones by removing zeros.

Definition 3.5.11. Construct a rooted, vertex-labeled and edge-labeled tree Tα,δ recursively

as follows. Begin with a tree T (1) containing only a root labeled by the word 1α1 . For

` = 2, . . . ,m, to obtain T (`), do the following. For each leaf w of T (`−1) and for each triple

(`, F,R) with

F ∈ S` and R ∈M`,

add an edge labeled by (F,R) to T (`−1) from w to w′′ where w′′ is obtained by inserting

(`, F,R) into w. Define Tα,δ := T (m).

Example 3.5.12. Let α = (4, 2, 3) and δ = (0, 2, 1). Figure 3.1 is the subgraph of Tα,δ

consisting of paths from the root to leaves that are rotations of 112113323.

1111

211211 121121

332311211 211332311 133231121 121133231

({0, 2},∅) ({1, 3},∅)

({0}, {0, 1})
({2}, {1, 2})

({1}, {0, 1}) ({3}, {1, 2})

Figure 3.1: Subgraph of tree Tα,δ with α = (4, 2, 3), δ = (0, 2, 1).

For this full Tα,δ, the root has
(

4
2

)
= 6 children since 1111 has 4 falls. Each child of the

root itself has
(

4
1

) ((
3
2

))
= 24 children. Hence, Tα,δ has 144 leaves. Notice that the cyclic

rotations of 311211332 appearing as leaves in Figure 3.1 are precisely those ending in 1. It

will shortly become apparent that in this example, # Wα,δ = 9
4
· 144 = 324.

Lemma 3.5.13. The vertices of Tα,δ which are ` < m edges away from the root are precisely

the elements of {w(`+1) : w ∈ W̃α,δ}, each occurring once. In particular, the leaves of Tα,δ are

precisely the elements of W̃α,δ, each occurring once.
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Proof. By definition of S` and M`, any leaf of T (`) has content (α1, . . . , α`), cyclic descent type

(δ1, . . . , δ`), and ends in a 1, so is in {w(`) : w ∈ W̃α,δ}. Conversely, given any w ∈ W̃α,δ, the

word w(`) is obtained by inserting a unique triple (`, F,R) into w(`−1) by repeated applications

of Lemma 3.5.7.

Definition 3.5.14. By Lemma 3.5.13, the tree Tα,δ encodes a bijection

Φ: W̃α,δ
∼→

m∏
`=2

S` ×M`

given by reading the edge labels from the root to w. We suppress the dependence of Φ on α

and δ from the notation since they can be computed from the input w.

Lemma 3.5.15. For any w ∈Wα,δ,

#[w] =
n

α1

·#
(

[w] ∩ W̃α,δ

)
. (3.15)

Consequently,

# Wα,δ =
n

α1

#W̃α,δ. (3.16)

Proof. Each w ∈ Wα,δ has period(w) = n/ freq(w) distinct cyclic rotations, of which

α1/ freq(w) end in 1.

Proposition 3.5.16. Using Notation 3.5.9, we have

# Wα,δ =
n

α1

m∏
`=2

(
n`−1 − k`−1

δ`

) ((
k`

α` − δ`

))
. (3.17)

In particular, Wα,δ 6= ∅ if and only if

0 ≤ δ` ≤ α` for all 1 ≤ ` ≤ m, and

δ1 + · · ·+ δ`+1 ≤ α1 + · · ·+ α` for all 1 ≤ ` < m.
(3.18)
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Proof. The product in (3.17) is #
∏m

`=2 S` ×M`, which is #W̃α,δ by the bijection Φ. Now

(3.17) follows from (3.16), and (3.18) follows from (3.17).

3.5.2 Major Index Generating Functions

We next use the bijection Φ and Lemma 3.5.8 to give a product formula for W̃maj
α,δ (q),

Theorem 3.5.17. We then use modular periodicity to obtain an analogous expression for

Wmaj
α,δ (q) modulo qn − 1, Theorem 3.5.19.

Theorem 3.5.17. Using Notation 3.5.9, we have

W̃maj
α,δ (q) =

m∏
`=2

qk`α`
(
n`−1 − k`−1

δ`

)
q

((
k`

α` − δ`

))
q−1

(3.19)

= qη(α,δ)

m∏
`=2

(
n`−1 − k`−1

δ`

)
q

((
k`

α` − δ`

))
q

(3.20)

where

η(α, δ) := n− α1 +

(
k

2

)
+

m∑
`=2

(
δ`
2

)
.

Proof. Combining Φ with Lemma 3.5.8 shows that

W̃maj
α,δ (q) =

m∏
`=2

∑
F∈S`
R∈M`

qε(`,F,R), (3.21)

where

ε(`, F,R) :=

(
δ` + 1

2

)
+ k`−1α` + δ`(α` − δ`) + sum(F )− sum(R).

Noting that (
δ` + 1

2

)
+ k`−1α` + δ`(α` − δ`) = k`α` −

(
δ`
2

)
,
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simplifying (3.21) gives

W̃maj
α,δ (q) =

m∏
`=2

qk`α`−(δ`2 )Ssum
` (q)M sum

` (q−1). (3.22)

Equation (3.19) now follows from (3.3), (3.4), and the definition of S` and M`. As for (3.20),

consider the reversal bijection r : M` →M` induced by

x 7→ k` − 1− x

on [0, k` − 1]. This bijection satisfies sum(r(A)) = (k` − 1)(α` − δ`)− sum(A), so

M sum
` (q−1) = q−(k`−1)(α`−δ`)M sum

` (q). (3.23)

Plugging (3.23) into (3.22) and noting that

m∑
`=2

(
k`α` −

(
δ`
2

)
− (k` − 1)(α` − δ`)

)
=

m∑
`=2

(
α` −

δ`
2
− δ2

`

2
+ k`δ`

)

= n− α1 −
k

2
+

m∑
`=2

(
−δ

2
`

2
+
∑̀
j=2

δjδ`

)

= n− α1 −
k

2
+

1

2

m∑
`=2

m∑
j=2

δjδ`

= n− α1 −
k

2
+
k2

2

gives

W̃maj
α,δ (q) = qn−α1+(k2)

m∏
`=2

Ssum
` (q)M sum

` (q).

Using (3.3) and (3.4) now yields (3.20).

Lemma 3.5.18. Let α � n, δ � k. The statistic maj has period k modulo n on Wα,δ.
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Moreover, maj is constant modulo d := gcd(n, k) on necklaces in Wα,δ, and

Wmaj
α,δ (q) ≡ n

α1

W̃maj
α,δ (q) (mod qd − 1). (3.24)

Proof. Since cyclically rotating w ∈Wα,δ increments each cyclic descent by 1 modulo n, we

have

maj(σn · w) ≡n maj(w) + k. (3.25)

In particular, maj has period k modulo n on necklaces in Wα,δ. Furthermore, maj is constant

on necklaces in Wα,δ modulo d. Now (3.24) follows from (3.15).

Theorem 3.5.19. Using Notation 3.5.9, let d := gcd(n, k). Then, modulo qn − 1,

Wmaj
α,δ (q) ≡ d

α1

(
qn − 1

qd − 1

) m∏
`=2

qk`α`
(
n`−1 − k`−1

δ`

)
q

((
k`

α` − δ`

))
q−1

≡ d

α1

(
qn − 1

qd − 1

)
q(

k
2)+

∑m
`=2 (δ`2 )−α1

m∏
`=2

(
n`−1 − k`−1

δ`

)
q

((
k`

α` − δ`

))
q

.

(3.26)

Proof. By Lemma 3.5.18, maj has period k modulo n on Wα,δ. Hence by Lemma 3.3.2(i),

maj has period d modulo n on Wα,δ. Using Lemma 3.3.2(v) and (3.24) gives

Wmaj
α,δ (q) ≡ d

n

(
qn − 1

qd − 1

)
Wmaj

α,δ (q)

≡ d

n

(
qn − 1

qd − 1

)(
n

α1

W̃maj
α,δ (q) + p(q)(qd − 1)

)
≡ d

α1

(
qn − 1

qd − 1

)
W̃maj
α,δ (mod qn − 1),

where p(q) ∈ C[q]. Theorem 3.5.19 now follows from Theorem 3.5.17.
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Corollary 3.5.20. Using Notation 3.5.9, let d := gcd(n, k). Then, modulo qn − 1,

Wmaj
α (q) =

(
n

α

)
q

≡
∑
δ

d

α1

(
qn − 1

qd − 1

) m∏
`=2

qk`α`
(
n`−1 − k`−1

δ`

)
q

((
k`

α` − δ`

))
q−1

(3.27)

where the sum is over weak compositions δ of k satisfying (3.18). In particular,

# Wα =

(
n

α

)
=
∑
δ

n

α1

m∏
`=2

(
n`−1 − k`−1

δ`

) ((
k`

α` − δ`

))
. (3.28)

Note that the two-letter case of (3.28) is a special case of the classical Vandermonde

convolution identity [92, Ex. 1.1.17].

3.5.3 Verifying Hypothesis (ii) of Lemma 3.3.3 for Wα,δ

Lemma 3.5.21. Using Notation 3.5.9, Wmaj
α,δ (q) has period g modulo n.

Proof. Let d = gcd(n, k). By Theorem 3.5.19,

Wmaj
α,δ (q) ≡ d

α1

(
qn − 1

qd − 1

) m∏
`=2

qk`α`
(
n`−1 − k`−1

δ`

)
q

((
k`

α` − δ`

))
q−1

modulo qn−1. The action of rotation on elements of S` =
(

[0,n`−1−k`−1]
δ`

)
increases their sum by

δ` modulo n`−1−k`−1. Thus by (3.3),
(
n`−1−k`−1

δ`

)
q

has period δ` modulo n`−1−k`−1. Similarly

by (3.4),
((

k`
α`−δ`

))
q−1 has period α` − δ` modulo k`. For ` = 2, . . . ,m, by Lemma 3.3.2(iv) we

then have

Wmaj
α,δ (q) has period δ` modulo n`−1 − k`−1, and (3.29)

Wmaj
α,δ (q) has period α` − δ` modulo k`. (3.30)

We show Wmaj
α,δ (q) has period α` and δ` modulo n by downward induction on `, for

m ≥ ` ≥ 2. Note that the base case ` = m is accounted for by our argument as well.

Suppose Wmaj
α,δ (q) has period αj and δj modulo n for all j > `. By Lemma 3.5.18, Wmaj

α,δ (q)
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has period k modulo n. By Lemma 3.3.2(i), Wmaj
α,δ (q) thus has period

k` = k − (δm + · · ·+ δ`+1)

modulo n. Since Wmaj
α,δ (q) has period α` − δ` modulo k`, Wmaj

α,δ (q) has period α` − δ` modulo

n by Lemma 3.3.2(ii).

As noted, Wmaj
α,δ (q) has period δ` modulo n`−1 − k`−1. By Lemma 3.3.2(i), Wmaj

α,δ (q) also

has period

n`−1 − k`−1 = n− (αm + · · ·+ α`+1)− k + (δm + · · ·+ δ`+1)− (α` − δ`)

modulo n. Hence, as Wmaj
α,δ (q) has period δ` modulo n`−1−k`−1, Wmaj

α,δ (q) has period δ` modulo

n by Lemma 3.3.2(ii). By another application of Lemma 3.3.2(i), Wmaj
α,δ (q) has period α`

modulo n as well, completing the induction.

Indeed, Wmaj
α,δ (q) has period δ1 = 0 modulo n trivially, and Wmaj

α,δ (q) has period α1 =

n − (αm + · · · + α2) modulo n by Lemma 3.3.2(i). Putting everything together, Wmaj
α,δ (q)

has periods α1, . . . , αm, δ1, . . . , δm modulo n, so by one more application of Lemma 3.3.2(i),

Wmaj
α,δ (q) has period g modulo n.

3.6 Refining the CSP to Fixed Content and Cyclic Descent Type

In this section, we verify the final hypothesis (i) of Lemma 3.3.3 for Wα,δ and deduce

Theorem 3.1.3. Throughout this section we continue to follow Notation 3.5.9. We recall in

particular that

S` :=

(
[0, n`−1 − k`−1 − 1]

δ`

)
, M` :=

((
[0, k` − 1]

α` − δ`

))

and

g := gcd(α1, . . . , αm, δ1, . . . , δm).
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3.6.1 A Fixed Point Lemma

To prove our main result, Theorem 3.1.3, one approach would be to find a Cn-equivariant

isomorphism between a known CSP triple and (Wα,δ, Cn,W
maj
α,δ (q)). Such a triple is hinted at

by (3.19) and the bijection Φ using products of CSP’s coming from Theorem 3.2.3, though

the approach encounters immediate difficulties. For instance, W̃α,δ is not generally closed

under the Cn-action. In this section, we instead give a fixed point lemma, Lemma 3.6.5,

which is intuitively a weakened version of the equivariant isomorphism approach.

Definition 3.6.1. Since g | n`−1 − k`−1, g | k`, and g | n, Cg acts on each of S`, M`, and

Wα,δ by restricting the actions of Cn`−1−k`−1
, Ck` , and Cn to their unique subgroups of size g.

For instance, the action of Cg on Wα,δ is generated by rotation by n/g.

We further let Cg act diagonally on the products S` × M` and
∏m

`=2 S` × M`. We

emphasize that despite having Cg-actions on Wα,δ and
∏m

`=2 S`×M`, the bijection Φ: W̃α,δ
∼→∏m

`=2 S` ×M` is not in general equivariant since W̃α,δ is not closed under the Cg action on

Wα,δ.

Definition 3.6.2. Given a multisubset of some set [0, a], we may encode it as a multiplicity

word w0w1 . . . wa where wi is the multiplicity of i. In particular, we may consider the bijection

Φ: W̃α,δ
∼→
∏m

`=2 S` ×M` as mapping words to sequences of pairs of certain words.

Example 3.6.3. Consider the leaf w = 211332311 in Figure 3.1 from Example 3.5.12. Reading

edge labels gives Φ(w) = (({0, 2},∅), ({2}, {1, 2})). Recalling that S2 consists of subsets of

[0, 4− 1], M2 consists of multisubsets of ∅, S3 consists of subsets of [0, 4− 1], and M3 consists

of multisubsets of [0, 3− 1], the corresponding sequence of words is ((1010, ε), (0010, 011)),

where ε denotes the empty word. Table 3.1 summarizes several similar translations.

Lemma 3.6.4. Suppose w = uk for some word u. If Φ(u) = ((x2, y2), . . . , (xm, ym)) encoded

as multiplicity words as in Definition 3.6.2, then Φ(w) = ((xk2, y
k
2), . . . , (xkm, y

k
m)).

Proof. The insertion triples needed to build w are the sequences of k shifted copies of the

insertion triples needed to build u.
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w Φ(w) sequence of pairs of words
211332311 (({0, 2},∅), ({2}, {1, 2})) ((1010, ε), (0010, 011))
121133231 (({1, 3},∅), ({3}, {1, 2})) ((0101, ε), (0001, 011))

(211332311)2 (({0, 2, 4, 6},∅), ({2, 6}, {1, 2, 4, 5})) ((10102, ε), (00102, 0112))
2221123311 (({0, 2}, {0, 0}), (∅, {1, 1})) ((1010, 20), (000000, 02))

Table 3.1: Examples of words, corresponding sequences of edge labels in Tα,δ, and correspond-
ing sequences of words. Note that the second word is a cyclic rotation of the first.

Lemma 3.6.5. An element τ ∈ Cg fixes w ∈ W̃α,δ if and only if τ fixes Φ(w).

Proof. For τ ∈ Cn, let o(τ) denote the order of τ . It is easy to see that τ ∈ Cn fixes w ∈Wn

if and only if there is some word u such that w = uo(τ).

Suppose τ ∈ Cg fixes w, so that w = uo(τ). By Lemma 3.6.4,

Φ(w) = ((x
o(τ)
2 , y

o(τ)
2 ), . . . , (xo(τ)

m , yo(τ)
m )).

Each of the words x
o(τ)
i and y

o(τ)
i is fixed by τ , so Φ(w) is fixed by τ . The reverse implication

follows analogously using the fact that Φ is a bijection.

3.6.2 Verifying Hypothesis (i) of Lemma 3.3.3 for Wα,δ

Lemma 3.6.6. Using Notation 3.5.9, (Wα,δ, Cg,W
maj
α,δ (q)) exhibits the CSP.

Proof. We use the notation and actions in Definition 3.6.1. Recall that

S` :=

(
[0, n`−1 − k`−1 − 1]

δ`

)
, M` :=

((
[0, k` − 1]

α` − δ`

))
.

From Theorem 3.2.3, for each 2 ≤ ` ≤ m,
(
S`, Cg,

(
n`−k`
δ`

)
q

)
and

(
M`, Cg,

((
k`

α`−δ`

))
q−1

)
exhibit
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the CSP. Taking products,(
m∏
`=2

S` ×M`, Cg,

m∏
`=2

(
n` − k`
δ`

)
q

((
k`

α` − δ`

))
q−1

)

exhibits the CSP. Comparing this to Theorem 3.5.17, we have

W̃maj
α,δ ≡

m∏
`=2

(
n` − k`
δ`

)
q

((
k`

α` − δ`

))
q−1

modulo qg − 1, as
∑m

`=2 k`α` ≡g 0 because g | α` for all `. Thus,

(
m∏
`=2

S` ×M`, Cg, W̃
maj
α,δ (q)

)
(3.31)

exhibits the CSP.

By Lemma 3.5.15, for any w ∈Wα,δ,

#[w] =
n

α1

·#
(

[w] ∩ W̃α,δ

)
.

Since [w] is an orbit under Cn, an element τ ∈ Cn fixes w if and only if τ fixes [w] pointwise.

Thus, for any τ ∈ Cn,

# Wτ
α,δ =

n

α1

·#W̃ τ
α,δ. (3.32)

Combining (3.32) and Lemma 3.6.5 now shows that for any τ ∈ Cg,

# Wτ
α,δ =

n

α1

·#

(
m∏
`=2

S` ×M`

)τ

. (3.33)

Hence, by (3.33), the CSP in (3.31), and (1.3),

(
Wα,δ, Cg,

n

α1

W̃maj
α,δ (q)

)



47

exhibits the CSP. By (3.24), n
α1
W̃α,δ(q) ≡Wmaj

α,δ (q) modulo qd − 1, hence also modulo qg − 1

since g | d, completing the proof.

We have now finished the verification of the conditions in Lemma 3.3.3 for Wα,δ. Condition

(i) is Lemma 3.6.6, Condition (ii) is Lemma 3.5.21, and Condition (iii) is Lemma 3.4.2. This

completes the proof of Theorem 3.1.3.

3.7 Refinements of Binomial CSP’s

A key step in the proof of Lemma 3.6.6 was Theorem 3.2.3 due to Reiner-Stanton-White,

which says that the triples((
[0, n− 1]

k

)
, Cn,

(
n

k

)
q

)
and

(((
[0, n− 1]

k

))
, Cn,

((
n

k

))
q

)

exhibit the CSP. Indeed, [73] contains two proofs, one via representation theory [73, §3] and

another by direct calculation [73, §4]. In this section, we give two refinements of related CSP’s

involving an action of Cd on sets of subsets (Theorem 3.7.11) and multisubsets (Theorem 3.7.4)

for all d | n, using shifted sum statistics. Our proof of the subset refinement, Theorem 3.7.11,

does not use Theorem 3.2.3, so it can be used as an alternative proof of the subset case of

Theorem 3.2.3. Our method is inspired by the rotation of subintervals used by Wagon and

Wilf in [100, §3].

3.7.1 Cyclic Actions and Notation

We define two different cyclic actions of the cyclic group of order d on [0, n− 1] and induce

these actions to
(

[0,n−1]
k

)
and

((
[0,n−1]

k

))
. We also fix notation for the rest of the section.

Notation 3.7.1. Fix n ∈ Z≥1, k ∈ Z≥0, and d | n. Let

S =

(
[0, n− 1]

k

)
, M =

((
[0, n− 1]

k

))
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For all j ∈ [1, n
d
], let

Ijd := [(j − 1)d, jd− 1],

which we call a d-interval. For any composition α = (α1, . . . , αn/d) � k with n/d parts, let

Sα := {A ∈ S : #(A ∩ Ijd) = αj for all j}, (3.34)

Mα := {A ∈M : #(A ∩ Ijd) = αj for all j}, (3.35)

where the intersection in (3.35) preserves the multiplicity of A. We also fix cyclic groups Cd,

C ′d of order d whose actions are described below.

Let Cd act on [0, n− 1] by simultaneous rotation of d-intervals, which is generated by the

permutation

σd := (0 1 . . . (d− 1)) . . . ((n− d) (n− d+ 1) . . . (n− 1)) (3.36)

in cycle notation. On the other hand, Cn has a unique subgroup C ′d of order d which also

acts on [0, n− 1] and is generated by the permutation

σn/dn =
(

0
(n
d

)
. . .
(
n− n

d

))
. . .

((n
d
− 1
) (2n

d
− 1

)
. . . (n− 1)

)
. (3.37)

Induce these actions of Cd and C ′d up to S and M by

g · {a1, . . . , ak} := {g · a1, . . . , g · ak}.

Notice that the action of Cd restricts to Sα and Mα for any α = (α1, . . . , αn/d) � k.

Let (G,X) be a pair where G is a group acting on a set X. A morphism of group actions

(G,X)→ (G′, X ′) is a pair (φ, ψ) where φ : G→ G′ is a group homorphism and ψ : X → X ′
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is a map of sets which satisfy

ψ(g · x) = φ(g) · ψ(x) for all g ∈ G, x ∈ X.

Remark 3.7.2. The actions of Cd and C ′d on [0, n− 1] are isomorphic since σd and σ
n/d
n have

the same cycle type. This isomorphism explicitly arises from φ : σd 7→ σ
n/d
n with ψ : 0 7→ 0,

1 7→ n
d
, etc. Thus the actions of Cd and C ′d on S and M are isomorphic as well.

Recall the sum statistic sums the elements of a set of multiset. We also use the following

shifted sum statistic. For A ∈ S, let

sum′(A) :=
∑
a∈A

a−
k−1∑
i=0

i = sum(A)−
(
k

2

)
. (3.38)

Recall from (3.3) and (3.4) that

Ssum′(q) =

(
n

k

)
q

, M sum(q) =

((
n

k

))
q

. (3.39)

Using (3.39), we may restate Theorem 3.2.3 as saying that both the triples (S,Cn, S
sum′(q))

and (M,Cn,M
sum(q)) exhibit the CSP. Moreover, under the restricted action of C ′d ⊂ Cn

on M and S, (S,C ′d, S
sum′(q)) and (M,C ′d,M

sum(q)) exhibit the CSP by Remark 3.2.2. By

Remark 3.7.2,

(S,Cd, S
sum′(q)) and (M,Cd,M

sum(q)) (3.40)

also exhibit the CSP.

Example 3.7.3. Let n = 8, k = 4, and d = 4. Abbreviating {0, 4, 5, 6} as 0456, etc., gives

S(1,3) = {0456, 0457, 0467, 0567, 1456, 1457, 1467, 1567,

2456, 2457, 2467, 2567, 3456, 3457, 3467, 3567}.

Here, C4 acts on [0, 8 − 1] by the permutation (0123)(4567), and C ′4 acts by (0246)(1357).
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M(1,3) contains S(1,3) in addition to, for instance, 0444.

3.7.2 A Multisubset Refinement

We next prove a refinement of the CSP triple (M,Cd,M
sum(q)) in (3.40) by fixing sizes of

intersections with the d-intervals.

Theorem 3.7.4. Recall Notation 3.7.1, and fix a composition α = (α1, . . . , αn/d) � k. Then,

(Mα, Cd,M
sum
α (q)) refines the CSP triple (M,Cd,M

sum(q)).

Proof. Separating the d-intervals into different multisubsets gives

Mα
∼=
((

[0, d− 1]

α1

))
× · · ·×

((
[0, d− 1]

αn/d

))
, (3.41)

which preserves the natural Cd-action and sum statistic modulo d. Since

(((
[0, d− 1]

αj

))
, Cd,

((
[0, d− 1]

αj

)) sum

(q)

)

exhibits the CSP for all j, the result follows from Remark 3.2.2.

The following analogous result holds for subsets.

Proposition 3.7.5. Recall Notation 3.7.1, and fix a composition α = (α1, . . . , αn/d) � k.

Then (Sα, Cd, S
sum∗
α (q)) exhibits the CSP, where

sum∗(A) := sum(A)−
n/d∑
j=1

(
αj
2

)
. (3.42)

Proof. Separating the d-intervals into different subsets gives

Sα ∼=
(

[0, d− 1]

α1

)
× · · ·×

(
[0, d− 1]

αn/d

)
, (3.43)
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which preserves the Cd-action and sum statistic modulo d. Since

((
[0, d− 1]

αj

)
, Cd,

(
[0, d− 1]

αj

)sum−(αj2 )
(q)

)

exhibits the CSP for all j, (Sα, Cd, S
sum∗
α (q)) exhibits the CSP by Remark 3.2.2.

Remark 3.7.6. Since we must shift the sum statistic by different amounts depending on α,

Proposition 3.7.5 is not a CSP refinement, in contrast to Theorem 3.7.4.

3.7.3 A Subset Refinement

We next prove an honest refinement of the CSP triple (S,Cd, S
sum′(q)) in (3.40). To do

so, we restrict to certain subsets of S for each divisibility chain ending in n. Our proof

again inductively extends CSP’s up from cyclic subgroups of Cd using Lemma 3.3.3. In this

subsection we first define our restricted subsets and give some examples. We then present

a series of lemmata verifying the conditions of Lemma 3.3.3 before proving our refinement,

Theorem 3.7.11.

Definition 3.7.7. Suppose e | d | n. Let

Gd,e := {A ∈ S : gcd(d,#(A ∩ I1
d),#(A ∩ I2

d), . . . ,#(A ∩ In/dd )) = e}. (3.44)

We have Gn,gcd(n,k) = S and Gn,e = ∅ for all other e.

Remark 3.7.8. Note that Gd,e decomposes as the disjoint union

Gd,e =
∐

Sα, (3.45)

ranging over all α = (α1, . . . , αn/d) � k satisfying

gcd(d, α1, . . . , αn/d) = e.
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Example 3.7.9. If n = 4, k = 2, then abbreviating {0, 2} as 02, etc., gives

G1,1 = {01, 02, 03, 12, 13, 23} = S,

G2,1 = {02, 03, 12, 13}, G2,2 = {01, 23},

G4,1 = ∅, G4,2 = {01, 02, 03, 12, 13, 23} = S, G4,4 = ∅.

Consequently, G4,2 ∩G2,1 = {02, 03, 12, 13} and G4,2 ∩G2,2 = {01, 23}.

Definition 3.7.10. Suppose D is a totally ordered chain in the divisibility lattice ending

with gcd(n, k) | n, i.e. D = dp | dp−1 | · · · | d0 | n where d0 := gcd(n, k). Write

GD := Gn,d0 ∩Gd0,d1 ∩ · · · ∩Gdp−1,dp ⊂ S.

We may now state our subset refinement. The proof is postponed to the end of this

subsection.

Theorem 3.7.11. Using Notation 3.7.1, let D be a totally ordered chain in the divisibility

lattice ending with gcd(n, k) | n and starting with e | d. Then, (GD, Cd, G
sum′
D (q)) refines the

CSP triple (S,Cd, S
sum′(q)).

Example 3.7.12. If n = 4, k = 2, and D = 1 | 2 | 4, then G = G4,2 ∩ G2,1 has C2 orbits

{02, 13} and {03, 12}. Moreover,

Gsum′(q) = q1 + 2q2 + q3 ≡ 2(q0 + q1) (mod q2 − 1),

so (G,C2, G
sum′(q)) exhibits the CSP by (3.2).

In fact, the subset case of Theorem 3.2.3 is the special case D = gcd(n, k) | n of

Theorem 3.7.11, so the proof below of Theorem 3.7.11 yields an alternative proof of the subset

case of Theorem 3.2.3.

Corollary 3.7.13. (S,Cn, S
sum′(q)) exhibits the CSP.



53

Lemma 3.7.14. Let D be a totally ordered chain in the divisibility lattice ending with

gcd(n, k) | n and beginning with e | d. Suppose C ′e is the unique subgroup of Cd of order e.

(i) GD =
∐
Sα, where the disjoint union is over some set of α satisfying α = (α1, . . . , αn/d) �

k and gcd(d, α1, . . . , αn/d) = e.

(ii) GD is closed under the Cd and Ce-actions on S.

(iii) The C ′e and Ce-actions on GD are isomorphic.

(iv) For any Cd-orbit O of GD, we have d
|O| | e.

(v) The sum′ statistic has period e modulo d on GD.

Proof. For (i), by (3.45) we have Gd,e =
∐
Sα where α ranges over all compositions sat-

isfying the constraints in (i). Similarly, if c | b, then Gb,c =
∐
Sβ where in particular

β = (β1, . . . , βn/b) � k. Now if d | c, we may break up each b-interval into b/d d-intervals. It

is then easy to see that

Sα ∩ Sβ = ∅ or Sα. (3.46)

Now (i) follows inductively.

For (ii), by (i) it suffices to show that each Sα is closed under the Cd and Ce-actions.

Since σd rotates d-intervals, it preserves the size of each d-interval, so σd indeed maps Sα to

itself. The same argument applies with σe in place of σd.

For (iii), by (i), it suffices to show the Ce and C ′e-actions on Sα are isomorphic. Recalling

(3.43), we have

Sα ∼=
(

[0, d− 1]

α1

)
× · · ·×

(
[0, d− 1]

αn/d

)
.

By Remark 3.7.2, the actions of Ce and C ′e on
(

[0,d−1]
αj

)
are isomorphic for each j, so their

actions on Sα are isomorphic as well.
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For (iv), pick A ∈ O with A ∈ Sα for α as in (i). Let Aj := A∩ Ijd , which has αj elements.

Viewing Aj as a multiplicity word wj as in Definition 3.6.2, we see that Aj has d− αj zeros

and αj ones. For all j, wj is some word repeated d
|O| times. Using the two-letter case of

Lemma 3.4.2, we have d
|O| | freq(wj) | αj. Thus d

|O| | gcd(d, α1, . . . , αn/d) = e.

For (v), it suffices to show that sum′ has period e modulo d on Sα for α as in (i). By the

gcd condition, there exist c1, . . . , cn/d ∈ Z such that

c1α1 + · · ·+ cn/dαn/d ≡ e (mod d).

For some particular A ∈ Sα, consider cyclically rotating the elements of A ∩ Ijd forward by cj

in Ijd for all j. The result is a bijection φ : Sα → Sα such that for all A ∈ Sα,

sum′(φ(A)) ≡ sum′(A) + e (mod d).

Hence sum′ indeed has period e modulo d on Sα.

Example 3.7.15. Let n = 12, k = 8, and D = 1 | 2 | 4 | 12. Then

GD = G12,4 ∩G4,2 ∩G2,1 = G4,2 ∩G2,1.

We have G2,1 =
∐
Sα where α = (α1, . . . , α6) � 8 and gcd(2, α1, . . . , α6) = 1. Similarly

G4,2 =
∐
Sβ where β = (β1, β2, β3) � 8 and gcd(4, β1, β2, β3) = 2. In fact,

∅ ( GD ( G2,1

since, for instance, Sα ⊂ GD when α = (4, 0, 1, 1, 1, 1) while Sα ⊂ G2,1 − GD when α =

(2, 0, 2, 1, 2, 1).

Lemma 3.7.16. Let d | n. The Cd action on Gd,d is trivial and (Gd,d, Cd, G
sum′

d,d (q)) exhibits

the CSP.
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Proof. All subsets in Gd,d have each d-interval either full or empty, so Cd fixes every A ∈ Gd,d.

By (3.2), (Gd,d, Cd, G
sum′

d,d (q)) thus exhibits the CSP if and only if Gsum′

d,d (q) ≡ #Gd,d mod

(qd − 1). If Gd,d = ∅ the result is trivial, so take Gd,d 6= ∅. For any A ∈ Gd,d, since each

d-interval is full or empty, we have d | k and

sum′(A) ≡ k

d

(
d

2

)
−
(
k

2

)
≡ k(d− k)

2
≡ 0 (mod d). (3.47)

We may now prove Theorem 3.7.11.

Proof of Theorem 3.7.11. We induct on d. If d = 1, then (GD, C1, G
sum′
D (q)) exhibits the CSP

trivially. For the induction step, we first claim that (GD, Ce, G
sum′
D (q)) exhibits the CSP. If

e = d, then GD ⊂ Gd,d, so by Lemma 3.7.16 the Ce action is trivial. It is easy to see that

CSP’s with trivial actions refine to arbitrary subsets, so (GD, Ce, G
sum′
D (q)) exhibits the CSP

in this case. If e < d, by conditioning on the sizes of the intersections of the e-intervals, we

can write

GD =
∐
f |e

Gf |D (3.48)

where f | D denotes the chain with f prepended to D. Hence (Gf |D, Ce, G
sum′

f |D (q)) exhibits

the CSP by induction for each f | e, since f | D begins with f | e. Thus (GD, Ce, G
sum′
D (q))

exhibits the CSP by (3.48), proving the claim.

In order to realize the (GD, Cd, G
sum′
D (q)) CSP triple from the (GD, Ce, G

sum′
D (q)) CSP

triple, we verify the conditions of Lemma 3.3.3. From Lemma 3.7.14(ii), the restriction

of the Cd-action on GD to the subgroup C ′e ⊂ Cd of size e is isomorphic to the Ce-action

on GD, giving Condition (i). Condition (ii) is Lemma 3.7.14(v), and Condition (iii) is

Lemma 3.7.14(iv). Thus (GD, Cd, G
sum′
D (q)) exhibits the CSP by Lemma 3.3.3.
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3.8 The Flex Statistic

We conclude by formalizing the notion of universal sieving statistics and giving an example,

flex, in the context of words. We end with an open problem.

Definition 3.8.1. Given a set W with a Cn-action, we say stat : W → Z≥0 is a universal

CSP statistic for (W,Cn) if (O, Cn,Ostat(q)) exhibits the CSP for all Cn-orbits O of W .

Definition 3.8.2. Let lex(w) denote the index at which w appears when lexicographically

ordering the necklace [w], starting from 0. Let flex be the product

flex(w) := freq(w) lex(w).

For example, the necklace in Example 2.1.1 has lex statistics 0, 3, 2, 1, respectively, so

that we have lex(55315531) = 3 and flex(55315531) = 2 · 3 = 6.

Lemma 3.8.3. The function flex is a universal CSP statistic for (Wn, Cn).

Proof. Let N be any necklace of length n words. Since freq(N) = n
|N | , and lex(N) =

{0, 1, . . . , |N | − 1}, we have

Nflex(q) =

|N |−1∑
j=0

qj·
n
|N| =

qn − 1

qn/|N | − 1
, (3.49)

so (N,Cn, N
flex(q)) exhibits the CSP by (3.2).

Given a universal sieving statistic stat on some set W , stat takes on each of the values

{0, n/d, . . . , n− n/d} modulo n on any orbit of size d. The converse holds as well. In this

sense, up to shifting values by n, universal sieving statistics are equivalent to total orderings

on each orbit O of W .

Standing in contrast to Lemma 3.8.3, (N,Cn, N
maj(q)) does not exhibit the CSP when

N = [123123], so maj is not a universal CSP statistic on (Wn, Cn). However, maj trivially

refines to the orbit N = {1n} for any n. Since refinement is not generally closed under
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intersections, it is not clear if there is any useful sense in which maj on words can be

“maximally refined.”

It follows from Lemma 3.8.3 and (3.2) that Theorem 3.1.3 is equivalent to the following.

Theorem 3.8.4. The statistics flex and maj are equidistributed modulo n on Wα,δ.

Corollary 3.8.5. For all α � n,

Wmajn
α (q) = Wflex

α (q)

where majn is the major index modulo n taking values in [0, n− 1].

Indeed, we were originally led to Theorem 3.1.3 through an exploration of the irreducible

multiplicities of the so-called higher Lie modules, which are described in detail in Chapter 4,

which uncovered the fact that flex and maj are equidistributed modulo n on Wα. Data

exploration led us originally to conjecture this equidistribution refined to fixed cyclic descent

type as in Theorem 3.8.4. These observations naturally suggest the problem of finding explicit

bijections proving Theorem 3.8.4, which we leave as an open problem.

Open Problem 3.8.6. For α � n and δ any weak composition, find a bijection ϕ : Wα,δ →

Wα,δ satisfying

maj(ϕ(w)) ≡ flex(w) (modn). (3.50)
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Chapter 4

CYCLIC SIEVING, NECKLACES, AND BRANCHING RULES
RELATED TO THRALL’S PROBLEM

This chapter is based on joint work with Connor Ahlbach. A version of it will be submitted

for publication shortly [4].

4.1 Main Results

Thrall [99] famously introduced a certain GL(V )-module decomposition ⊕λLλ of the tensor

algebra of a vector space V , where the sum is over all partitions of all n ∈ Z≥0. The

decomposition arises from the Poincaré–Birkhoff–Witt theorem applied to the free Lie algebra

generated by V . The Lλ are called the Lie modules and the determination of the multiplicity

of the irreducible V µ in Lλ is called Thrall’s problem. See Section 4.2 for further background.

Kraśkiewicz–Weyman [54] solved Thrall’s problem in terms of major indices of standard

Young tableaux in the important special case λ = (n); see Theorem 1.3.1. Klyachko

[50] had earlier and independently computed the Schur–Weyl dual of L(n) as an induced

representation χ1↑SnCn . His argument identified the corresponding character as a generating

function on primitive necklaces; see Proposition 4.2.5 below. More recently, Schocker [81] gave

a general formula for the multiplicity of V µ in Lλ using different techniques which reduces

to Kraśkiewicz–Weyman’s result when λ = (n), though it involves many subtractions and

divisions in general. Stembridge [94] separately, using yet another set of techniques, proved a

conjecture of Stanley describing the irreducible multiplicities of general χr↑Sn〈σ〉.

In this chapter, we present a unified approach to these results and certain generalizations

using the cyclic sieving phenomenon, Definition 1.2.5. The CSP (Wα, Cn,W
maj
α (q)) from

Theorem 1.2.6 above is fundamental to our arguments in this chapter. In Section 4.3, we
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interpret Theorem 1.2.6 as a “universality” result for sieving on words under a symmetric

group action using maj modulo n. We contrast this with the universality result for flex from

Section 3.8. We show that Kraśkiewicz–Weyman’s result can be interpreted as essentially

equivalent to these two universality statements. The resulting proof of Kraśkiewicz–Weyman’s

result is quite conceptual and “nearly bijective.” For instance, a bijective proof of the majn,

flex equidistribution result, Corollary 3.8.5, together with our other arguments would provide a

bijective proof of the well-known symmetry result, Corollary 4.2.8, following from Kraśkiewicz–

Weyman’s theorem. Such a proof would be quite interesting and is not currently known. Our

argument also provides a thus far relatively rare example of an instance of cyclic sieving

being used to prove other results rather than vice versa. See Section 4.3 for more details.

In Section 4.4, we apply Theorem 1.2.6 and direct manipulations with necklace generating

functions to provide a new proof of Stembridge’s generalization of Kraśkiewicz–Weyman’s

result to all branching rules for inclusions 〈σ〉 ↪→ Sn. The corresponding generalized major

index statistics arise very naturally from the combinatorics of orbits and cyclic sieving. We

also have analogous arguments proving Schocker’s formula [81, Theorem 3.1] for the so-called

higher Lie multiplicities and generalize the result to all branching rules for all one-dimensional

representations for the natural inclusion Ca o Sb ↪→ Sab. This latter argument will appear in a

subsequent publication.

The basic outline of each argument is the same: we obtain an orbit generating function

from an explicit basis of a GL(V )-module, we construct an appropriate necklace generating

function, we use cyclic sieving to rewrite this generating function using words and descent

statistics like the major index, and we finally apply RSK to get a Schur expansion. In

Section 4.5, we discuss applying aspects of this approach to Thrall’s problem in general. It

suggests attacking Thrall’s problem by considering all branching rules Ca o Sb ↪→ Sab rather

than considering only one such rule. We identify the analogue of the flex statistic in this

context and isolate key properties of an analogue of maj. Assuming that such an analogue of

maj can be found, we give a complete solution to the higher Lie multiplicities problem and

more generally determine all branching rules for the inclusion Ca o Sb ↪→ Sab. While finding
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this generalized maj statistic has proven elusive outside of certain special cases, we hope that

our approach will inspire further progress on this difficult problem.

The rest of this chapter is organized as follows. In Section 4.2, we give background. In

Section 4.3, we present our proof of Kraśkiewicz–Weyman’s result using cyclic sieving. In

Section 4.4, we give an analogous proof of Stembridge’s result. In Section 4.5 we give a

monomial expansion of a certain graded Frobenius series, Theorem 4.5.4, and we discuss how

the approach might be used to find the branching rules for the inclusion Ca o Sb ↪→ Sab.

4.2 Necklaces, Thrall’s Problem, and Wreath Products

Here we provide background on necklaces, RSK, Schur–Weyl duality, Thrall’s problem, and

certain wreath products for use in later sections. See also the background material from

Chapter 2. All representations will be over C.

4.2.1 Necklaces

Definition 4.2.1. In analogy with the sets Wn and Wα for the set of words with letters

from Z≥1 either of length n or with content α, we use the following notions on necklaces. For

n ≥ 1 and α � n, we write

Nn = {necklaces of length n words},

Nα = {necklaces with content α},

PNn = {primitive necklaces of length n words},

NFDn,r = {necklaces of length n with frequency dividing r}.

In particular, NFDn,n = Nn, and NFDn,1 = PNn.

Example 4.2.2. Consider w = 15531553 ∈ W8. Then, |w| = 8, Des(w) = {3, 4, 7},

maj(w) = 14, and cont(w) = (2, 0, 2, 0, 4), so w ∈ W(2,0,2,0,4). Since w = 15531553 = (1553)2

and 1553 is primitive, w is not primitive, period(w) = 4, and freq(w) = 2. The necklace of w
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is

[w] := {15531553, 55315531, 53155315, 31553155} ∈ N(2,0,2,0,4) ⊂ N8 .

4.2.2 RSK

We write Par for the set of all partitions over all n. The Robinson–Shensted–Knuth (RSK)

correspondence is a bijection

RSK: Wn →
⊔
λ`n

SSYT(λ)× SYT(λ),

w 7→ (P (w), Q(w)).

The shape of w under RSK, denoted sh(w), is the common shape of P (w) and Q(w). Two

well-known properties of the RSK correspondence are

cont(w) = cont(P (w)), Des(w) = Des(Q(w)). (4.1)

See [78, Chapter 3] for more details on RSK.

4.2.3 Schur–Weyl Duality

We next summarize a few key points from the representation theory of Sn and GL(Cm). See

[31] for more. Recall from Section 1.1 that the complex irreducible inequivalent representations

Sλ of Sn are canonically indexed by partitions λ ` n. The Frobenius characteristic map

ch is defined by chSλ := sλ and is extended additively to all Sn-representations. Since

Schur functions are Z-linearly independent, computing the irreducible decomposition of an

Sn-module M corresponds to computing the Schur expansion of chM .

Let V be a complex vector space of dimension m. Endow V ⊗n with the natural left

GL(V )-action by linear substitutions and the natural right Sn-action by permutation of
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indexes. Given an Sn-module M , define a corresponding GL(V )-module

E(M) := V ⊗n ⊗CSn M,

which we call the Schur module of M . The irreducible inequivalent polynomial representations

of GL(V ) are precisely the Schur modules V λ := E(Sλ) where λ has at most dim(V ) non-zero

parts [31].

Let E be a finite-dimensional, polynomial representation of GL(V ) and pick a basis

{v1, . . . , vm} for V . The Schur character of E, denoted chE, is the function which sends

(x1, . . . , xm) to the character of E evaluated at diag(x1, . . . , xm) ∈ GL(V ), where the diagonal

matrix is with respect to the basis v1, . . . , vm. Polynomiality of E implies chE ∈ C[x1, . . . , xm].

Moreover,

chV λ = chE(Sλ) = sλ(x1, . . . , xm, 0, 0, . . .).

Thus, for any Sn-module M , we have “in the m→∞ limit” equality of Schur and Frobenius

characters:

chE(M) = chM.

In light of this, we often leave dependence on m or V implicit.

4.2.4 Thrall’s Problem

Next we recall the Lie modules Lλ arising from the study of free Lie algebras. We then

summarize certain aspects of the determination of the multiplicity of V µ in Lλ. See [74] for

more details.

The tensor algebra of V is T (V ) := ⊕∞n=0V
⊗n, which is naturally a graded GL(V )-

representation. Let L(V ) be the Lie subalgebra of T (V ) generated by V , called the free Lie

algebra on V . Now L(V ) is also a graded GL(V )-representation with graded components

Ln(V ) = V ⊗n ∩L(V ). The universal enveloping algebra U(L(V )) is isomorphic to T (V ) itself.
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By the Poincaré–Birkhoff–Witt Theorem,

U(L(V )) ∼=
⊕

λ=1m12m2 ···

Symm1(L1(V ))⊗ Symm2(L2(V ))⊗ · · ·

as graded GL(V )-representations, where the sum is over all partitions of all non-negative

integers and Symm(E) is the mth symmetric power of E [74, Lemma 8.22]. The Lie module

associated to λ = 1m12m2 · · · is defined to be

Lλ(V ) := Symm1(L1(V ))⊗ Symm2(L2(V ))⊗ · · · . (4.2)

The Lie modules hence yield a GL(V )-module decomposition T (V ) ∼= ⊕λLλ(V ).

Thrall’s problem is the determination of the multiplicity of V µ in Lλ, for instance by

counting explicit combinatorial objects. The well-known Littlewood–Richardson rule solves

the analogous problem for V µ⊗V ν . It follows from (4.2) and the Littlewood–Richardson rule

that, for the purposes of Thrall’s problem, we may restrict our attention to the case when

λ = (ab) is a rectangle. Since L(ab)(V ) = Symb L(a)(V ), the single-row case is particularly

fundamental.

At present, Thrall’s problem has only been solved in the following cases:

• when λ = (n) has a single part (described below in Corollary 4.2.7);

• when λ = (1n), L(1n) is the trivial representation;

• when λ = (2m), chL(2m) =
∑
sµ where the sum is over µ ` 2m with even column sizes

[59, Ex. I.8.6(b), p. 138].

Hall [41, Lemma 11.2.1] introduced what is now called the Hall basis for L(n), which,

in the m → ∞ limit, is in content-preserving bijection with PNn. Klyachko consequently

observed that the Schur character of L(n) is the corresponding content generating function.

Taking symmetric powers, it follows that L(ab) has a basis consisting of multisets of primitive
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necklaces and the Schur character is the corresponding content generating function. Klyachko

was further able to identify the Schur–Weyl dual of L(n) as a certain induced representation,

which we describe after summarizing the above.

Proposition 4.2.3 (See [50, Proposition 1]). We have “in the m→∞ limit”

chL(n) = PNcont
n (x) and chL(ab) =

((
PNa

b

)) cont

(x).

To solve Thrall’s problem, we need to turn the expressions in Proposition 4.2.3 into Schur

expansions.

Definition 4.2.4. Let σn := (1 2 · · · n) ∈ Sn and Cn := 〈σn〉 ≤ Sn be the cyclic group

of order n it generates. Fixing any primitive nth root of unity ωn, write the irreducible

characters of Cn as χ1, . . . , χn where

χr(σn) := ωrn.

Klyachko observed that E(χ1↑SnCn), like L(n), also has a basis indexed by primitive neck-

laces. Klyachko’s argument may be easily generalized to E(χr↑SnCn). Since our argument

is straightforward and the proof in [50] is somewhat terse, we now state and prove this

generalization. Recall from Definition 4.2.1 that NFDn,r = {N ∈ Nn : freq(N) | r} is the set

of length n necklaces whose frequency divides r, so that NFDn,1 = PNn.

Proposition 4.2.5. For all m ≥ 1, there is a basis for the Schur module E(χr↑SnCn) over

GL(Cm) indexed by necklaces of length n words with letters from [m] and with frequency

dividing r. Moreover,

chχr↑SnCn = NFDcont
n,r . (4.3)

Proof. Suppose the underlying vector space V has basis {v1, . . . , vm}. By a slight abuse of

notation, we may view χr as the vector space C with the left Cn-action σn · 1 := ωrn. Since
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χr↑SnCn := CSn ⊗CCn χ
r, we have

E(χr↑SnCn) = V ⊗n ⊗CSn CSn ⊗CCn χ
r ∼= V ⊗n ⊗CCn χ

r

where Cn acts on V ⊗n on the right by “rotating” the components of simple tensors. A

spanning set for V ⊗n ⊗CCn χ
r is given by all vi1 ⊗ · · · ⊗ vin ⊗ 1, which we abbreviate as

[i1 · · · in]. Acting by σn on χr on the left or on V ⊗n on the right gives the relation

[i1 · · · in] = ω−rn [i2 · · · in i1].

If the word i1 · · · in has frequency f and period p, we then find

[i1 · · · in] =
1

n

n−1∑
j=0

ω−jrn [ij+1 · · · in i1 · · · ij]

=
1

n

p−1∑
k=0

(
f−1∑
`=0

ω−(`p+k)r
n

)
[ik+1 · · · ini1 · · · ik]

=
1

n

(
f−1∑
`=0

ω−`prn

)
p−1∑
k=0

ω−krn [ik+1 · · · ini1 · · · ik].

Since ωpn is a primitive n/p = f -th root of unity, the factor
∑f−1

`=0 ω
−`pr
n is non-zero if and only

if ω−prn = 1, so if and only if f | r. Moreover, when f | r, the above computation shows that

[i1 · · · in] is well-defined up to nonzero scalar multiplication on the level of necklaces, which

explains our notation. It is easy to see that the spanning set just constructed is in fact a

basis. It is also easy to see that diag(x1, . . . , xm) itself acts diagonally on this basis. Thus,

the resulting Schur character, in the m→∞ limit, is precisely NFDcont
n,r .

Kraśkiewicz–Weyman related the graded pieces of the type A coinvariant algebra to the

induced representations χr↑SnCn . Using the so-called Lusztig–Stanley theorem [87, Prop. 4.11],

they obtained the irreducible decompositions in Theorem 4.2.6.
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Theorem 4.2.6 (Kraśkiewicz–Weyman, [54, Corollary 3]). For all n ≥ 1 and r = 1, . . . , n,

chχr↑SnCn =
∑
λ`n

aλ,rsλ

where

aλ,r := #{Q ∈ SYT(λ) : maj(Q) ≡n r}.

Combining Klyachko’s observations, Proposition 4.2.3 and Proposition 4.2.5, with Kraśkiewicz–

Weyman’s result, Theorem 4.2.6, consequently solves Thrall’s problem when λ = (n).

Corollary 4.2.7. For all λ ` n ≥ 1, the multiplicity of V λ in L(n) is aλ,1.

Since χr↑SnCn depends up to isomorphism only on n and gcd(n, r), we also have the following

well-known enumerative symmetry.

Corollary 4.2.8. For all λ ` n ≥ 1 and r ∈ Z, we have aλ,r = aλ,gcd(n,r).

A bijective proof of this symmetry is currently unknown and would be quite interesting. Our

argument in Section 4.3 proving Theorem 4.2.6 reduces the problem of finding a bijective

proof of Corollary 4.2.8 to the problem of finding a bijective proof of Corollary 4.2.8.

While we will not have need of it, in light of Proposition 4.2.3, we would be remiss if

we did not mention Gessel and Reutenauer’s important and beautiful expansion of chLλ in

terms of Gessel’s fundamental quasisymmetric functions [36, equation (2.1)]:

chLλ =
∑
σ∈Sn

σ has cycle type λ

Fn,Des(σ)(x), (4.4)

where

Fn,D(x) =
∑

i1≤···≤in
ij<ij+1 if j∈D

xi1 . . . xin .

Gessel and Reutenauer gave an elegant bijective proof of (4.4) in [36].
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4.2.5 Wreath Products

The Schur–Weyl duals of the higher Lie modules L(ab) have also been identified in terms of

induced representations of certain wreath products. Here we summarize this connection as

well as some related aspects of the representation theory of wreath products which will be

used in Section 4.5. Our presentation largely mirrors [94].

Definition 4.2.9. Given a group G, the wreath product of G with Sn, denoted G o Sn, is the

semidirect product explicitly described as follows. G oSn is the set Gn×Sn with multiplication

given by

(g1, . . . , gn, σ) · (h1, . . . , hn, τ) := (g1hσ−1(1), . . . , gnhσ−1(n), στ)

for all g1, . . . gn, h1, . . . , hn ∈ G and σ, τ ∈ Sn. Furthermore, given α � n, set G o
∏

i Sαi :=∏
i(G o Sαi), which has a natural inclusion into G o Sn.

Now suppose U is a G-set and V is an Sn-set. There is a natural notion of U o V as a

G o Sn-set. Explicitly, let U o V be the set Un × V with G o Sn-action given by

(g1, . . . , gn, σ) · (u1, . . . , un, v) := (g1 · uσ−1(1), . . . , gn · uσ−1(n), σ · v)

for all g1, . . . , gn ∈ G, σ ∈ Sn, u1, . . . , un ∈ U, v ∈ V . There is an analogous notion if U is a

G-module and V is an Sn-module, namely U o V := U⊗n ⊗ V with G o Sn-action

(g1, . . . , gb, σ) · (u1 ⊗ · · · ⊗ ub ⊗ v) := (g1 · uσ−1(1))⊗ · · · ⊗ (gb · uσ−1(b))⊗ (σ · v)

extended C-linearly.

Since Sn acts naturally and faithfully on [n], [a] o 1 has a natural Sa o Sb-action, where

1 denotes the trivial Sb-set. Identifying [a] o 1 with the set [ab] and noting that the action

remains faithful gives an inclusion Sa oSb ↪→ Sab. Similarly we have an inclusion Ca oSb ↪→ Sab.

Remark 4.2.10. The induction product of two symmetric group representations corresponds

the product of their Frobenius characteristics, so that if U is an Sa-module and V is an
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Sb-module, then [91, Prop. 7.18.2],

ch
(
U ⊗ V ↑Sa+bSa×Sb

)
= (chU)(chV ). (4.5)

The wreath product of symmetric group representations corresponds to the plethysm of their

Frobenius characters. Given two symmetric functions f and g = m1 +m2 + · · · where the mi

are all monomials, their plethysm is given by [91, Def. A2.6]

f [g] = f(m1,m2, . . . ), (4.6)

which is well-defined since f is symmetric. Then, if U is an Sa-module and V is an Sb-module,

we have [91, Thm. A2.8]

ch
(

(U o V )↑SabSaoSb

)
= ch(V )[ch(U)]. (4.7)

Definition 4.2.11. When G is a finite group, Specht [84] described the complex inequivalent

irreducible representations of G o Sn in terms of those for G and Sn, the conjugacy classes of

G, and wreath products. In the case Ca o Sb, they are indexed by a-tuples of partitions whose

total size is b, or equivalently by functions

λ : [a]→ Par

where |λ| :=
a∑
j=1

|λ(j)| = b.

The complex inequivalent irreducible representations of Ca o Sb are given by

Sλ :=
(
(χ1 o Sλ(1))⊗ · · · ⊗ (χa o Sλ(a))

)
↑CaoSbCaoSα(λ) ,
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where

α(λ) := (|λ(1)|, . . . , |λ(a)|) � b,

Sα(λ) := S|λ(1)| × · · · × S|λ(a)|,

and Ca o Sα(λ) is viewed naturally as a subgroup of Ca o Sb. In particular, the one-dimensional

representations of Ca o Sb for b ≥ 2 are

χr,1 := χr o 1 and χr,ε := χr o ε

where r = 1, . . . , a and 1 and ε are the trivial and sign representations of Sb, respectively.

When b = 1, χr,1 is simply χr.

Bergeron–Bergeron–Garsia [8] extended Klyachko’s observation by showing that the Schur–

Weyl dual of L(ab) is χ1,1↑SabCaoSb . We next give a different argument for this fact which is

straightforward given the preceding background and which uses a basic lemma we will require

later in Section 4.5.

Theorem 4.2.12 ([8, §4.4]; see also [74, Thm. 8.23]). We have

chχ1,1↑SabCaoSb=

((
PNa

b

)) cont

= chL(ab).

Proof. The second equality is Proposition 4.2.3. For the first equality, by Lemma 4.2.13

below, we have

(χ1 o 1)↑SabCaoSb
∼= (χ1↑SaCa o1)↑SabSaoSb .



70

By (4.7) and Proposition 4.2.5,

chχ1,1↑SabCaoSb = ch(χ↑SaCa o1)↑SabSaoSb

= (ch 1)[chχ↑SaCa ]

= hb[PNcont
a ]

=

((
PNa

b

)) cont

where hb is the complete homogeneous symmetric function of degree b. The identification with

the claimed multiset content generating function follows easily from (4.6) and the definition

of hb. The result will be complete once we prove Lemma 4.2.13.

Lemma 4.2.13. Suppose that H is a subgroup of a group G, that U is an H-module, and

that V is an Sn-module. Then

(U o V )↑GoSnHoSn
∼=
(
U↑GH

)
o V

as G o Sn-modules.

Proof. As sets, we have

(U o V )↑GoSnHoSn = C(G o Sn)⊗C(HoSn) (U⊗n ⊗ V ),

(U↑GH) o V = (CG⊗CH U)⊗n ⊗ V.

Define

φ : (U o V )↑GoSnHoSn → (U↑GH) o V,

ψ : (U↑GH) o V → (U o V )↑GoSnHoSn
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by

φ((h1, . . . , hn, τ)⊗ (u1 ⊗ · · · ⊗ un ⊗ v))

:= (h1 ⊗ uτ−1(1))⊗ · · · ⊗ (hn ⊗ uτ−1(n))⊗ (τ · v),

ψ((h1 ⊗ x1)⊗ · · · ⊗ (hn ⊗ xn)⊗ y)

:= (h1, . . . , hn, 1)⊗ (x1 ⊗ · · · ⊗ xn ⊗ y)

extended C-linearly. It is straightforward to check directly that φ and ψ are well-defined,

G o Sn-equivariant, and mutual inverses.

4.3 Cyclic Sieving and Kraśkiewicz–Weyman’s Result

In this section, we present a new proof of Kraśkiewicz–Weyman’s result, Theorem 4.2.6, which

exposes an intimate connection between that result and cyclic sieving on words. We also

discuss the largely bijective nature of the argument and contrast it with existing approaches.

Let majn : Wn → [n] denote the major index modulo n. This statistic is a universal

sieving statistic for words under the natural Sn-action in the sense of the next result, which

is equivalent to Reiner–Stanton–White’s result, Theorem 1.2.6. A very similar observation

appeared in [9, Prop. 3.1] in connection with cyclic sieving on parking functions.

Proposition 4.3.1. Let W ⊂Wn be a set of words closed under the Sn-action. Then, the

triple

(W,Cn,W
majn(q))

exhibits the CSP, where W has the restricted Cn = 〈(1 2 · · · n)〉-action.

Proof. It suffices to consider the case when W is a single Sn-orbit. The Sn-orbits of Wn are

precisely the sets Wα. The result with majn replaced by maj thus follows immediately from

Theorem 1.2.6. The reduction modulo n does not affect (1.3).

Recall the flex statistic from Section 3.8. The following is a restatement of Lemma 3.8.3.
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Lemma. Let W ⊂Wn be a set of words closed under the Cn := 〈(1 2 · · · n)〉-action. Then,

the triple

(W,Cn,W
flex(q))

exhibits the CSP.

Corollary 4.3.2. For all n ≥ 1,

Wcont,flex
n (x; q) = Wcont,majn

n (x; q).

Proof. By Proposition 4.3.1 and Lemma 3.8.3, for each α � n, the triples

(Wα, Cn,W
majn
α (q)) and (Wα, Cn,W

flex
α (q))

exhibit the CSP. By (1.3), it follows that Wmajn
α (q) ≡ Wflex

α (q) (mod qn − 1), which forces

Wmajn
α (q) = Wflex

α (q). The result follows by summing over all α.

Lemma 4.3.3. For all n ≥ 1,

n∑
r=1

ch
(
χr↑SnCn

)
qr = Wcont,flex

n (x; q).

Proof. For each necklace N ∈ Nn, flex(N) = {freq(N), 2 freq(N), . . . , n}, so {w ∈ Wn :

flex(w) = r} contains exactly 1 word of each necklace in NFDn,r. Consequently,

NFDcont
n,r = {w ∈Wn : flex(w) = r}cont. (4.8)
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By Proposition 4.2.5,

n∑
r=1

ch
(
χr↑SnCn

)
qr =

n∑
r=1

NFDcont
n,r q

r

=
n∑
r=1

{w ∈Wn : flex(w) = r}contqr

= Wcont,flex
n (x; q).

Lemma 4.3.4. For all n ≥ 1,

Wcont,majn
n (x; q) =

∑
λ`n
r∈[n]

aλ,rsλq
r

where aλ,r := #{Q ∈ SYT(λ) : majn(Q) = r}.

Proof. Using RSK and the facts that cont(w) = cont(P (w)), and majn(w) = majn(Q(w)),

which are both immediate from (4.1), we have

Wcont,majn
n (x; q) =

∑
λ`n

∑
P∈SSYT(λ)

xcont(P )
∑

Q∈SYT(λ)

qmajn(Q)

=
∑
λ`n

sλ
∑

Q∈SYT(λ)

qmajn(Q),

from which the result follows.

Remark 4.3.5. Kraśkiewicz–Weyman’s result, Theorem 4.2.6, now follows immediately

from Corollary 4.3.2, Lemma 4.3.3, and Lemma 4.3.4. Intuitively, the argument may be

summarized as follows. We exhibited an explicit basis for E(χr↑SnCn) giving
∑n

r=1 chχr↑SnCn
qr = Wcont,flex

n (x; q). The universal Sn sieving result, Proposition 4.3.1—or equivalently

Theorem 1.2.6—and the universal Cn sieving result, Lemma 3.8.3, allows us to replace flex

with majn. Finally, the RSK bijection allows us to change from the monomial to the Schur
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basis. The only step of this approach which does not use an explicit bijection is the appeal to

Theorem 1.2.6. This suggests the following coarsening of Open Problem 3.8.6.

Open Problem 4.3.6. For each α � n, find an explicit bijection φ : Wα → Wα such that

majn(w) = flex(φ(w)).

Conversely, Kraśkiewicz–Weyman’s result together with Lemma 4.3.3 and Lemma 4.3.4

immediately yields Corollary 4.3.2. Using Lemma 3.8.3 then yields Proposition 4.3.1, or

equivalently Theorem 1.2.6. In this sense, Kraśkiewicz–Weyman’s result is equivalent to

Theorem 1.2.6.

Remark 4.3.7. The symmetry result for the coefficients aλ,r, Corollary 4.2.8, also follows

immediately from Corollary 4.3.2 and Lemma 4.3.4. Moreover, a solution to Open Prob-

lem 4.3.6 together with the preceding arguments would provide a fully bijective proof of this

symmetry result.

For use in the next section, we include the following variation on Corollary 4.3.2. For

n ≥ 1 and r = 1, . . . n, let

Mn,r := {w ∈Wn : majn(w) = r}.

Corollary 4.3.8. For all n ≥ 1, and r = 1, . . . , n,

NFDcont
n,r = Mcont

n,r

Proof. By (4.8) and Corollary 4.3.2,

NFDcont
n,r = {w ∈Wn : flex(w) = r}cont = {w ∈Wn : majn(w) = r}cont = Mcont

n,r .
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4.4 Induced Representations of Arbitrary Cyclic Subgroups of Sn

We next generalize the discussion in Section 4.3 to branching rules for general inclusions

〈σ〉 ↪→ Sn, recovering a result of Stembridge, Theorem 4.4.11. We express the relevant

characters in turn as a certain orbit generating function, a necklace generating function, and

a generating function on words. Two variations on the major index, majν and majν , arise

quite naturally from our argument. The CSP Theorem 1.2.6 again plays a decisive role.

Throughout this section, let σ ∈ Sn, let C be the cyclic group generated by σ, and let

` = #C. Fixing a primitive `-th root of unity ω`, let χr : C → C for r = 1, . . . , n be the

linear C-module given by χr(σ) := ωr` . We begin by updating our notation for this setting

and generalizing Proposition 4.2.5.

Definition 4.4.1. In analogy with Definition 4.2.1, suppose O is an orbit of Wn under the

restricted C-action. The period of O is #O and the frequency of O, written freq(O), is the

stabilizer-order of any element of O, or equivalently freq(O) = `
#O . The set of orbits of words

whose frequency divides r is

OFDC,r := {C-orbits O of Wn : freq(O) | r}.

Proposition 4.4.2. For all m ≥ 1, there is a basis for the Schur module E(χr↑SnC ) over

GL(Cm) indexed by C-orbits of length n words with letters from [m] and with frequency

dividing r. Moreover,

ch
(
χr↑SnC

)
= OFDcont

C,r . (4.9)

Proof. The proof of Proposition 4.2.5 goes through verbatim with the C-action replacing the

Cn-action.

Our goal is broadly to replace OFDcont
C,r with a necklace generating function, apply cyclic

sieving to get a major index generating function on words, and then apply RSK to get a
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Schur expansion.

Notation 4.4.3. For the rest of the section, suppose that σ has disjoint cycle decomposition

σ = σ1 · · ·σk with νi := |σi|. Consequently, ` = |σ| = lcm(ν1, . . . , νk). Further, write

Cν := {σr11 · · · σ
rk
k ∈ Sn : r1, . . . , rk ∈ Z} ∼= Cν1 × · · · × Cνk

where Cνi := 〈σi〉.

We have C ⊂ Cν ⊂ Sn. The Cν-orbits of Wn can be identified with products of necklaces

N1 × · · · ×Nk with Nj ∈ Nνj , or equivalently with tuples (N1, . . . , Nk). Since

StabCν (N1 × · · · ×Nk) =
k∏
j=1

StabCνj (Nj),

we may group together Cν-orbits of Wn according to their stabilizer as follows.

Definition 4.4.4. Given ν = (ν1, . . . , νk) and ρ = (ρ1, . . . , ρk), let

NFν,ρ := NFν1,ρ1 × · · · × NFνk,ρk

NFDν,ρ := NFDν1,ρ1 × · · · × NFDνk,ρk ,

where NFn,r := {N ∈ Nn : freq(n) = r} is the set of length n necklaces with frequency

precisely r.

The elements of NFν,ρ all have the same stabilizer, and the elements of NFDν,ρ are precisely

those whose stabilizer is contained in the common stabilizer of elements of NFν,ρ. Note that

NFν,ρ 6= ∅ if and only if ρj | νj for all j = 1, . . . , k, which we write as ρ | ν. We may express

OFDC,r as a union of certain NFν,ρ’s arising from viewing Cν-orbits as unions of C-orbits,

resulting in the following.
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Lemma 4.4.5. For r = 1, . . . , n, we have

OFDcont
C,r =

∑
ρ|ν

`|r·lcm
(
ν1
ρ1
,...,

νk
ρk

)

∏k
j=1

νj
ρj

lcm
(
ν1
ρ1
, . . . , νk

ρk

) NFcont
ν,ρ .

Proof. Let O be a C-orbit of Wn with freq(O) | r. Now O is a subset of some Cν-orbit

N1 × · · · × Nk ∈ NFν,ρ for some ρ | ν. Since freq(Nj) = ρj, we have #Nj = νj/ρj and so

#N1 × · · · × Nk =
∏k

j=1 νj/ρj. Moreover, O is in bijection with the group generated by a

permutation of cycle type (ν1/ρ1, . . . , νk/ρk), so that #O = lcm (ν1/ρ1, . . . , νk/ρk).

Note that freq(O) | r is equivalent to the condition ` | r ·#O, which explains the restriction

in the sum above. The Cν-orbit N1×· · ·×Nk is the disjoint union of those C-orbits contained

in it. Since these C-orbits have the same size #O, it follows that N1 × · · · ×Nk contains

#(N1 × · · · ×Nk)

#O
=

∏k
j=1

νj
ρj

lcm
(
ν1
ρ1
, . . . , νk

ρk

)
distinct C-orbits. Since O and (N1, . . . , Nk) have the same content, the result follows.

One could in principle use Möbius inversion on the lattice of stabilizers to convert from

NFcont
ν,ρ to NFDcont

ν,ρ . However, the following argument is more direct.

Lemma 4.4.6. For r = 1, . . . , n,

OFDcont
C,r =

∑
τ∈[ν1]×···×[νk]∑k
j=1

`
νj
τj ≡` r

NFDcont
ν,τ .

Proof. We have

NFDcont
ν,τ =

∑
ρ:ρ|ν,τ

NFcont
ν,ρ .
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Consequently,

∑
τ∈[ν1]×···×[νk]∑k
j=1

`
νj
τj ≡` r

NFDcont
ν,τ =

∑
ρ|ν

crν,ρ NFcont
ν,ρ

where

crν,ρ := #

{
τ ∈ [ν1]× · · · × [νk] : ρ | τ and

k∑
j=1

`

νj
τj ≡` r

}
.

Since ρj | νj and ρj | τj, write γj :=
νj
ρj

and δj =
τj
ρj

so that δj = 1, . . . , γj. Then,

k∑
j=1

`

νj
τj =

k∑
j=1

`

γj
δj

so

crν,ρ = #

{
δ ∈ [γ1]× · · · × [γk] :

k∑
j=1

`

γj
δj ≡` r

}
.

Defining a group homomorphism

φ :
k∏
i=1

Z/γj → Z/`

(δ1, . . . , δk) 7→
k∑
j=1

`

γj
δj,

we now have crν,ρ = #φ−1(r). Since `
γ1
Z + · · · + `

γk
Z = gcd

(
`
γ1
, . . . , `

γk

)
Z = `

lcm(γ1,...,γk)
Z, it

follows that

imφ = {r ∈ Z/` : ` | r · lcm (γ1, . . . , γk)} and

# imφ = lcm(γ1, . . . , γk).
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For r ∈ imφ, we then have

crν,ρ = #φ−1(r) = # kerφ =
γ1 · · · γk

lcm(γ1, . . . , γk)
.

The result follows from Lemma 4.4.5.

From Corollary 4.3.8, we have

NFDcont
ν,τ = Mcont

ν1,τ1
× · · · ×Mcont

νk,τk
.

Interpreting the right-hand side in terms of words and comparing with the indexing set in

Lemma 4.4.6 motivates the following variations on the major index.

Definition 4.4.7. Let majν : Wn → [ν1] × · · · × [νk] be defined as follows. For w ∈ Wn,

write w = w1 · · ·wk where each wj is a word in Wνj . Set

majν(w)j := majνj(w
j).

Furthermore, let majν : Wn → [`] be defined by

majν(w) :=
k∑
j=1

`

νj
majν(w)j.

Note that both majν and majν are functions of Des(w). We may thus define both majν

and majν on Q ∈ SYT(n) using only Des(Q) in the same way. Equivalently, we may set

majν(Q) := majν(w) and majν(Q) := majν(w) for any w such that Q = Q(w).

Example 4.4.8. Let ν = (5, 3, 3) and w = 44121361631, so that ` = 15, w1 = 44121,

w2 = 361, and w3 = 631. We have

majν(w) = (maj5(w1),maj3(w2),maj3(w3)) = (1, 2, 3),
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and hence majν(w) = 15
5
· 1 + 15

3
· 2 + 15

3
· 3 = 13 (mod 15).

Proposition 4.4.9. We have

∑̀
r=1

ch
(
χr↑SnC

)
qr = Wcont,majν

n (x, q).

Proof. From Corollary 4.3.8 and the definition of majν , we have

NFDcont
ν,τ = {w ∈Wn : majν(w) = τ}cont.

Using Proposition 4.4.2 and Lemma 4.4.6, we then have

∑̀
r=1

ch
(
χr↑SnC

)
qr =

∑̀
r=1

qr OFDcont
C,r

=
∑̀
r=1

qr
∑

τ∈[ν1]×···×[νk]∑k
j=1

`
νj
τj ≡` r

NFDcont
ν,τ

=
∑̀
r=1

qr
∑

τ∈[ν1]×···×[νk]∑k
j=1

`
νj
τj ≡` r

{w ∈Wn : majν(w) = τ}cont

=
∑̀
r=1

qr{w ∈Wn : majν(w) = r}cont

= Wcont,majν

n (x, q).

We have the following analogue of Lemma 4.3.4.

Lemma 4.4.10. For all n ≥ 1 and ν � n,

Wcont,majν

n (x; q) =
∑
λ`n
r∈[`]

aνλ,rsλq
r



81

where aνλ,r := #{Q ∈ SYT(λ) : majν(Q) = r}.

Proof. Replace maj with majν in the proof of Lemma 4.3.4.

We may now state and prove Stembridge’s result.

Theorem 4.4.11 (Stembridge, [94, Theorem 3.3]). For all n ≥ 1 and cyclic subgroups C of

Sn generated by an element of cycle type ν, we have

ch
(
χr↑SnC

)
=
∑
λ`n

aνλ,rsλ

where aνλ,r := #{Q ∈ SYT(λ) : majν(Q) = r}.

Proof. Combine Proposition 4.4.9 and Lemma 4.4.10.

Since the isomorphism type of χr↑SnC , or equivalently OFDcont
C,r , depends only on gcd(`, r),

we have the following generalization of Corollary 4.2.8.

Corollary 4.4.12. For all n ≥ 1, λ ` n, and ν � n, we have aνλ,r = aνλ,gcd(`,r), where

` = lcm(ν1, ν2, . . .).

Our argument proving Schocker’s formula uses the following variation on Proposition 4.4.9

and Lemma 4.4.10. There is also a corresponding symmetry result, Corollary 4.4.14.

Lemma 4.4.13. If ν � n, then

NFDcont
ν,τ =

∑
λ`n

sytλν,τ sλ

where

sytλν,τ := #{Q ∈ SYT(λ) : majν(Q) = τ}.
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Proof. Applying RSK and the facts that cont(P (w)) = cont(w) and majν(w) = majν(Q(w)),

which are both immediate from (4.1),

NFDcont
ν,τ = Mcont

ν1,τ1
× · · · ×Mcont

νk,τk

= {w ∈Wn : majν(w) = τ}cont

=
∑
λ`n

∑
Q∈SYT(λ)
majν(Q)=τ

∑
P∈SSYT(λ)

xcont(P )

=
∑
λ`n

sytλν,τ sλ.

Corollary 4.4.14. If ν = (ν1, . . . , νk) and τ = (τ1, . . . , τk) are compositions of n of length k,

σ ∈ Sk, and λ ` n, then sytλν,β = sytλσ·ν,σ·β.

Proof. Since reordering does not affect contents, we have

NFDcont
ν,τ = NFDcont

σ·ν,σ·τ .

Now apply Lemma 4.4.13 and equate coefficients of sλ.

4.5 Higher Lie Modules and Branching Rules

The argument in Section 4.3 solves Thrall’s problem for λ = (n) by considering all branching

rules for Cn ↪→ Sn simultaneously and using cyclic sieving and RSK to convert from the

monomial to the Schur basis. We now turn to analogous considerations for the higher Lie

modules and more generally branching rules for Ca o Sb ↪→ Sab. We give an analogue of the

flex statistic and the above monomial expansion, Lemma 4.3.3, for such branching rules. We

then show how to convert from the monomial to the Schur basis assuming the existence of a

certain statistic on words we call mash which interpolates between majn and the shape under

RSK.



83

Proposition 4.5.1. For all a, b ≥ 1 and λ : [a]→ Par with |λ| = b, we have

chSλ↑SabCaoSb =
a∏
r=1

sλ(r)[NFDcont
a,r ].

Proof. We have

Sλ↑SabCaoSb
∼=

[
a⊗
r=1

(χr o Sλ(r))

]
↑SabCaoSα(λ)

∼=

[
a⊗
r=1

(χr o Sλ(r))

]
↑Sa∗α(λ)CaoSα(λ)↑

Sab
Sa∗α(λ)

∼=

[
a⊗
r=1

(χr o Sλ(r))↑Sa|λ(r)|CaoS|λ(r)|

]
↑SabSa∗α(λ)

∼=

[
a⊗
r=1

(χr o Sλ(r))↑SaoS|λ(r)|CaoS|λ(r)|↑
Sa|λ(r)|
SaoS|λ(r)|

]
↑SabSa∗α(λ)

∼=

[
a⊗
r=1

(χr↑SaCa oS
λ(r))↑Sa|λ(r)|SaoS|λ(r)|

]
↑SabSa∗α(λ)

where the last isomorphism follows from Lemma 4.2.13. Consequently, using (4.5), (4.7), and

Proposition 4.2.5, we have

chSλ↑SabCaoSb =
a∏
r=1

ch
(
χr↑SaCa oS

λ(r)
)
↑Sa|λ(r)|SaoS|λ(r)|

=
a∏
r=1

(chSλ(r))[chχr↑SaCa ]

=
a∏
r=1

sλ(r)[NFDcont
a,r ].

Recall from Section 4.2.2 that given a word w, the shape of w, denoted sh(w), is the

common shape of P (w) and Q(w) under RSK.
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Definition 4.5.2. Fix a, b ≥ 1. Construct statistics

flexba and majba : Wab → {λ : [a]→ Par | |λ| = b}

as follows. Given w ∈Wab, write w = w1 · · ·wb where wj ∈Wa. In this way, consider w as a

word of size b whose letters are in Wa. For each r ∈ [a], let w(r) denote the subword of w

whose letters are those wj such that flex(wj) = r. Totally order Wa lexicographically, so that

RSK is well-defined for words with letters from Wa. Set

flexba(w) : r 7→ sh(w(r)).

Define majba in the same way except for using maja instead of flex when constructing the

subwords w(r).

Example 4.5.3. Let w = 212023101241 and suppose a = 3, b = 4. Write

w = (212)(023)(101)(241).

The parenthesized terms have flex statistics 2, 1, 2, 2 and maj3 statistics 1, 3, 1, 2, respectively.

When computing flex4
3(w), we then have w(1) = (023), w(2) = (212)(101)(241), w(3) = ∅. Since

(101) <lex (212) <lex (241), sh(w1) = sh(213) = (2, 1). Consequently,

flex4
3(212023101241) =


1 7→ (1)

2 7→ (2, 1)

3 7→ ∅.

When computing maj43(w), we have w(1) = (212)(101), w(2) = (241), w(3) = (023). Since
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(101) <lex (212), sh(w1) = sh(21) = (1, 1). Hence

maj43(212023101241) =


1 7→ (1, 1)

2 7→ (1)

3 7→ (1).

In Section 4.3 we considered the graded Frobenius series tracking branching rules for

the inclusion Cn ↪→ Sn,
∑n

r=1 ch
(
χr↑SnCn

)
qr. The q = 1 specialization gives the Frobenius

series for the regular representation of Cn. We next consider the analogous expression for the

inclusion Ca oSb ↪→ Sab. Since the irreducible representations here are not all one-dimensional,

we must introduce scale factors for the q = 1 specialization to give the Frobenius series for

the regular representation of Ca o Sb. We also use formal indeterminates qλ and extend our

generating function notation from Section 2.3 accordingly.

Theorem 4.5.4. Fix a, b ≥ 1. We have

∑
λ : [a]→Par
|λ|=b

dim
(
Sλ↑SabCaoSb

)
ch
(
Sλ↑SabCaoSb

)
qλ = W

cont,flexba
ab (x, q)

= W
cont,majba
ab (x, q)

where the qλ are independent indeterminates.

Proof. Fix λ : [a]→ Par with |λ| = b. For the left-hand side, we first find

dim
(
Sλ↑SabCaoSb

)
= dim

(
(χ1 o Sλ(1))⊗ · · · ⊗ (χa o Sλ(a))

)
↑SabCaoSα(λ)

= dim
(
(χ1 o Sλ(1))⊗ · · · ⊗ (χa o Sλ(a))

)
· #Ca o Sb

#Ca o Sα(λ)

=

(
b

α(λ)

) a∏
r=1

fλ(r)
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where fµ := dimSµ = # SYT(µ). Thus, by Proposition 4.5.1,

dim
(
Sλ↑SabCaoSb

)
ch
(
Sλ↑SabCaoSb

)
=

(
b

α(λ)

) a−1∏
r=0

fλ(r)sλ(r)[NFDcont
a,r ]. (4.10)

For the right-hand side, we have

W
cont,flexba
ab (x, q)

∣∣∣
qλ

= {w ∈Wab : flexba(w) = λ}cont.

In order for w ∈ Wab to have flexba(w) = λ, we must have sh(w(r)) = λ(r) for each r ∈ [a].

Letting Fa,r := {w ∈ Wa : flex(w) = r}, we may thus choose each w(r) ∈ (Fa,r)
αr with

sh(w(r)) = λ(r) independently and then shuffle them in
(

b
α(λ)

)
ways to form such w ∈Wab.

Consequently,

{w ∈Wab : flexba(w) = λ}cont

=

(
b

α(λ)

) a∏
r=1

{w(r) ∈ (Fa,r)
αr : sh(w(r)) = λ(r)}cont.

The content generating function for words with a given shape µ ` n under RSK is given by

{w ∈Wn : sh(w) = µ}cont = fµsµ.

Changing the alphabet from Z≥1 to Fa,r and using (4.8) gives

{w(r) ∈ (Fa,r)
αr : sh(wr) = λ(r)}cont = fλ(r)sλ(r)[F

cont
a,r ] = fλ(r)sλ(r)[NFDcont

a,r ].

The first equality in the theorem now follows from combining these observations with (4.10).

The second equality follows in the same way, using Corollary 4.3.2.

While Theorem 4.5.4 determines the monomial expansion of the graded Frobenius series

tracking branching rules for Ca o Sb ↪→ Sab, we are ultimately interested in the corresponding
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Schur expansion. We next describe how the approach in the preceding sections might be used

to find this Schur expansion. The key properties used in the above proof of Theorem 4.2.6

converting from the monomial to the Schur basis were that majn is equidistributed with flex

on each Wα and majn(w) depends only on Q(w). In order to apply a similar argument for

ch(Sλ↑SabCaoSb), we need a statistic with the following properties.

Open Problem 4.5.5. Fix a, b ≥ 1. Find a statistic

mashba : Wab → {λ : [a]→ Par | |λ| = b}

with the following properties.

(i) For all α � ab, flexba, majba, and mashba are equidistributed on Wα.

(ii) If v, w ∈Wab satisfy Q(v) = Q(w), then mashba(v) = mashba(w).

Finding such a statistic mashba would determine the Schur decomposition of ch(Sλ↑SabCaoSb)

as follows.

Corollary 4.5.6. Suppose mashba : Wab → {λ : [a] → Par | |λ| = b} satisfies properties (i)

and (ii) in Open Problem 4.5.5. Then

ch(Sλ↑SabCaoSb) =
∑
ν`ab

#{Q ∈ SYT(ν) : mashba(Q) = λ}
dim(Sλ↑SabCaoSb)

sν ,

where mashba(Q) := mashba(w) for any w ∈Wab with Q(w) = Q.
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Proof. We use, in order, Theorem 4.5.4, property (i), RSK, and property (ii) to compute

∑
λ : [a]→Par
|λ|=b

dim(Sλ↑SabCaoSb) ch(Sλ↑SabCaoSb))q
λ = W

cont,majba
ab (x; q)

=
∑
α�ab

xα Wmajba
α (q)

=
∑
α�ab

xα Wmashba
α (q)

= W
cont,mashba
ab (x; q)

=
∑
ν`ab

(SSYT(ν)× SYT(ν))cont,mashba(x; q)

=
∑
ν`ab

SSYT(ν)cont(x) SYT(ν)mashba(q)

=
∑
ν`ab

SYT(ν)mashba(q)sν .

The result follows by equating coefficients of qλ.

Remark 4.5.7. When a = 1 and b = n, we may replace λ with λ ` n. Under this

identification, flexn1 (w) = sh(w), which clearly also satisfies property (ii). When a = n and

b = 1, we may replace λ with an element r ∈ [n]. Under this identification, we may set

mash1
n(w) = majn(w), which also satisfies (ii). In this sense mashba interpolates between the

major index majn and the shape under RSK, hence the name.

While majba trivially satisfies property (i), it fails property (ii) already when a = b = 2, as

in the following example.

Example 4.5.8. Let v = 2314 and w = 1423. Then,

Q(v) = Q(w) = 1 2 4

3
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while

maj22(v) :

1 7→ ∅

2 7→ (1, 1)

maj22(w) :

1 7→ ∅

2 7→ (2)

Remark 4.5.9. When defining flexba and majba, we somewhat arbitrarily chose the lexico-

graphic order on Wa. Any other total order would work just as well. However, property (ii)

continues to fail using any other total order when a = b = 2 in Example 4.5.8 since either

14 < 23 or 23 < 14.
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Chapter 5

ON THE EXISTENCE OF TABLEAUX WITH GIVEN
MODULAR MAJOR INDEX

This chapter has been published as [97]. Sundaram’s motivating work has now been

published as [95]. See Chapter 6 for a more recent alternate proof of the classification in

Theorem 5.1.3.

5.1 Main Results

As in Section 1.2, in this chapter we focus on the counts

aλ,r := #{T ∈ SYT(λ) : majT ≡n r}

where r is taken mod n. To avoid giving undue weight to trivial cases, we take n ≥ 1

throughout. Work due to Klyachko and, later, Kraśkiewicz–Weyman’s result Theorem 1.3.1,

gives the following.

Theorem 5.1.1 ([50, Proposition 2], [54]). Let λ ` n and n ≥ 1. The constant aλ,1 is positive

except in the following cases, when it is zero:

• λ = (2, 2) or λ = (2, 2, 2);

• λ = (n) when n > 1; or λ = (1n) when n > 2.

Let χr↑SnCn be as in Section 4.2.4, so that the multiplicity of Sλ in χr↑SnCn is aλ,r. The

following recent conjecture due to Sundaram was originally stated in terms of the multiplicity

of Sλ in 1↑SnCn .
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Conjecture 5.1.2 (Sundaram [95]). Let λ ` n and n ≥ 1. Then aλ,0 is positive except in

the following cases, when it is zero: n > 1 and

• λ = (n− 1, 1)

• λ = (2, 1n−2) when n is odd

• λ = (1n) when n is even.

Conjecture 5.1.2 is the r = 0 case of the following theorem, which is the main result of this

chapter.

Theorem 5.1.3. Let λ ` n and 1 ≤ r ≤ n. Then aλ,r is positive except in the following

cases, when it is zero: n > 1 and

• λ = (2, 2), r = 1, 3; or λ = (2, 2, 2), r = 1, 5; or λ = (3, 3), r = 2, 4;

• λ = (n− 1, 1) and r = 0;

• λ = (2, 1n−2), r =

0 if n is odd

n
2

if n is even;

• λ = (n), r ∈ {1, . . . , n− 1};

• λ = (1n), r ∈

{1, . . . , n− 1} if n is odd

{0, . . . , n− 1} − {n
2
} if n is even.

Equivalently, every irreducible representation appears in each χr↑SnCn or Sλ↓SnCn except in the

noted exceptional cases.

M. Johnson [46] gave an alternative proof of Klyachko’s result, Theorem 5.1.1, involving

explicit constructions with standard tableaux. Kovács–Stöhr [53] gave a different proof using

the Littlewood–Richardson rule which also showed that aλ,1 > 1 implies aλ,1 ≥ n
6
− 1. Our
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approach is instead based on normalized symmetric group character estimates. It has the

benefit of yielding both more general and vastly more precise estimates for aλ,r.

Our starting point is the following character formula. See Section 5.3 for further discussion

of its origins and a generalization. Let χλ(µ) denote the character of Sλ at a permutation of

cycle type µ. We write `n/` for the rectangular partition (`, . . . , `) with ` columns and n/`

rows. Write fλ := χλ(1n) = dimSλ = # SYT(λ).

Theorem 5.1.4. Let λ ` n and n ≥ 1. For all r ∈ Z/n,

aλ,r
fλ

=
1

n
+

1

n

∑
`|n
` 6=1

χλ(`n/`)

fλ
c`(r)

where

c`(r) := µ

(
`

gcd(`, r)

)
φ(`)

φ(`/ gcd(`, r))

is a Ramanujan sum, µ is the classical Möbius function, and φ is Euler’s totient function.

We estimate the quotients in the preceding formula using the following result due to

Fomin and Lulov.

Theorem 5.1.5. [27, Theorem 1.1] Let λ ` n where n = `s. Then

|χλ(`s)| ≤ s!`s

(n!)1/`
(fλ)1/`.

The character formula in Theorem 5.1.4 and the Fomin-Lulov bound are combined below

to give the following asymptotic uniform distribution result.

Theorem 5.1.6. For all λ ` n ≥ 1 and all r,∣∣∣∣aλ,rfλ − 1

n

∣∣∣∣ ≤ 2n3/2√
fλ
. (5.1)

In Section 5.4 we use “opposite hook lengths” to give a lower bound for fλ, Corollary 5.4.13.

These bounds, together with a somewhat more careful analysis involving the character formula,
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Stirling’s approximation, and the Fomin-Lulov bound, are used to deduce both our main

result, Theorem 5.1.3, and the following more explicit uniform distribution result.

Theorem 5.1.7. Let λ ` n be a partition where fλ ≥ n5 ≥ 1. Then for all r,∣∣∣∣aλ,rfλ − 1

n

∣∣∣∣ < 1

n2
.

In particular, if n ≥ 81, λ1 < n− 7, and λ′1 < n− 7, then fλ ≥ n5 and the inequality holds.

Indeed, the upper bound in Theorem 5.1.7 is quite weak and is intended only to convey

the flavor of the distribution of (aλ,r)
n−1
r=0 for fixed λ. One may use Roichman’s asymptotic

estimate [76] of |χλ(`s)|/fλ to prove exponential decay in many cases. Moreover, one typically

expects fλ to grow super-exponentially, i.e. like (n!)ε for some ε > 0 (see [57] for some

discussion and a more recent generalization of Roichman’s result), which in turn would give a

super-exponential decay rate in Theorem 5.1.7. We have no need for such explicit, refined

statements and so have not pursued them further.

Theorem 5.1.5 is based on the following generalization of the hook length formula (the

` = 1 case), which seems less well-known than it deserves. We give an alternate proof of

Theorem 5.1.8 in Section 5.5 along with further discussion. A ribbon is a connected skew

shape with no 2× 2 rectangles. For λ ` n, write c ∈ λ to mean that c is a cell in λ. Further

write hc for the hook length of c and write [n] := {1, 2, . . . , n}.

Theorem 5.1.8 ([45, 2.7.32]; see also [27, Corollary 2.2]). Let λ ` n where n = `s. Then

|χλ(`s)| =

∏
i∈[n]
i≡`0

i

∏
c∈λ
hc≡`0

hc
(5.2)

whenever λ can be written as s successive ribbons of length ` (i.e. whenever the `-core of λ is

empty), and 0 otherwise.
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Other work on q-analogues of the hook length formula has focused on algebraic generaliza-

tions and variations on the hook walk algorithm rather than evaluations of symmetric group

characters. For instance, an application of Kerov’s q-analogue of the hook walk algorithm

[48] was to prove a recursive characterization of the right-hand side of (5.5) below. See [17,

§6] for a relatively recent overview of literature in this direction.

The rest of the chapter is organized as follows. In Section 5.2, we recall earlier work. In

Section 5.3 we discuss and generalize Theorem 5.1.4. In Section 5.4, we use symmetric group

character estimates and a new estimate involving “opposite hook products,” Proposition 5.4.5,

to deduce our main results, Theorem 5.1.3 and Theorem 5.1.7. We give an alternative proof

of Theorem 5.1.8 in Section 5.5. In Section 5.6, we briefly discuss unimodality of symmetric

group characters in light of Proposition 5.4.5.

5.2 Cyclic Exponents and Ramanujan Sums

Here we review objects famously studied by Springer [86, (4.5)] and Stembridge [94] and give

further background for use in later sections. All representations will be finite-dimensional

over C.

Let G be a finite group, g ∈ G a fixed element of order n, M a finite dimensional G-

module, and ωn a fixed primitive nth root of unity. Suppose {ωe1n , ωe2n , . . .} is the multiset

of eigenvalues of g acting on M . The multiset {e1, e2, . . .} lists the cyclic exponents of g on

M ; these integers are well-defined mod n. Following [94], define the corresponding “modular”

generating function as

PM,g(q) := qe1 + qe2 + · · · (mod (qn − 1)).

Write χM(g) to denote the character of M at g. Note that

PM,g(ω
s
n) = χM(gs), (5.3)
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so that for instance PM,g(q) depends only on the conjugacy class of g. When G = Sn and

g ∈ Sn has cycle type µ ` n, we write PM,µ(q) := PM,g(q).

Theorem 5.2.1 (see [94, Theorem 3.3] and [54]). Let λ ` n. The cyclic exponents of

(1 2 · · · n) on Sλ are the major indices of SYT(λ), mod n, and

PSλ,(n)(q) ≡
∑

T∈SYT(λ)

qmajT

≡
∑
r|n

aλ,r

 ∑
1≤i≤n

gcd(i,n)=r

qi

 (mod (qn − 1)).

(5.4)

We also recall Stanley’s q-analogue of the hook length formula, stated above in Theo-

rem 1.1.3. Using it to compute cyclotomic factorizations gives a particularly efficient method

for computing the coefficients aλ,r.

Theorem 5.2.2. [91, 7.21.5] Let λ ` n with λ = (λ1, λ2, . . .). Then

∑
T∈SYT(λ)

qmaj(T ) =
qb(λ)[n]q!∏
c∈λ[hc]q

(5.5)

where b(λ) :=
∑

(i− 1)λi.

Finally, we have need of the so-called Ramanujan sums.

Definition 5.2.3. Given j ∈ Z>0 and s ∈ Z, the corresponding Ramanujan sum is

cj(s) := the sum of the sth powers of the primitive jth roots of unity.

For instance, c4(2) = i2 + (−i)2 = −2 = µ(4/2)φ(4)/φ(2). The equivalence of this

definition of cj(s) and the formula in Theorem 5.1.4 is classical and was first given by Hölder;

see [51, Lemma 7.2.5] for a more modern account. These sums satisfy the well-known relation
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∑
v|n

cv(n/s)cr(n/v) =

n r = s

0 r 6= s

(5.6)

for all s, r | n [51, Lemma 7.2.2].

5.3 Generalizing the Character Formula

In this section we discuss Theorem 5.1.4 and present a straightforward generalization. We

begin with a proof of Theorem 5.1.4 similar to but different from that in [20]. It is included

chiefly because of its simplicity given the background in Section 5.2 and because part of the

argument will be used below in Section 5.5.

Proof of Theorem 5.1.4. Pick s | n, so (12 · · ·n)s has cycle type ((n/s)s). Evaluating (5.4)

at q = ωsn gives

χλ((n/s)s) = PSλ,(n)(ω
s
n) =

∑
r|n

aλ,rcn/r(s) (5.7)

since (ωsn)i = (ωin)s and ωin is a primitive n/ gcd(i, n)th root of unity. Equation (5.7) gives a

system of linear equations, one for each s such that s | n, and with variables aλ,r for each

r | n. The coefficient matrix is C := (cn/r(s))s|n,r|n. For example, the s = n linear equation

reads

fλ = χλ(1n) =
∑
r|n

aλ,rφ(n/r),

which follows immediately from the fact that fλ =
∑n−1

r=0 aλ,r and that aλ,r depends only on

gcd(r, n).

As it happens, the coefficient matrix C is nearly its own inverse. Precisely,

(cn/r(s))
2
s|n,r|n = n I, (5.8)

where I is the identity matrix with as many rows as positive divisors of n. It is easy to see
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that (5.8) is equivalent to the identity (5.6) above. Using (5.8) to invert (5.7) gives

aλ,rn =
∑
s|n

χλ((n/s)s)cn/s(r).

For the s = n term, we have c1(r) = 1 and χλ(1n) = fλ. Tracking this term separately,

dividing by n and replacing s with ` := n/s now gives Theorem 5.1.4, completing the

proof.

Variations on Theorem 5.1.4 have appeared in the literature numerous times in several

guises, sometimes implicitly (see [20, Théorème 2.2], [50, (7)], or [91, 7.88(a), p. 541]). In this

section we write out a precise and relatively general version of these results which explicitly

connects Theorem 5.1.4 to the well-known corresponding symmetric function expansion due

to H. O. Foulkes. Let ch denote the Frobenius characteristic map and let pλ denote the power

symmetric function indexed by the partition λ.

Theorem 5.3.1. [28, Theorem 1] Suppose λ ` n ≥ 1 and r ∈ Z/n. Then

chχr↑SnCn=
1

n

∑
`|n

c`(r)p(`n/`). (5.9)

The following straightforward result, essentially implicit in [91, 7.88(a), p. 541], connects

and generalizes Theorem 5.3.1 and Theorem 5.1.4.

Theorem 5.3.2. Let H be a subgroup of Sn and let M be a finite-dimensional H-module

with character χM : H → C. Then

chM↑SnH =
1

|H|
∑
µ`n

cµpµ (5.10)

and, for all λ ` n,

〈M↑SnH , S
λ〉 =

1

|H|
∑
µ`n

cµχ
λ(µ), (5.11)
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where

cµ :=
∑
h∈H
τ(h)=µ

χM(h)

and τ(σ) denotes the cycle type of the permutation σ.

Proof. Write N := M↑SnH . By definition (see [91, p. 351]),

chN =
∑
µ`n

χN(µ)

zµ
pµ (5.12)

where zµ is the order of the stabilizer of any permutation of cycle type µ under conjugation.

From the induced character formula (see [82, 7.2, Prop. 20]), we have

χN(σ) =
1

|H|
∑
a∈Sn

s.t. aσa−1∈H

χM(aσa−1).

Say τ(σ) = µ. Each aσa−1 = h ∈ H with τ(h) = µ appears in the preceding sum zµ

times, since σ and h are conjugate and zµ is also the number of ways to conjugate any fixed

permutation with cycle type µ to any other fixed permutation with cycle type µ. Hence

χN(µ) =
1

|H|
∑
h∈H
τ(h)=µ

zµχ
M(h). (5.13)

Equation (5.10) now follows from (5.12) and (5.13). Equation (5.11) follows from (5.10) in

the usual way using the fact (see [91, (7.76)]) that pµ =
∑

λ χ
λ(µ)sλ.

Note that (5.10) specializes to Theorem 5.3.1 and (5.11) specializes to Theorem 5.1.4

when M = χr. In that case, the only possibly non-zero cµ arise from µ = (`n/`) for ` | n.

One may consider analogues of the counts aλ,r obtained by inducing other one-dimensional

representations of subgroups of Sn. Motivated by the study of so-called higher Lie modules,

there is a natural embedding of reflection groups Ca o Sb ↪→ Sab. A classification analogous

to Klyachko’s result, Theorem 5.1.1, was asserted for b = 2 by Schocker [80, Theorem 3.4],
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though the “rather lengthy proof” making “extensive use of routine applications of the

Littlewood-Richardson rule and some well-known results from the theory of plethysms” was

omitted. By contrast, our approach using Theorem 5.3.2 may be pushed through in this case

using an appropriate generalization of the Fomin-Lulov bound, such as [57, Theorem 1.1],

resulting in analogues of Theorem 5.1.3 and Theorem 5.1.7. Our approach begins to break

down when b is large relative to n = ab and (5.11) has many terms. However, we have no

current need for such generalizations and so have not pursued them further.

5.4 Proof of the Main Results

We now turn to the proofs of Theorem 5.1.3, Theorem 5.1.6, and Theorem 5.1.7. We begin

by combining the Fomin–Lulov bound and Stirling’s approximation, which quickly gives

Theorem 5.1.6. We then use somewhat more careful estimates to give a sufficient condition,

fλ ≥ n3, for aλ,r 6= 0. Afterwards we give an inequality between hook length products and

“opposite” hook length products, Proposition 5.4.5, from which we classify λ for which fλ < n3.

Theorem 5.1.3 follows in almost all cases, with the remainder being handled by brute force

computer verification and case-by-case analysis. Theorem 5.1.7 will be similar, except the

bound fλ < n5 will be used.

Lemma 5.4.1. Suppose λ ` n = `s. Then

ln
|χλ(`s)|
fλ

≤
(

1− 1

`

)[
1

2
lnn− ln fλ + ln

√
2π

]
+

`

12n
− 1

2
ln `. (5.14)

Proof. We apply the following version of Stirling’s approximation [85, (1.53)]. For all m ∈ Z>0,

(
m+

1

2

)
lnm−m+ ln

√
2π ≤ lnm! ≤

(
m+

1

2

)
lnm−m+ ln

√
2π +

1

12m
.

The Fomin–Lulov bound, Theorem 5.1.5, gives

|χλ(`s)|
fλ

≤
n
`
!`n/`

(n!)1/`(fλ)1−1/`
.
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Combining these gives

ln
|χλ(`s)|
fλ

≤ ln
(n
`

)
! +

n

`
ln `− 1

`
lnn!−

(
1− 1

`

)
ln fλ

≤
(
n

`
+

1

2

)
ln
n

`
− n

`
+ ln
√

2π +
`

12n
+
n

`
ln `

− 1

`

((
n+

1

2

)
lnn− n+ ln

√
2π

)
−
(

1− 1

`

)
ln fλ

=
1

2
ln
n

`
+ ln
√

2π +
`

12n
− 1

2`
lnn− ln

√
2π

`
−
(

1− 1

`

)
ln fλ.

Rearranging this final expression gives (5.14).

We may now prove Theorem 5.1.6.

Proof of Theorem 5.1.6. For 2 ≤ ` ≤ n, applying simple term-by-term estimates to (5.14)

gives

ln
|χλ(`s)|
fλ

≤ 1

2
lnn− 1

2
ln fλ + ln

√
2π +

1

12
− ln 2

2
.

Consequently,
|χλ(`s)|
fλ

≤ C

√
n

fλ

where C =
√
π exp(1/12) ≈ 1.93 < 2. The Ramanujan sums c`(r) have the trivial bound

|c`(r)| ≤ ` ≤ n. The estimate in Theorem 5.1.6 now follows immediately from Theorem 5.1.4.

Lemma 5.4.2. Pick λ ` n and d ∈ R. Suppose for all 1 6= ` | n where λ may be written as

s := n/` successive ribbons each of length ` that

|χλ(`s)|
fλ

≤ 1

ndφ(`)
. (5.15)

Then for all r ∈ Z/n, ∣∣∣∣aλ,rfλ − 1

n

∣∣∣∣ < 1

nd
.
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Proof. By Theorem 5.1.4, we must show

1

n

∣∣∣∣∣∣∣∣
∑
`|n
` 6=1

χλ(`s)

fλ
c`(r)

∣∣∣∣∣∣∣∣ <
1

nd
.

Using the explicit form for c`(r) in Theorem 5.1.4 and the fact that n has fewer than n proper

divisors, it suffices to show ∣∣∣∣χλ(`s)fλ
φ(`)

∣∣∣∣ ≤ 1

nd

for all ` | n, ` 6= 1, so the result follows from our assumption (5.15).

Corollary 5.4.3. Let λ ` n. If fλ ≥ n3 ≥ 1, then aλ,r 6= 0.

Proof. Equation (5.14) gives

ln
|χλ(`s)|
fλ

≤
(

1− 1

`

)[
−5

2
lnn+ ln

√
2π

]
+

`

12n
− 1

2
ln `. (5.16)

At ` = 2, the right-hand side of (5.16) is less than ln 1
φ(2)n

for n ≥ 3. At ` = 3, 4, 5, the

same expression is less than ln 1
φ(`)n

for n ≥ 4, 3, 5, respectively. At ` ≥ 6, applying simple

term-by-term estimates to (5.16) gives

ln
|χλ(`s)|
fλ

≤ −
(

1− 1

6

)
5

2
lnn+ ln

√
2π +

1

12
− 1

2
ln 6 (5.17)

which is less than ln 1
n2 for n ≥ 4. Thus, Lemma 5.4.2 applies with d = 1 for all n ≥ 5, so that∣∣∣∣aλ,rfλ − 1

n

∣∣∣∣ < 1

n
,

and in particular aλ,r 6= 0. The cases 1 ≤ n ≤ 4 remain, but they may be easily checked by

hand.

We next give techniques that are well-adapted to classifying λ ` n for which fλ < nd for

fixed d. We begin with a curious observation, Proposition 5.4.5, which is similar in flavor to
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[27, Theorem 2.3]. It was also recently discovered independently by Morales–Panova–Pak as

a corollary of the Naruse hook length formula for skew shapes; see [65, Proposition 12.1]. See

also [69] for further discussion and an alternate proof of a stronger result by F. Petrov.

Definition 5.4.4. Consider a partition λ = (λ1, . . . , λm) with λ1 ≥ λ2 ≥ · · · ≥ 0 as a set of

cells (in French notation)

λ = {(a, b) ∈ Z× Z : 1 ≤ b ≤ m, 1 ≤ a ≤ λb}.

Given a cell c = (a, b) ∈ λ ⊂ N × N, the opposite hook length hop
c at c is a + b − 1. For

instance, the unique cell in λ = (1) has opposite hook length 1, and the opposite hook length

increases by 1 for each north or east step.

It is easy to see that
∑

c∈λ h
op
c =

∑
c∈λ hc. On the other hand, we have the following

inequality for their products.

Proposition 5.4.5. For all partitions λ,

∏
c∈λ

hop
c ≥

∏
c∈λ

hc.

Moreover, equality holds if and only if λ is a rectangle.

Proof. If λ is a rectangle, the multisets {hop
c } and {hc} are equal, so the products agree. The

converse will be established in the course of proving the inequality. For that, we begin with a

simple lemma.

Lemma 5.4.6. Let x1 ≥ · · · ≥ xm ≥ 0 and y1 ≥ · · · ≥ ym ≥ 0 be real numbers. Then

m∏
i=1

(xi + yi) ≤
m∏
i=1

(xi + ym−i+1).

Moreover, equality holds if and only if for all i either xi = xm−i+1 or yi = ym−i+1.
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Proof. If m = 1, the result is trivial. If m = 2, we compute

(x1 + y2)(x2 + y1)− (x1 + y1)(x2 + y2) = (x1 − x2)(y1 − y2) ≥ 0.

The result follows in general by pairing terms i and m− i+ 1 and using these base cases.

Returning to the proof of the proposition, the strategy will be to break up hc and hop
c

in terms of (co-)arm and (co-)leg lengths, and apply the lemma to each column of λ when

computing
∏
hc, or equivalently to each row of λ when computing

∏
hop
c . More precisely,

let c = (a, b) ∈ λ. Take λ = (λ1, λ2, . . .) and λ′ = (λ′1, λ
′
2, . . .). Define the co-arm length of c

as a, the co-leg length of c as b, the arm length of c as α := α(a, b) := λb − a + 1, and the

leg length of c as β := β(a, b) := λ′a − b+ 1; see Figure 5.1. With these definitions, we have

β

b
a

α

λb

λ0

a

| {z }

z }| {

|
{
z

}

|
{
z

}

Figure 5.1: Arm length α, co-arm length a, leg length β, co-leg length b for c = (a, b) ∈ λ.
The hook length is hc = α + β − 1 and the opposite hook length is hop

c = a+ b− 1
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hop
c = a+ b− 1 and hc = α + β − 1. We now compute

∏
c∈λ

hop
c =

∏
(a,b)∈λ

(a+ b− 1) =
∏
b

λb∏
a=1

(a+ b− 1)

=
∏
b

λb∏
a=1

((λb + 1− a) + b− 1) =
∏
a

λ′a∏
b=1

(α + b− 1)

≥
∏
a

λ′a∏
b=1

(α + (λ′a + 1− b)− 1)

=
∏

(a,b)∈λ

(α + β − 1) =
∏
c∈λ

hc,

where Lemma 5.4.6 is used for the inequality with i := b, m := λ′a, xi := α − 1 = λb − a,

yi := λ′a + 1 − b. Moreover, if equality occurs, then since the yi strictly decrease, we must

have λ1 = λm for all a, forcing λ to be a rectangle.

It would be interesting to find a bijective explanation for Proposition 5.4.5. The appearance

of rectangles is particularly striking. Note, however, that n!/
∏

c∈λ h
op
c need not be an integer.

In any case, we continue towards Theorem 5.1.3.

Definition 5.4.7. Define the diagonal preorder on partitions as follows. Declare λ .diag µ if

and only if for all i ∈ P,

#{c ∈ λ : hop
c ≥ i} ≤ #{d ∈ µ : hop

d ≥ i}.

Note that .diag is reflexive and transitive, though not anti-symmetric, so the diagonal

preorder is not a partial order. For example, the partitions (3, 1), (2, 2), and (2, 1, 1) all have

the same number of cells with each opposite hook length. A straightforward consequence of

the definition is that

λ .diag µ ⇒
∏
c∈λ

hop
c ≤

∏
d∈µ

hop
d . (5.18)

Hooks are maximal elements of the diagonal preorder in a sense we next make precise.
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Definition 5.4.8. Let λ ` n for n ≥ 1. The diagonal excess of λ is

N(λ) := |λ| −max
c∈λ

hop
c .

For instance, λ = (3, 3) has opposite hook lengths ranging from 1 to 4, so N((3, 3)) = 6−4 = 2.

The following simple observation will be used shortly.

Proposition 5.4.9. Let λ ` n for n ≥ 1. Take π : λ → P via π(c) := hop
c . Then the fiber

sizes |π−1(i)| are unimodal, and are indeed of the form

1 = |π−1(1)| < · · · < m = |π−1(m)| ≥ |π−1(m+ 1)| ≥ · · ·

for some unique m ≥ 1.

Proof. This follows quickly by considering the largest staircase shape contained in λ. Indeed,

m is the number of rows or columns in such a staircase.

Example 5.4.10. If λ ` n is a hook, the sequence of fiber sizes in Proposition 5.4.9 is

1 < 2 ≥ 2 ≥ 2 · · · ≥ 2 ≥ 1 ≥ · · · ≥ 1 ≥ 0 ≥ · · ·

where there are N(λ) two’s and n−N(λ) non-zero entries. In particular, N(λ)+1 ≤ n−N(λ),

i.e. 2N(λ) + 1 ≤ n.

Proposition 5.4.11. Let λ ` n for n ≥ 1. Set

N :=

N(λ) if 2N(λ) + 1 ≤ n⌊
n−1

2

⌋
if 2N(λ) + 1 > n.

(5.19)

Then

λ .diag (n−N, 1N). (5.20)
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In particular, if 2N(λ) + 1 ≤ n, then the hook (n−N(λ), 1N(λ)) is maximal for the diagonal

preorder on partitions of size n with diagonal excess N(λ).

Proof. Using Proposition 5.4.9, the sequence

D(λ) :=
(
|π−1(i)|

)
i∈P .

is of the form

D(λ) = (1, 2, . . . ,m, . . . , 0, . . .)

where the terms weakly decrease starting at m. Given a sequence D = (D1, D2, . . .) ∈ NP,

define N(D) :=
∑

i:Di 6=0(Di−1). We have N(D(λ)) = N(λ). Iteratively perform the following

procedure starting with D := D(λ) as many times as possible; see Example 5.4.12.

(i) If 2N(D) + 1 > n and some Di > 2, choose i maximal with this property. Decrease the

ith entry of D by 1 and replace the first 0 term in D with 1.

(ii) If 2N(D) + 1 ≤ n and some Di > 2, choose i maximal with this property. We will

shortly show that there is some j > i for which Dj = 1. Choose j minimal with this

property, decrease the ith term in D by 1, and increment the jth term by 1.

Example 5.4.12. Suppose λ = (4, 4, 4, 4), so n = 16 and

D(λ) = (1, 2, 3, 4, 3, 2, 1, 0, . . .),

which we abbreviate as D(λ) = 1234321. Applying the procedure gives the following sequences,

where modified entries are underlined:
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D N(D) 2N(D) + 1

1234321 9 19

12342211 8 17

123322111 7 15

123222211 7 15

122222221 7 15

Returning to the proof, for the claim in (ii), first note that both procedures preserve

unimodality and the initial 1 in D(λ). Hence at any intermediate step, D is of the form

(1, D2, D3, . . . , Dk, 1, . . . , 1, 0, . . .)

where D2, . . . , Dk ≥ 2 and there are ` ≥ 0 terminal 1’s. Since 2N(D) + 1 ≤ n, we have

2N(D) + 1 = 2(D2 − 1 + · · ·+Dk − 1) + 1 ≤ n = 1 +D2 + · · ·+Dk + `

⇔ (D2 − 2) + · · ·+ (Dk − 2) ≤ `,

forcing ` > 0 since by assumption some Di > 2, giving the claim. The procedure evidently

terminates.

In applying (i), N(D) decreases by 1, whereas N(D) is constant in applying (ii). For

the final sequence Dfin, it follows that N(Dfin) = N from (5.19). Both (i) and (ii) strictly

increase in the natural diagonal partial order on sequences. The final sequence will be

Dfin = (1, 2, 2, . . . , 2, 1, 1, . . . , 1, 0, . . .)

where there are N two’s and n − N non-zero entries. This is precisely D((n − N, 1N)) by

Example 5.4.10, and the result follows.

We may now give a polynomial lower bound on fλ.
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Corollary 5.4.13. Let λ ` n for n ≥ 1 and take N as in (5.19). For any 0 ≤M ≤ N , we

have ∏
c∈λ

hop
c ≤ (n−M)!(M + 1)!. (5.21)

Moreover,

fλ ≥ 1

M + 1

(
n

M

)
. (5.22)

Proof. Equation (5.21) in the case M = N follows by combining (5.18) and (5.20). The

general case follows similarly upon noting (n−N, 1N) .diag (n−M, 1M) since N ≤
⌊
n−1

2

⌋
.

For (5.22), use Proposition 5.4.5 and (5.21) to compute

fλ =
n!∏
c∈λ hc

≥ n!∏
c∈λ h

op
c
≥ n!

(n−M)!(M + 1)!
=

1

M + 1

(
n

M

)
.

We now prove Theorem 5.1.3 and Theorem 5.1.7.

Proof of Theorem 5.1.3. We begin by summarizing the verification of Theorem 5.1.3 for

n ≤ 33. For 1 ≤ n ≤ 33, a computer check shows that one may use Corollary 5.4.3 for all but

688 particular λ. However, the number of standard tableaux for these exceptional λ is small

enough that the conclusion of the theorem may be quickly verified by computer. We now

take n ≥ 34.

Let N be as in (5.19). If N ≥ 5, by Corollary 5.4.13,

fλ ≥ 1

6

(
n

5

)
≥ n3

for n ≥ 32, so we may take N ≤ 4. Since
⌊
n−1

2

⌋
≥ 16 > 4 ≥ N , we must have N = N(λ).

Write ν ⊕ µ to denote the concatenation of partitions ν and µ, where we assume the

largest part of µ is no larger than the smallest part of ν. Using Proposition 5.4.9, since n ≥ 32

and N = N(λ) ≤ 4, we find that either λ = (n−N)⊕ µ or λ′ = (n−N)⊕ µ for |µ| = N .
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To cut down on duplicate work, note that transposing T ∈ SYT(λ) complements the

descent set of T . It follows that bλ,i = bλ′,(n2)−i
, so that aλ,r = aλ′,(n2)−r

. Since the statement

of Theorem 5.1.3 also exhibits this symmetry, we may thus consider only the case when

λ = (n−N)⊕ µ.

There are twelve µ with |µ| ≤ 4. One may check that the five possible µ for N = 4 all

result in fλ ≥ n3 for n ≥ 34, leaving seven remaining µ, namely

µ = ∅, (1), (2), (1, 1), (3), (2, 1), (1, 1, 1).

It is straightforward (though tedious) to verify the conclusion of Theorem 5.1.3 in each of

these cases. For instance, for µ = (1) and λ = (n− 1, 1), there are n− 1 standard tableaux

with major indexes 1, . . . , n− 1 (alternatively, (5.5) results in q[n− 1]q). The remaining cases

are omitted.

Proof of Theorem 5.1.7. If fλ ≥ n5, then (5.14) gives

ln
|χλ(`s)|
fλ

≤
(

1− 1

`

)[
−9

2
lnn+ ln

√
2π

]
+

`

12n
− 1

2
ln ` (5.23)

As before one can check that the right-hand side of (5.23) is less than ln 1
φ(`)n2 for ` = 2, 3

and n ≥ 3. When ` ≥ 4, term-by-term estimates give

ln
|χλ(`s)|
fλ

≤ −9

2

(
1− 1

4

)
lnn+ ln

√
2π +

1

12
− 1

2
ln 4

which is less than ln 1
n3 for n ≥ 3. The first part of Theorem 5.1.7 now follows from

Lemma 5.4.2 with d = 2 for n ≥ 3. It remains true for n = 1, 2.

For the second part, suppose n ≥ 81, λ1 < n − 7, and λ′1 < n − 7. It follows from

Proposition 5.4.11 that N from (5.19) satisfies N ≥ 8. Hence by Corollary 5.4.13 we have

fλ ≥ 1

9

(
n

8

)
≥ n5.
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5.5 Alternative Proof of the Hook Formula

The proof of Theorem 5.1.8 in [27] and [45] uses a certain decomposition of the r-rim hook

partition lattice and the original hook length formula. We present an alternative proof

following a different tradition, instead generalizing the approach to the original hook length

formula in [91, Corollary 7.21.6]. A by-product of our proof is a particularly explicit description

of the movement of hook lengths mod ` as length ` ribbons are added to a partition shape.

We are not at present aware of any other proofs or direct uses of Theorem 5.1.8, and it

seems to have been neglected by the literature. Indeed, the author empirically rediscovered it

and found the following proof before unearthing [27].

Proof of Theorem 5.1.8. Let λ ` n, n = `s. If λ cannot be written as s successive ribbons of

length `, then by the classical Murnaghan-Nakayama rule [91, Eq. (7.75)] we have χλ(`s) = 0,

so assume λ can be so written.

Combining (5.4), (5.5), and (5.7) shows that we may compute χλ(`s) by letting q → ωsn

in the right-hand side of (5.5). We may replace each q-number [a]q with qa − 1 by canceling

the q − 1’s, since λ ` n. Since ωsn has order `, the values of qa − 1 at ωsn depend only on a

mod `. Moreover, qa − 1 has only simple roots, and it has a root at ωsn if and only if ` | a.

The order of vanishing of the numerator at q = ωsn is then #{i ∈ [n] : i ≡` 0} = s, and the

order of vanishing of the denominator is #{c ∈ λ : hc ≡` 0}. The following lemma ensures

these counts agree. We postpone the proof to the end of this section.

Lemma 5.5.1. Let λ ` n, n = `s, and suppose λ can be written as a sequence of s successive

ribbons of length `. Then for any a ∈ Z,

#{c ∈ λ : hc ≡` ±a} = s ·#{a,−a (mod `)}.

Here #{a,−a (mod `)} is 1 if a ≡` −a and 2 otherwise.
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We may now compute the desired q → ωsn limit by repeated applications of L’Hopital’s

rule. In particular, we find

|χλ(`s)| =

∣∣∣∣∣ lim
q→ωsn

qb(λ)

∏
i∈[n][i]q∏
c∈λ[hc]q

∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣ lim
q→ωsn

∏
i∈[n]
i 6≡`0

qi − 1

∏
c∈λ
hc 6≡`0

qhc − 1

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

∏
i∈[n]
i≡`0

iω
s(i−1)
n

∏
c∈λ
hc≡`0

hcω
s(hc−1)
n

∣∣∣∣∣∣∣∣∣∣
(5.24)

The second factor in the right-hand side of (5.24) equals the right-hand side of (5.2), so

we must show the first factor in the right-hand side of (5.24) is 1. For that, note that qa − 1

at q = ωsn for a 6≡` 0 is non-zero and is conjugate to q−a − 1 at q = ωsn. By Lemma 5.5.1,

it follows that the contribution to the overall magnitude due to {c ∈ λ : hc ≡` a or − a}

cancels with the contribution due to {i ∈ [n] : i ≡` a or − a} for each a 6≡` 0. This completes

the proof of the theorem.

As for Lemma 5.5.1, it is an immediate consequence of the following somewhat more

general result.

Lemma 5.5.2. Suppose λ/µ is a ribbon of length `. For any a ∈ Z,

#{c ∈ µ : hc ≡` ±a}+ #{a,−a (mod `)} = #{d ∈ λ : hd ≡` ±a}.

Proof. We determine how the counts #{c ∈ µ : hc ≡` ±a} change when adding a ribbon of

length `; see Figure 5.2. We define the following regions in λ, relying on French notation to

determine the meaning of “leftmost,” etc.

(I) Cells c ∈ µ where c is not in the same row or column as any element of λ/µ.

(II) Cells c ∈ µ which are in the same row as some element of λ/µ and are strictly left of

the leftmost cell in λ/µ.
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(III) Cells c ∈ µ which are in the same column as some element of λ/µ and are strictly

below the bottommost cell of λ/µ.

(IV) Cells c ∈ λ which are in both the same column and row as some element(s) of λ/µ.

Region (IV) includes the ribbon λ/µ itself.

λ=µ

I

II IV

I III I

c
d

Figure 5.2: All regions of a partition λ where λ/µ is a ribbon

cm
.
.
.

c2
c1

jλ=µj = `

`m

`1

Figure 5.3: Regions (II) and (IV) up close

We now describe how hook lengths change in each region, mod the ribbon length `, in

going from µ to λ. They are unchanged in region (I). Regions (II) and (III) are similar, so we

consider region (II). This region is a rectangle, which we imagine breaking up into columns.

Write hλc or hµc to denote the hook length of a cell c ∈ µ as an element of λ or µ, respectively.

For c in region (II), let d denote the cell in region (II) immediately below c, with wrap-around.

We claim hλc ≡` h
µ
d . Given the claim, hook lengths mod ` in regions (II) and (III) are simply
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permuted in going from µ to λ, so changes to the counts #{c ∈ µ : hµc ≡` ±a} arise only

from region (IV).

For the claim, let c1, c2, . . . , cm be the cells of the column in region (II) containing c, listed

from bottom to top; see Figure 5.3. Begin by comparing hook lengths at c1 and c2. Since

λ− µ is a ribbon, the rightmost cell of µ in the same row as c1 is directly left and below the

rightmost cell of λ in the same row as c2. It follows that hµc1 = hλc2 . This procedure yields the

claim except when c = c1. In that case, d = cm, and we further claim hλc1 = hµcm + `, which

will finish the argument. Indeed, let `i denote the number of elements in λ− µ in the same

row as ci. Certainly ` = `1 + · · ·+ `m. Further, hλci = hµci + `i. Putting it all together, we have

hλc1 = hµc1 + `1 = hλc2 + `1

= hµc2 + `2 + `1 = · · ·

= hµcm + `m + · · ·+ `2 + `1 = hµcm + `.

We now turn to region (IV). It suffices to consider the case depicted in Figure 5.4, where

regions (I), (II), and (III) are empty. We define two more regions as follows; see Figure 5.4.

(A) Cells c ∈ λ in the first row or column.

(B) Cells c ∈ λ not in the first row or column.

B

A

Figure 5.4: Regions (A) and (B) of a partition µ where λ/µ is a ribbon

Region (B) is precisely µ translated up and right one square. Moreover, this operation

preserves hook lengths, so changes in the counts #{c ∈ µ : hµc ≡` ±a} arise entirely from
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d2

d1

c

Figure 5.5: Adding a cell to region (B)

region (A). We have thus reduced the lemma to the statement

#{c in region (A) : hλc ≡` ±a} = #{a,−a (mod `)}. (5.25)

We prove (5.25) by induction on the size of region (B). In the base case, region (B) is empty,

so λ is a hook, and the result is easy to see directly (for instance, negate the hook lengths in

only the “vertical leg” to get entries of precisely 1, 2, . . . , `). For the inductive step, consider

the effect of adding a cell c to region (B). Now c is in the same column as some cell d1 in

region (A) and c is in the same row as some cell d2 in region (A); see Figure 5.5. Say the

original hook length of d1 is i and the original hook length of d2 is j. It is easy to see that

i + j = ` − 1. Adding c to region (B) increases the hook lengths i and j each by 1, but

j + 1 ≡` −i and i+ 1 ≡` −j, so the required counts remain as claimed in the inductive step.

This completes the proof of the lemma and, hence, Theorem 5.1.8.

We briefly contrast our approach with that of [27]. Let fλ` be the number of ways to write

λ as successive ribbons each of length `. If λ ` n = `s, by the Murnaghan-Nakayama rule

χλ(`s) is a signed sum over terms counted by fλ` . While there is typically cancellation in this

sum, there is in fact none for rectangular cycle types [45, 2.7.26], i.e. χλ(`s) = ±fλ` . Indeed,

[27] proved Theorem 5.1.8 using standard rim hook tableaux instead of character evaluations,

though virtually every application of their result uses the character-theoretic inequality in

Theorem 5.1.5.

The sign of χλ(`s) can be computed in terms of abaci as in [45, 2.7.23]. The sign may also

be computed “greedily” by repeatedly removing `-rim hooks from λ in any order whatsoever,
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which is a consequence of (among other things) the following corollary of Lemma 5.5.2 and

Theorem 5.1.8. We have been unable to find part (iv) in the literature, though for the rest

see [27, 2.5-2.7] and their references.

Corollary 5.5.3. Let λ ` n = `s. The following are equivalent:

(i) χλ(`s) 6= 0;

(ii) λ can be written as successive length ` ribbons, i.e. the `-core of λ is empty;

(iii) we have

#{c ∈ λ : hc ≡` 0} = s;

(iv) for any a ∈ Z,

#{c ∈ λ : hc ≡` ±a} = s ·#{a,−a (mod `)}.

Proof. (i) and (ii) are equivalent by Theorem 5.1.8. (ii) implies (iv) by Lemma 5.5.1 and (iv)

implies (iii) trivially. Finally, (iii) is equivalent to (i) as follows. The expression (5.5) is a

polynomial, so the order of vanishing at q → ωsn of the numerator, namely s, is at most as

large as the order of vanishing of the denominator, namely #{c ∈ λ : hc ≡` 0}. The limiting

ratio is non-zero if and only if these counts agree, so (iii) is equivalent to (i).

While Corollary 5.5.3 gives equivalent conditions for χλ(`s) 6= 0, [89, Corollary 7.5] gives

interesting and different necessary conditions for χλ(ν) 6= 0 for general shapes ν.

5.6 Unimodality and χλ(µ)

We end with a brief discussion of inequalities related to symmetric group characters. In

applying Proposition 5.4.5, we essentially replaced n!∏
c∈λ hc

with n!∏
c∈λ h

op
c

, since the latter is

order-reversing with respect to the diagonal preorder by (5.18). Moreover, it is relatively

straightforward to mutate partitions and predictably increase or decrease them in the diagonal

preorder, as in the proof of Proposition 5.4.11. It would be desirable to instead work directly
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with symmetric group characters themselves and appeal to general results about how |χλ(µ)|

increases or decreases as λ is mutated and µ is held fixed, though we have found very

few concrete and no conjectural results in this direction. Any progress seems both highly

non-trivial and potentially useful, so in this section we record some initial observations.

We have χ(a+1,1b)(1n) =
(
n−1
a

)
for a+ b+ 1 = n, so these values are unimodal in a. Using

Theorem 5.1.8 shows more generally that for all ` | n,

|χ(a+1,1b)(`n/`)| =
(n
`
− 1⌊
a
`

⌋ )

which is again unimodal in a. However, |χλ(`s)| does not seem to respect changes in λ

under dominance order in general in any suitable sense. On the other hand, if we allow the

cycle type µ to vary and consider the Kostka numbers Kλµ as a surrogate for |χλ(µ)| (since

Kλ(1n) = χλ(1n)), we have a series of well-known and very general inequalities. We write

Kλµ(t) for the Kostka-Foulkes polynomial and ν ≥ µ for dominance order. We have:

Theorem 5.6.1 ([83], [58], [55]; [35]). Kλν ≤ Kλµ for all λ if and only if ν ≥ µ. Indeed,

ν ≥ µ implies Kλν(t) ≤ Kλµ(t) (coefficient-wise) for all λ.

Question 5.6.2. Are there any “nice” infinite families besides hooks and rectangles for which

|χλ(µ)| is monotonic, unimodal, or suitably order-preserving as λ varies? What about as µ

varies?
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Chapter 6

DISTRIBUTION OF MAJOR INDEX FOR STANDARD
TABLEAUX AND ASYMPTOTIC NORMALITY

This chapter is joint work with Sara Billey and Matjaž Konvalinka. A version of it will be

submitted for publication shortly [10].

6.1 Main Results

In this chapter, we study the distribution of the major index statistic generalized to standard

Young tableaux of straight and skew shapes. The properties we discuss here naturally

generalize known properties of the major index distribution on permutations. They have

representation theory consequences in terms of the coinvariant algebras of symmetric groups.

We will briefly introduce the main results. See Section 6.2 for more details on the background.

Here we are primarily interested in the major index generating function

SYT(λ)maj(q) :=
∑

T∈SYT(λ)

qmaj(T ) =
∑
k≥0

bλ,kq
k.

The polynomial SYT(λ)maj(q) has two elegant closed forms described in Corollary 1.2.1.

Let Xλ[maj] be the discrete random variable given by the maj statistic on SYT(λ) taken

uniformly at random. Thus, P[Xλ[maj] = k] = bλ,k/# SYT(λ) where bλ,k = #{T ∈ SYT(λ) :

maj(T ) = k}. Using work of [16, 44] along with Stanley’s q-analog of the hook length formula,

we give exact formulas for the dth moment µλd , the dth central moment αλd , and the dth

cumulant κλd for Xλ[maj]. The most elegant of the formulas is for the cumulants, from which

the moments and central moments are all easy to compute.
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Theorem 6.1.1. Let λ ` n and d ∈ Z>1. We have

κλd =
Bd

d

[
n∑
j=1

jd −
∑
c∈λ

hdc

]
(6.1)

where B0, B1, B2, . . . = 1, 1
2
, 1

6
, 0,− 1

30
, 0, 1

42
, 0, . . . are the Bernoulli numbers.

Theorem 6.1.1 generalizes the formula for the variance of Xλ[maj] given by Adin and

Roichman [2]. A similarly explicit expression holds for the mean.

With precise information about the moments and cumulants of the maj distribution on

SYT(λ), we use the method of moments to show that in a very general limiting process on

partition shapes, the random variables Xλ[maj] are asymptotically normal.

Definition 6.1.2. Given any partition λ ` n, the aft of λ is

aft(λ) := n−max{λ1, λ
′
1}.

That is, the aft of a partition whose first row is at least as long as its first column is the

number of cells not in the first row. The following is our first main result in this chapter.

Theorem 6.1.3. Suppose λ(1), λ(2), . . . is a sequence of partitions, and let XN := Xλ(N) [maj]

be the corresponding random variables for the maj statistic. Then, the sequence X1, X2, . . . is

asymptotically normal if and only if aft(λ(N))→∞ as N →∞.

Example 6.1.4. See Figure 6.1a and Figure 6.1b for distributions with small aft. In these

cases the normal approximation differs visibly from the major index distribution. A more

typical example is Figure 6.1c, where the aft is relatively large and the normal approximation

is very close. When λ(N) := (N,N), Theorem 6.1.3 recovers the main result of [16], namely

that q-Catalan coefficients are asymptotically normal.

Remark 6.1.5. Observe that Xλ[maj] can be written as the sum of scaled indicator random

variables D1, 2D2, . . . , (n−1)Dn−1 corresponding with possible descent positions 1, 2, . . . , n−1
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(a) λ = (50, 2), aft(λ) = 2
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(b) λ = (50, 3, 1), aft(λ) = 4
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(c) λ = (8, 8, 7, 6, 5, 5, 5, 2, 2),
aft(λ) = 39

Figure 6.1: Plots of #{T ∈ SYT(λ) : maj(T ) = k} as a function of k for three partitions λ,
overlaid with scaled Gaussian approximations using the same mean and variance.

respectively. While the indicator random variables Di are equidistributed [91, Prop. 7.19.9],

they are not independent. For example, if T ∈ SYT(λ) does not have descents in positions

1, 2, . . . , λ1 − 1, then λ1 must be a descent for T if λ is not a one row shape. Consequently,

Theorem 6.1.3 does not follow from a standard application of a generalized central limit

theorem, and in fact there are non-normal limiting distributions. The lack of independence

of the Di’s likewise complicates related work by Fulman [30] and Kim–Lee [49] considering

the limiting distribution of descents in certain classes of permutations.

We classify all possible limiting distributions for arbitrary sequences of partitions as

follows. Given a real-valued random variable X with mean µ and variance σ2 > 0, let

X∗ :=
X − µ
σ

.

Let ΣM denote the sum of M independent identically distributed uniform [0, 1] random

variables, known as the Irwin–Hall distribution or the uniform sum distribution.

Theorem 6.1.6. Suppose λ(1), λ(2), . . . is a sequence of partitions such that |λ(N)| → ∞ and

aft(λ(N)) = M is constant. Let XN := Xλ(N) [maj]. Then X∗1 , X
∗
2 , . . . converges in distribution

to Σ∗M .
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Combining Theorem 6.1.3 and Theorem 6.1.6 gives the following classification.

Theorem 6.1.7. Let λ(1), λ(2), . . . be a sequence of partitions. Then (Xλ(N) [maj]∗) converges

in distribution if and only if

(i) aft(λ(N))→∞; or

(ii) |λ(N)| → ∞ and aft(λ(N)) is eventually constant; or

(iii) the distribution of X∗
λ(N) [maj] is eventually constant.

The limit law is N (0, 1) in case (i), Σ∗M in case (ii), and discrete in case (iii).

Case (iii) naturally leads to the question, when does X∗λ[maj] = X∗µ[maj]? Such a

description in terms of hook lengths is given in Theorem 6.5.2.

Example 6.1.8. We illustrate each possible limit. For (i), let λ(N) := (N, blnNc), so

that aft(λ(N)) = blnNc → ∞ and the distributions are asymptotically normal. For (ii), fix

M ∈ Z≥0 and let λ(N) := (N+M,M), so that aft(λ(N)) = M is constant and the distributions

converge to Σ∗M . For (iii), let λ(2N) := (12, 12, 3, 3, 3, 2, 2, 1, 1) and λ(2N+1) := (15, 6, 6, 6, 4, 2),

which have the same multisets of hook lengths despite not being transposes of each other,

and consequently the same normalized maj distributions.

One motivation for the present work came from earlier work concerning the distribution

of maj, or equivalently inv, on words. See [14] for further references to the probability

literature including work of Diaconis, Kendall, Mann–Whitney, and others. We are able to

simultaneously consider maj on words and tableaux by generalizing the preceding asymptotic

results to certain skew shapes λ. In particular we recover and refine Canfield–Janson–

Zeilberger’s main result in [13], quoted as Theorem 6.2.23 below.

Another motivation for the present work was consideration of the sequences

bλ,k := #{T ∈ SYT(λ) : maj(T ) = k} (6.2)
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for fixed λ. These sequences have appeared in a variety of algebraic and representation-

theoretic contexts, including branching rules between symmetric groups and cyclic subgroups

[94], the irreducible decomposition of type A coinvariant algebras [87] (and Lusztig, unpub-

lished), and degree polynomials of unipotent GLn(Fq)-representations [39].

There are polynomial expressions for bλ,k in terms of Hi’s, the number of cells of λ with

hook-length equal to i. See Remark 6.2.6.

We consider three natural enumerative questions:

(I) which terms in (6.2) are zero?

(II) are the sequences in (6.2) unimodal?

(III) are there efficient asymptotic estimates for bλ,k?

We completely settle (I) with the following result. Let b(λ) :=
∑

i≥1(i− 1)λi.

Theorem 6.1.9. For every partition λ ` n > 1 and integer k such that b(λ) ≤ k ≤
(
n
2

)
−b(λ′),

we have bλ,k > 0 except in the case when λ is a rectangle with at least 2 rows and columns

and k is either b(λ) + 1 or
(
n
2

)
− b(λ′)− 1. We have bλ,k = 0 for k < b(λ) or k >

(
n
2

)
− b(λ′).

As a consequence of the proof of Theorem 6.1.9, we identify a ranked poset structure

on SYT(λ) where the rank function is determined by maj. Furthermore, as a corollary of

Theorem 6.1.9 we have a new proof of the complete classification Theorem 5.1.3 generalizing

an earlier result of Klyachko [50] for when the counts

aλ,r := {T ∈ SYT(λ) : maj(T ) ≡n r}

for λ ` n are nonzero.

We give conjectured answers to question (II) in Section 6.7. We hope that a variation

on the map used to prove Theorem 6.1.9 can be used to prove our unimodality conjecture,

Conjecture 6.7.1, by constructing explicit injections where possible.
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By Theorem 6.1.3 and the conjectured claim that the coefficients of SYT(λ)maj(q) are

unimodal or almost unimodal for large λ, one might hope that we could approximate the

number of T ∈ SYT(λ) with maj(T ) = k by the density function f(k;κλ1 , κ
λ
2) for the normal

distribution with mean κλ1 and variance κλ2 . We have the following conjectured bounds on

such an approximation.

Conjecture 6.1.10. Let λ ` n be any partition. Uniformly for all n, for all integers k, we

have ∣∣P[Xλ = k]− f(k;κλ1 , κ
λ
2)
∣∣ = O

(
1

σλ aft(λ)

)
.

The conjecture has been verified for 25 < n ≤ 50 and aft(λ) > 1 with a constant of 1/9,

which is tight up to reasonable limits on computation in the sense that if it is changed to

1/10 with the other constraints the same, it fails at n = 50.

The rest of the chapter is organized as follows. In Section 6.2, we give background on

tableaux combinatorics, combinatorial and probabilistic generating functions, and asymptotic

normality. The proof of Theorem 6.1.1 follows immediately from the background material

and is summarized in Remark 6.2.18. In Section 6.3, we give cumulant estimates which prove

the generalization of Theorem 6.1.3 to special “block” skew shapes λ, see Theorem 6.3.8.

Section 6.4 gives similar estimates for a generalization of Theorem 6.1.6 to λ, see Theorem 6.4.2.

Section 6.5 proves the generalization of Theorem 6.1.7 to λ, Theorem 6.5.1, and further

analyzes case (iii) of Theorem 6.1.7, resulting in Theorem 6.5.2. Section 6.6 presents

our combinatorial argument proving Theorem 6.1.9 and giving poset structures to sets of

tableaux. Section 6.7 presents conjectures characterizing unimodality, log-concavity, and

related properties of the sequences (bλ,k)k∈Z.

6.2 Combinatorial and Probabilistic Generating Functions

In this section, we review some standard terminology and results on combinatorial statistics,

random variables, and asymptotic normality. An excellent source for many further details in

this area can be found in [12]. See also Chapter 2.
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6.2.1 Word and Tableaux Combinatorics

In addition to the notions in Section 2.2 on partitions and tableaux, we will use the following.

Index the cells of a tableaux by matrix notation when we refer to their row and column. An

outer corner of λ is any cell with hook length 1. An inner corner of λ is any (i, j) not in λ

such that both (i− 1, j) and (i, j − 1) are both in λ. A bijective filling of λ is any labeling of

the cells of λ by the numbers [n] = {1, 2, . . . , n}. The symmetric group Sn acts on bijective

fillings of λ by acting on the labels.

Definition 6.2.1. A skew partition λ/ν is a pair of partitions (ν, λ) such that the Young

diagram of ν is contained in the Young diagram of λ. The cells of λ/ν are the cells in the

diagram of λ which are not in the diagram of ν, written c ∈ λ/ν. We identify straight

partitions λ with skew partitions λ/∅ where ∅ = (0, 0, . . .) is the empty partition. The

notions of bijective filling, hook lengths, inner and outer corners, standard tableaux, descent

set, and major index extend verbatim to skew partitions as well.

1 2 4 7 9 12
3 6 10
5 8 11

2 6
4 5

1 3 7

Figure 6.2: On the left is a standard Young tableau of straight shape λ = (6, 3, 3) with
descent set {2, 4, 7, 9, 10} and major index 32. On the right is a standard Young tableau of
skew shape (7, 5, 3)/(5, 3) corresponding to sequence of partitions (3), (2), (2) with descent
set {2, 6} and major index 8.

Definition 6.2.2. Given a sequence of partitions λ = (λ(1), . . . , λ(m)), we identify the sequence

with the block diagonal skew partition obtained by translating the Young diagrams of the

λ(i) so that the rows and columns occupied by these components are disjoint; see Figure 6.3.

The actual translations used will prove to be unimportant for our purposes, though for

concreteness we use the ones depicted in the figure.



124

Figure 6.3: Diagram for λ = ((3), (1, 1), (3, 2)).

The skew partitions λ allow us to simultaneously consider words and partitions as follows.

Again let Wα be the set of all words with content α. We have a bijection

φ : SYT(((α1), (α2), . . .))
∼→Wα

which sends a tableau T to the word whose ith letter is the row in which i appears in

T counting from the bottom up. For example, using the skew tableau T on the right of

Figure 6.2, we have φ(T ) = 1312231 ∈W(3,2,2). It is easy to see that Des(φ(T )) = Des(T ), so

that maj(φ(T )) = maj(T ).

6.2.2 Major Index Generating Functions

We next summarize some facts related to major index generating functions on words and

tableaux.

Definition 6.2.3. A polynomial P (q) =
∑n

i=0 ciq
i is symmetric if ci = cn−i for 0 ≤ i ≤ n. We

generally say P (q) is symmetric also if there exists a integer k such that qkP (q) is symmetric.

We say P (q) is unimodal if

c0 ≤ c1 ≤ · · · ≤ cj ≥ cj+1 ≥ · · · ≥ cn

for some 0 ≤ j ≤ n. Furthermore, P (q) is log-concave if c2
i ≥ ci−1ci+1 for all integers

0 < i < n.
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From Theorem 1.1.1, we see immediately that the coefficients of Wmaj
α (q) are symmetric

and that the leading coefficient is 1. Indeed, these polynomials are unimodal, generalizing

the well-known case for Gaussian coefficients, [88, Thm 3.1] and [104]. The analogous

expression for SYT(λ)maj(q), Theorem 5.2.2, was given by Stanley. It generalizes the famous

Frame–Robinson–Thrall Hook Length Formula obtained by setting q = 1.

Example 6.2.4. For λ = (4, 2), b(λ) = 2 and the multiset of hook lengths is {12, 22, 4, 5} so

| SYT(λ)| = 9 by the Hook Length Formula. The major index generating function is given by

SYT(4, 2)maj(q) = q8 + q7 + 2q6 + q5 + 2q4 + q3 + q2

= q2 [6]q!

[5]q[4]q[2]q[2]q
= q2 [6]q[3]q

[2]q
.

Note, SYT(4, 2)maj(q) is symmetric but not unimodal.

For λ = (4, 2, 1), b(λ) = 4 and the multiset of hook lengths is {13, 2, 3, 4, 6} so | SYT(λ)| =

35 by the Hook Length Formula. The major index generating function is given by

SYT(4, 2, 1)maj(q) = q14 + 2q13 + 3q12 + 4q11 + 5q10 + 5q9 + 5q8 + 4q7 + 3q6 + 2q5 + q4

= q4 [7]q!

[6]q[4]q[3]q[2]q
= q4[7]q[5]q.

Note, SYT(4, 2, 1)maj(q) is symmetric and unimodal.

Example 6.2.5. We recover q-integers, q-binomials, and q-Catalan numbers, up to q-shifts

as special cases of the major index generating function for tableaux as follows:

SYT(λ)maj(q) =


q[n]q if λ = (n, 1),

q(
k+1
2 )(n

k

)
q

if λ = (n− k + 1, 1k),

qn 1
[n+1]q

(
2n
n

)
q

if λ = (n, n).
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Remark 6.2.6. By Theorem 5.2.2, we have

q−b(λ) SYT(λ)maj(q) =
[n]q!∏
c∈λ[hc]q

=
n∏
i=1

(1− qi)−(Hi−1), (6.3)

where Hi = #{c ∈ λ : hc = i}. So (6.3) is equivalent to the polynomial formula for bλ,k for

k = b(λ) + d given by

[qb(λ)+d] SYT(λ)maj(q) =
∑
τ`d
τ1≤|λ|

|λ|∏
i=1

(
Hi +mi(τ)− 2

mi(τ)

)
, (6.4)

where mi(τ) is the number of parts of the partition τ equal to i. Note that if Hi = 0 and

mi(τ) = 1, then the binomial coefficient is −1, so it is not obvious from (6.4) that the

coefficients are nonnegative. The first few polynomials are given by

[qb(λ)+1] SYT(λ)maj(q) = H1 − 1

= #{c ∈ λ : c is an inner corner of λ},

[qb(λ)+2] SYT(λ)maj(q) =

(
H1

2

)
+H2 − 1,

[qb(λ)+3] SYT(λ)maj(q) =

(
H1 + 1

3

)
+ (H1 − 1)(H2 − 1) + (H3 − 1)

[qb(λ)+4] SYT(λ)maj(q) =

(
H1 + 2

4

)
+

(
H2

2

)
+

(
H1

2

)
(H2 − 1)

+ (H1 − 1)(H3 − 1) + (H4 − 1).

These exact formulas hold for all |λ| ≥ 4. For smaller size partitions some terms will not

appear. It is interesting to compare these polyomials to the ones described by Knuth for the

number of permutations with k inversions in Sn in [52, p.16]. See also [92, Ex. 1.124].

Remark 6.2.7. Since # SYT(λ) typically grows extremely quickly, Stanley’s formula offers a

very useful way to compute SYT(λ)maj(q) by expressing both the numerator and denominator,

up to a q-shift, as a product of cyclotomic polynomials and canceling all factors in the
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denominator.

The following strengthening of Stanley’s formula to λ is well known (e.g. see [94, (5.6)]),

though since it is somewhat difficult to find explicitly in the literature, we include a short

proof.

Theorem 6.2.8. Let λ = (λ(1), . . . , λ(m)) where λ(i) ` ni and n = n1 + · · ·+ nm. Then

SYT(λ)maj(q) =

(
n

n1, . . . , nm

)
q

m∏
i=1

SYT(λ(i))maj(q). (6.5)

Proof. The stable principal specialization of skew Schur functions is given by

sλ/ν(1, q, q
2, . . .) =

SYT(λ/ν)maj(q)∏|λ/ν|
j=1 (1− qj)

;

see [94, Lemma 3.1] or [91, Prop.7.19.11]. On the other hand, it is easy to see directly that

sλ(x1, x2, . . .) =
m∏
i=1

sλ(i)(x1, x2, . . .).

The result quickly follows.

Theorem 5.2.2 and Theorem 6.2.8 have several immediate corollaries. First, we recover

MacMahon’s result, Theorem 1.1.1, from Theorem 6.2.8 when λ = ((α1), (α2), . . .) by using

the maj-preserving bijection φ above. Second, each SYT(λ)maj(q) is symmetric (up to a

q-shift) with leading coefficient 1. In particular, there is a unique “maj-minimizer” and

“maj-maximizer” tableau in each SYT(λ). Moreover,

min maj(SYT(λ)) = b(λ) :=
∑
i

b(λ(i))

and

max maj(SYT(λ)) = b(λ) +

(
|λ|+ 1

2

)
−
∑
c∈λ

hc.
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For general skew shapes, q−b(λ/µ) SYT(λ/µ)maj(q) does not factor as a product of cyclotomic

polynomials. A “q-Naruse” formula due to Morales–Pak–Panova, [66, (3.4)], gives an analogue

of Theorem 5.2.2 involving a sum over “excited diagrams,” though for λ no excited moves

are allowed.

6.2.3 Exponential Generating Functions

We now introduce exponential generating functions and the Bernoulli numbers, which will be

used with cumulants shortly.

Definition 6.2.9. Given a rational sequence (gd)
∞
d=0 = (g0, g1, . . .), the corresponding ordi-

nary generating function is

Og(t) :=
∑
d≥0

gdt
d

and the corresponding exponential generating function is

Eg(t) :=
∑
d≥0

gd
td

d!
.

Conversely, any rational power series

F (t) =
∑
d≥0

fdt
d =

∑
d≥0

d!fd
td

d!

is the ordinary generating function of the sequence (fd)
∞
d=0 = (f0, f1, . . .) and the exponential

generating function of the sequence (d!fd)
∞
d=0. The exponential generating functions we will

encounter will all have positive radius of convergence.

It is easy to describe products, quotients and compositions of generating functions. We

recall in particular a formula for compositions of exponential generating functions for later

use. Given two rational sequences f = (fd)
∞
d=0, g = (gd)

∞
d=0 such that f0 = 0 and g0 = 1, the

composition of their exponential generating functions Eg◦Ef is again an exponential generating

function for a rational sequence h, say Eh(t) = Eg(Ef (t)). For example, if Ef (t) =
∑
fdt

d/d!
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and Eg(t) = et, so gi = 1 for all i, then by [91, Cor. 5.1.6], the corresponding sequence (hd)
∞
d=0

is given by h0 = 1 and, for d ≥ 1,

hd =
∑
π∈Πd

∏
b∈π

f|b|, (6.6)

where Πd is the collection of all set partitions π = {b1, b2, . . . , bk} of {1, 2, . . . , d}. Collecting

together Sd-orbits of Πd in (6.6) quickly gives

hd =
∑
λ`d

d!

zλ

∏
i

fλi
(λi − 1)!

(6.7)

where if λ has mi parts of length i, then zλ := 1m12m2 · · ·m1!m2! · · · . A more computationally

efficient, recursive approach to (6.6) is the formula [91, Prop. 5.1.7]

hd = fd +
d−1∑
m=1

(
d− 1

m− 1

)
fmhd−m. (6.8)

Example 6.2.10. The Bernoulli numbers (Bd)
∞
d=0 are rational numbers determined by the

exponential generating function EB(t) := t/(1− e−t). The first few terms in the sequence are

B0 = 1, B1 =
1

2
, B2 =

1

6
, B3 = 0, B4 = − 1

30
, B5 = 0, B6 =

1

42
,

B7 = 0, B8 = − 1

30
, B9 = 0, B10 =

5

66
, B11 = 0, B12 = − 691

2730
.

The divided Bernoulli numbers are given by Bd
d

for d ≥ 1. Their exponential generating

function ED(t) satisfies 1 + t d
dt
ED(t) = EB(t), from which it follows that

ED(t) :=
∑
d≥1

Bd

d

td

d!
= log

(
et − 1

t

)
.

We caution that a common alternate convention uses B1 = −1
2

with all other entries the

same, corresponding with the exponential generating function t/(et − 1).
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The Bernoulli numbers have many interesting properties; see [64, 101] and [38, Section

6.5]. For example, they appear in the polynomial expansion of certain sums of dth powers,

n∑
k=1

kd =
1

d+ 1

d∑
k=0

(
d+ 1

k

)
Bk n

d+1−k. (6.9)

Compare the formula for sums of dth powers to the Riemann zeta function ζ(s) =
∑∞

n=1
1
ns

which can be evaluated at complex values s 6= 1 by analytic continuation. The divided

Bernoulli numbers which appear in our formula (6.1) have the form Bd
d

= −ζ(1− d).

6.2.4 Probabilistic Generating Functions

We next review basic vocabulary and notation for moments and cumulants of random variables.

We assume throughout the chapter that the density or mass functions of our random variables

exist and decay at least exponentially in the tails. This simple condition will be manifestly

apparent in all of our examples and allows us to avoid some technical digressions. See [47] for

more details.

Definition 6.2.11. Let X be a real-valued random variable where either X is continuous

with probability density function f : R→ R≥0 or X is discrete with probability mass function

f : Z→ R≥0. The cumulative distribution function (CDF) of X is given by

F (t) :=

∫ t

−∞
f(x) dx or F (t) :=

∑
k≤t

f(k)

depending on whether X is continuous or discrete. For any continuous real-valued function g,

there is an associated random variable g(X). The expectation of g(X) is given by

E[g(X)] :=

∫
R
g(x)f(x) dx or E[g(X)] :=

∞∑
k=−∞

g(k)f(k).
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The mean and variance of X are, respectively,

µ := E[X] and σ2 := E[(X − µ)2].

For d ∈ Z≥0, the dth moment and dth central moment of X are, respectively,

µd := E[Xd] and αd := E[(X − µ)d].

The moment-generating function of X is

MX(t) := E[etX ] =
∞∑
d=0

µd
td

d!
,

which has a positive radius of convergence by our tail decay assumption. The characteristic

function of X is

CX(t) := E[eitX ],

which exists for all t ∈ R and which is the Fourier transform of f , the density or mass function

associated to X.

Example 6.2.12. The probability generating function of the random variable X associated

with stat : W → Z≥0 sampled uniformly is

E[qX ] =
1

#W
W stat(q).

Letting q = et, the moment-generating function and characteristic function of X are

MX(t) =
1

#W
W stat(et) and CX(t) =

1

#W
W stat(eit).

The last expression reveals an intimate connection between the study of generating functions of

combinatorial statistics evaluated on the unit circle and the underlying probability distribution

via the Fourier transform. In particular, the distribution determines the characteristic function
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and the moment-generating function, and conversely each of these determine the distribution.

Definition 6.2.13. The cumulants κ1, κ2, . . . of X are defined to be the coefficients of the

exponential generating function

KX(t) :=
∞∑
d=1

κd
td

d!
:= logMX(t) = logE[etX ].

While cumulants of random variables may initially be less intuitive than moments, they

lead to nicer formulas in many cases, including Theorem 6.1.1, and they often have more

useful properties. See [67] for some history and applications. We will use the following

properties of cumulants. The proofs are straightforward from the definitions.

1. (Familiar Values) The first three cumulants are κ1 = µ, κ2 = σ2, and κ3 = α3. The higher

cumulants typically differ from the moments and central moments.

2. (Shift Invariance) The second and higher cumulants of X agree with those for X − c for

any c ∈ R.

3. (Homogeneity) The dth cumulant of cX is cdκd for c ∈ R.

4. (Additivity) The cumulants of the sum of independent random variables are the sums of

the cumulants.

5. (Polynomial Equivalence) The cumulants, moments, and central moments are determined

by polynomials in any one of these three sequences.

The polynomial equivalence property can be made explicit by the results in Section 6.2.3.

Using (6.8) (or similarly (6.6) or (6.7)) allows us to express the dth moment of X as a
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polynomial function of the first d cumulants of X and vice versa via the recurrence

µd = κd +
d−1∑
m=1

(
d− 1

m− 1

)
κmµd−m. (6.10)

Using the shift invariance property of cumulants, the corresponding formula for the central

moments in terms of the cumulants can be obtained from (6.10) by setting κ1 = 0 and leaving

the other cumulants alone. This gives, for d > 1,

αd = κd +
d−2∑
m=2

(
d− 1

m− 1

)
κmαd−m. (6.11)

For instance, at d = 3 we have

µ3 = κ3 + 3κ2κ1 + κ3
1.

Setting κ1 = 0 yields α3 = κ3 as mentioned above.

6.2.5 Cumulant Examples

Next we describe the cumulants of some well-known distributions and use one of them to

deduce a result of Hwang–Zacharovas, which immediately yields Theorem 6.1.1 as a corollary.

Example 6.2.14. Let X = N (µ, σ2) be the normal random variable with mean µ and

variance σ2. The density function of X is f(x;µ, σ2) = 1
σ
√

2π
exp

(
− (x−µ)2

2σ2

)
. Taking the

Fourier transform gives the characteristic function E[eitX ] = exp
(
iµt− 1

2
σ2t2

)
, so the moment-

generating function is E[etX ] = exp
(
µt+ 1

2
σ2t2

)
and the cumulants are

κd =


µ d = 1,

σ2 d = 2,

0 d ≥ 3.

(6.12)
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Using (6.7) to compute the central moments of X from (6.12), we effectively set κ1 = 0 and

note that only λ = (2, 2, . . . , 2) = (2d/2) contributes, in which case αd = κ
d/2
2 d!/(2d/2(d/2)!).

It follows that

αd =

0 if d is odd,

σd(d− 1)!! if d is even.

Example 6.2.15. Let U = U [0, 1] be the continuous uniform random variable whose density

takes the value 1 on the interval [0, 1] and 0 otherwise. Then the moment generating function

is MU(t) =
∫ 1

0
etxdx = (et − 1)/t, so the cumulant generating function KU(t) = logMU(t)

coincides with the exponential generating function for the divided Bernoulli numbers from

Section 6.2.3. That is, κd = Bd/d for d ≥ 1.

Example 6.2.16. Let U = Un be the discrete uniform random variable supported on

{0, 1, . . . , n− 1}. The probability generating function for U is [n]q/n = (qn − 1)/(n(q − 1)),

so the cumulant generating function is

KU(t) = log

(
ent − 1

n(et − 1)

)
= log

(
ent − 1

nt

)
− log

(
et − 1

t

)
.

It follows that for d ≥ 1, the divided Bernoulli numbers arise again in this context,

κd =
Bd

d
(nd − 1). (6.13)

Product formulas for polynomials such as Theorem 1.1.1 and Theorem 5.2.2 give rise

to explicit formulas for cumulants and moments according to the following theorem. The

first part appeared in the work of Hwang–Zacharovas [44, §4.1] building on the work of

Chen–Wang–Wang [16, Thm. 3.1] for q-Catalan numbers. It follows immediately from

Example 6.2.16 and (6.7).

Theorem 6.2.17. Suppose {a1, . . . , am} and {b1, . . . , bm} are multisets of positive integers

such that

P (q) =

∏m
j=1[aj]q∏m
j=1[bj]q

=
∑

ckq
k ∈ Z≥0[q].
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Let X be a discrete random variable with P[X = k] = ck/P (1). Then the dth cumulant of X

is

κd =
Bd

d

m∑
j=1

(adj − bdj ) (6.14)

where Bd is the dth Bernoulli number (with B1 = 1
2
). Moreover, the dth central moment of X

is

αd =
∑
λ`d

has all parts even

d!

zλ

`(λ)∏
i=1

Bλi

λi!

[
m∑
j=1

(
adj − bdj

)]
. (6.15)

and the dth moment of X is

µd =
∑
λ`d

has all parts either
even or size 1

d!

zλ

`(λ)∏
i=1

Bλi

λi!

[
m∑
j=1

(
adj − bdj

)]
. (6.16)

Remark 6.2.18. Theorem 6.1.1 follows immediately from Theorem 6.2.17 and Theorem 5.2.2.

Moreover, using Theorem 6.2.8 the cumulants of Xλ[maj] are, for d > 1,

κλd =
Bd

d

 |λ|∑
j=1

jd −
∑
c∈λ

hdc

 (6.17)

Adin and Roichman [2] had previously used Theorem 5.2.2 to compute the mean and

variance of Xλ[maj] as

µ =

(|λ|
2

)
− b(λ′) + b(λ)

2
= b(λ) +

1

2

 |λ|∑
j=1

j −
∑
c∈λ

hc

 ,
and

σ2 =
1

12

 |λ|∑
j=1

j2 −
∑
c∈λ

h2
c

 .
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6.2.6 Asymptotic Normality

Here we briefly summarize the notion of asymptotic normality and more generally convergence

in distribution. Asymptotic normality lies at the intersection of probability and combinatorics.

For an introduction, we recommend the chapter by Canfield in [12, Chapter 3]. We also

review some of the many examples.

Definition 6.2.19. Let X1, X2, . . . and X be real-valued random variables with cumula-

tive distribution functions F1, F2, . . . and F , respectively. We say X1, X2, . . . converges in

distribution to X if for all t ∈ R at which F is continuous we have

lim
n→∞

Fn(t) = F (t).

Recall from the introduction that for a real-valued random variable X with mean µ and

variance σ2 > 0, the corresponding normalized random variable is

X∗ :=
X − µ
σ

.

Observe that X∗ has mean µ∗ = 0 and variance σ∗2 = 1. The moments and central moments

of X∗ agree for d ≥ 2 and are given by

µ∗d = α∗d = αd/σ
d.

Similarly, the cumulants of X∗ are given by κ∗1 = 0, κ∗2 = 1, and κ∗d = κd/σ
d for d ≥ 2.

Definition 6.2.20. Let X1, X2, . . . be a sequence of real-valued random variables. We say

the sequence is asymptotically normal if X∗1 , X
∗
2 , . . . converges in distribution to the standard

normal N (0, 1).

Example 6.2.21. Let Wn := 2[n] be the set of all subsets of [n] := {1, 2, . . . , n}. Let Xn

denote the random variable given by the size statistic on Wn taken uniformly. The following
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theorem is credited to de Moivre and Laplace. See [12, Theorem 3.2.1] for further discussion

and references. It may be proven using Stirling’s approximation.

Theorem 6.2.22 (de Moivre–Laplace). The sequence of size random variables above is

asymptotically normal.

Asymptotic normality results for combinatorial statistics are plentiful. See Table 6.1 for

many more examples and further references.

Many combinatorial statistics arise from sets indexed by more complicated objects than

the positive integers, in which case one can “let n → ∞” in many different ways. The

following result due to Canfield, Janson, and Zeilberger illustrates a more interesting limit.

Theorem 6.2.23. [13, Theorem 1.2] Let α(1), α(2), . . . be a sequence of compositions, possibly

of differing lengths. If α � n has maximum m, write s(α) := n−m. Let Xi be the inversion

(or major index) statistic on words of content α(i). Then X1, X2, . . . is asymptotically normal

if and only if

s(α(i))→∞.

Remark 6.2.24. Explorations equivalent to Theorem 6.2.23 appeared significantly earlier

than [13] in other contexts, for instance [21, p. 127-128] and (in the two-letter case) [63]. See

[14] for further discussion and references.

6.2.7 The Method of Moments

We next describe several explicit criteria for establishing convergence in distribution or

asymptotic normality of a sequence of random variables. We emphasize that the assumptions

in Section 6.2.4 remain in effect throughout the chapter. Without those assumptions, more

degenerate behavior is possible in Theorem 6.2.26 and Corollary 6.2.27.

Theorem 6.2.25 (Lévy’s Continuity Theorem, [11, Theorem 26.3]). A sequence X1, X2, . . .

of real-valued random variables converges in distribution to a real-valued random variable X

if and only if, for all t ∈ R,

lim
n→∞

E[eitXn ] = E[eitX ].
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Statistic Set Generating
Function

References

# elements subsets (1 + q)n classical

# parts strict parti-
tions

∏∞
m=1(1 +

xym)
[23]

length/inversion
number/major
index

Sn [n]q! [24], [37]

# cycles; # left-
to-right minima

Sn
∏n−1

i=0 (q + i) [24], [37]

# descents Sn Eulerian
polynomial

[19, pp. 150–154]

# blocks set partitions
∑

k S(n, k)qk [42]

# valleys Dyck paths 1
[n+1]q

(
2n
n

)
q

[16, Cor. 3.3]; [32,
p. 255]

length/inversion
number/major
index

Sn/SJ , words
content α

(
n
α

)
q

see Remark 6.2.24

major index SYT(λ) qb(λ) [n]q !∏
c∈λ[hc]q

Theorem 6.1.3

Table 6.1: Summary of some asymptotic normality results for combinatorial statistics. See
[12, Ch. 3].
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Theorem 6.2.26 (Frechét-Shohat Theorem, [11, Theorem 30.2]). Let X1, X2, . . . be a se-

quence of real-valued random variables and let X be a real-valued random variable. If

lim
n→∞

µXnd = µXd ∀d ∈ Z≥1, (6.18)

then X1, X2, . . . converges in distribution to X.

By Theorem 6.2.25, we may test for asymptotic normality by checking if the normalized

characteristic functions tend pointwise to the characteristic function of the standard normal.

Likewise by Theorem 6.2.26 we may instead perform the check on the level of individual

normalized moments, which is often referred to as the method of moments. By (6.10) we may

further replace the moment condition (6.18) with the cumulant condition

lim
n→∞

κXnd = κXd . (6.19)

For instance, we have the following explicit criterion.

Corollary 6.2.27. A sequence X1, X2, . . . of real-valued random variables is asymptotically

normal if for all d ≥ 3 we have

lim
n→∞

κXnd
(σXn)d

= 0 (6.20)

Remark 6.2.28. In fact, the converse of Theorem 6.2.26 and Corollary 6.2.27 holds in our

context, which follows from, for instance, the uniform tail decay estimate in [44, Lemma 2.8].

We do not require this implication and so do not make it precise.

6.2.8 Local Limit Theorems

Asymptotic normality concerns cumulative distribution functions, so it gives estimates for

the number of combinatorial objects with a large range of statistics. However, our original

motivation was to count combinatorial objects with a given statistic. Estimates of this latter

form are frequently referred to as local limit theorems. Theorem 5.1.7 above is one such

example. Further motivation was provided by the following analogue of Theorem 6.2.23.
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Theorem 6.2.29. [13, Theorem 4.5] There exists a positive constant c such that for every C,

the following is true. Uniformly for all compositions α = (α1, . . . , αm) such that maxi αi ≤

Cecs(α) and all integers k,

P[Xα = k] =
1

σ
√

2π

(
e−(k−µ)2/(2σ2) +O

(
1

s(α)

))

where Xα denotes inversions on words of content α.

6.3 Asymptotic Normality for Xλ[maj]

In this section, we give asymptotic estimates for the normalized cumulants κλd
∗

powerful

enough to prove Theorem 6.1.3 and its generalization to λ, Theorem 6.3.8. Much of the

argument applies equally well to arbitrary skew shapes, though the connection through

Theorem 6.2.17 to cumulants holds only for shapes λ.

Definition 6.3.1. A reverse standard Young tableau of shape λ/ν is a bijective filling of λ/ν

which strictly decreases along rows and columns. The set of reverse standard Young tableaux

of shape λ/ν is denoted RSYT(λ/ν).

Lemma 6.3.2. Let λ/ν ` n and T ∈ RSYT(λ). Then for all c ∈ λ/ν,

Tc ≥ hc. (6.21)

Furthermore, for any positive integer d,

n∑
j=1

jd −
∑
c∈λ

hdc =
∑
c∈λ

(T dc − hdc) =
∑
c∈λ

(Tc − hc)hd−1(Tc, hc), (6.22)

where hd−1 denotes the complete homogeneous symmetric function.

Proof. For (6.21), equality holds at the outer corner c where Tc = 1. Removing c and

subtracting 1 from each remaining entry in T allows us to induct. Equation (6.22) follows

immediately by rearranging the terms and factoring (T dc −hdc) = (Tc−hc)
∑d−1

k=0 T
d−1−k
c hkc .
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Lemma 6.3.3. Let λ/ν ` n such that maxc∈λ/ν hc < 0.8n. Let d be any positive integer.

Then
nd+1

26(d+ 1)
− 2(0.8)dnd <

n∑
j=1

jd −
∑
c∈λ

hdc <
nd+1

d+ 1
+ nd.

Proof. Using Riemmanian sums for
∫ n

0
xddx, we obtain the bounds

nd+1

d+ 1
<

n∑
j=1

jd <
nd+1

d+ 1
+ nd (6.23)

for all positive integers d, n. The upper bound in the lemma now follows immediately.

For the lower bound, label the cells of λ by some T ∈ RSYT(λ). By (6.21), hc ≤ Tc, and

by assumption we have hc < 0.8n for all c ∈ λ/ν. Considering the tighter of these two bounds

on each summand and using (6.23) again, we have

∑
c∈λ/ν

hdc <
∑
j∈[n]
j<0.8n

jd +
∑
j∈[n]
j≥0.8n

(0.8n)d

<
b0.8ncd+1

d+ 1
+ b0.8ncd + (n− d0.8ne+ 1)(0.8n)d

≤ (0.8n)d+1

d+ 1
+ 2(0.8n)d + (0.2)(0.8)dnd+1.

Consequently,

n∑
j=1

jd −
∑
c∈λ/ν

hdc >
nd+1

d+ 1
− (0.8n)d+1

d+ 1
− 2(0.8n)d − (0.2)(0.8)dnd+1

=

(
1

d+ 1
(1− (0.8)d+1)− 0.2(0.8)d

)
nd+1 − 2(0.8)dnd.

It is easy to check that the coefficient on nd+1 is bounded below by 1
26(d+1)

for all positive

integers d. The result follows.
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Definition 6.3.4. Given any partition λ/ν ` n, let the aft of λ/ν be

aft(λ/ν) := n− max
c∈λ/ν
{arm(c), leg(c)}

where arm(c) is the number of cells in the same row as c to the right of c, including c itself, and

leg(c) is the number of cells in the same column as c below c, including c. When ν = ∅, we

have aft(λ) = n−max{λ1, λ
′
1} as above. When λ/ν = λ, we have aft(λ) = n−maxi{λ(i)

1 , λ
(i)′

1}.

Note that hc = arm(c) + leg(c)− 1.

Lemma 6.3.5. Let λ/ν ` n such that maxc∈λ/ν hc ≥ 0.8n, and let d be any positive integer.

Furthermore, suppose n ≥ 10. Then,

aft(λ/ν)
(0.1n)d

d
≤

n∑
j=1

jd −
∑
c∈λ/ν

hdc ≤ 2 aft(λ/ν)
(
nd + dnd−1

)
. (6.24)

Proof. The result holds trivially if aft(λ/ν) = 0 since in that case λ/ν is a single row or

column, so assume aft(λ/ν) > 0. Let m ∈ λ/ν have hm ≥ 0.8n, where we may assume m is

the first cell in its row and column. For convenience, we may further assume by symmetry

that arm(m) ≥ leg(m). Since hm ≥ 0.8n, it also follows that aft(λ/ν) = n− arm(m).

Now let R be the set of cells in the row of m, not including m itself, which are the only

cells of λ/ν in their columns. We claim that #R ≥ 0.1n. To see this, since hm ≥ 0.8n, there

are at most n− hm ≤ 0.2n cells of λ/ν which could possibly be in the columns of the cells of

the row of m not including m. Since arm(m) ≥ leg(m) and arm(m)+leg(m)−1 = hm ≥ 0.8n,

we have arm(m) ≥ 0.4n. Hence no more than 0.2n of the 0.4n− 1 cells in the row of m not

including m can be excluded from R, so #R ≥ 0.4n− 1− 0.2n ≥ 0.1n for n ≥ 10. Since λ/ν

is a skew partition, R is connected.

Construct T ∈ RSYT(λ/ν) iteratively as follows; see Figure 6.4 for an example. At each

step of the iteration, we will first increment all existing labels by 1 and then label a new

outer cell with 1. Begin by adding the cells of the row of m from left to right until the last

cell of R has been added. Now add the remaining cells of λ/ν row by row starting at the
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topmost row and going from left to right. It is easy to see that the result respects the row

and column conditions, so T ∈ RSYT(λ/ν).

10 9 8 7 6 5 4 3 2 1

1211
10

9 8 7
22212019181716151413 6 5

4 3 2 1

Figure 6.4: On the left, the partially constructed T ∈ RSYT(λ/ν) after all the cells of R (in
red) have been filled. On the right, the final T ∈ RSYT(λ/ν). Here aft(λ/ν) = 10.

Consider the inequalities Tc ≥ hc. At every step of the iteration, a labeled cell has Tc

increase by 1, while hc increases by 1 if and only if the newly labeled cell is in the hook of

c. That is, for the final filling T , Tc − hc counts the number of times after cell c was filled

that the new cell was not in the same row or column as c. For each r ∈ R, it follows that

Tc − hc = n− arm(m) = aft(λ/ν).

For the lower bound, we now find

n∑
j=1

jd −
∑
c∈λ/ν

hdc ≥
∑
c∈R

(Tc − hc)hd−1(Tc, hc)

=
∑
c∈R

aft(λ/ν)hd−1(hc + aft(λ/ν), hc)

≥
b0.1nc∑
k=1

aft(λ/ν)hd−1(k + aft(λ/ν), k)

≥ aft(λ/ν)

b0.1nc∑
k=1

kd−1

≥ aft(λ/ν)
(0.1n)d

d
,

where the second inequality uses the fact that {hc : c ∈ R} has pointwise lower bounds of

{1, 2, . . . ,#R} and the last inequality uses (6.23).
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For the upper bound, we construct a new T ∈ RSYT(λ/ν) as follows; see Figure 6.5 for

an example. First, for each cell c in the row of m taken from left to right, add the topmost

cell in the column of c. Now add the remaining cells of λ/ν exactly as before. Again consider

the final differences Tc − hc. For cells added in the second stage, Tc − hc could increase no

more than n− arm(m) = aft(λ/ν) times, so Tc − hc ≤ aft(λ/ν) for such c. For cells added in

the first stage, we claim that Tc−hc ≤ 2 aft(λ/ν). For the claim, it suffices to show that after

the first stage, for cells added in the first stage, Tc−hc ≤ aft(λ/ν). During the first stage, the

differences Tc − hc are zero while cells of row m are being added. Afterwards during the first

phase, cells not in row m are added, of which there are no more than n− arm(m) = aft(λ/ν),

so the differences Tc − hc can increase no more than aft(λ/ν) many times during the first

phase, completing the claim.

2 1
121110 9 8 7 6 5 4 3

10 9
8

1211 7
22212019181716151413 6 5

4 3 2 1

Figure 6.5: On the left, the second partially constructed T ∈ RSYT(λ/ν) after the first
arm(m) cells have been filled. On the right, the final T ∈ RSYT(λ/ν).

Having established that Tc − hc ≤ 2 aft(λ/ν), we now find by (6.22) and (6.23),

n∑
j=1

jd −
∑
c∈λ/ν

hdc =
∑
c∈λ/ν

(Tc − hc)hd−1(Tc, hc)

≤
∑
c∈λ/ν

2 aft(λ/ν)hd−1(Tc, Tc)

= 2 aft(λ/ν)
n∑
j=1

djd−1

< 2 aft(λ/ν)
(
nd + dnd−1

)
.
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Corollary 6.3.6. For fixed d ∈ Z≥1, uniformly for all λ/ν ` n,

n∑
j=1

jd −
∑
c∈λ/ν

hdc = Θ(aft(λ/ν)nd).

That is, there are constants c1, c2 > 0 such that

c1 aft(λ/ν)nd ≤
n∑
j=1

jd −
∑
c∈λ/ν

hdc ≤ c2 aft(λ/ν)nd.

Proof. When maxc∈λ/ν hc ≥ 0.8n, the result follows from Lemma 6.3.5. On the other

hand, when maxc∈λ/ν hc < 0.8n, then n ≥ aft(λ/ν) ≥ 0.2n, and the result follows from

Lemma 6.3.3.

Corollary 6.3.7. Fix d to be an even positive integer. Uniformly for all λ ` n, the normalized

cumulant |κλd
∗
| of Xλ[maj] is Θ(aft(λ)1−d/2).

Proof. For d even, by (6.17) and Corollary 6.3.6, we have

|κλd | = Θ(aft(λ)nd).

Consequently by the homogeneity of cumulants, we have

|κλd
∗
| =

∣∣∣∣∣ κλd
(κλ2)d/2

∣∣∣∣∣ = Θ

(
aft(λ)nd

aft(λ)d/2nd

)
= Θ(aft(λ)1−d/2).

We now state and prove a generalization of Theorem 6.1.3 for skew shapes of the special

form λ as defined in Section 6.2.1.
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Theorem 6.3.8. Suppose λ(1), λ(2), . . . is a sequence of skew partitions, and let XN :=

Xλ(N) [maj] be the corresponding random variables for the maj statistic. Then, the sequence

X1, X2, . . . is asymptotically normal if and only if aft(λ(N))→∞ as N →∞.

Proof. If aft(λ(N))→∞, the result follows immediately from Corollary 6.2.27, Corollary 6.3.7,

and the fact that the odd cumulants vanish. On the other hand, if aft(λ(N)) 6→ ∞, in the

next section we will show that X∗1 , X
∗
2 , . . . has a subsequence which converges to either a

discrete or uniform-sum distribution, which in either case is non-normal.

Remark 6.3.9. Using work of Hwang–Zacharovas [44, Thm. 1.1], it would suffice to prove

both directions of Theorem 6.3.8 just for the d = 4 case. However, the bounds we’ve given

for κλd are strong enough to bound all the normalized cumulants directly, and restricting to

d = 4 does not simplify the argument.

6.4 Uniform Sum Limit Laws for Xλ[maj]

The estimates from Section 6.3 apply when aft tends to∞. We next give an analogous estimate

handling the case when aft is bounded which is powerful enough to prove Theorem 6.1.6 and

its generalization to block diagonal skew partitions.

Lemma 6.4.1. Suppose λ(N)/ν(N) ` nN is a sequence of skew partitions such that limN→∞ nN =

∞ and

lim
N→∞

aft(λ(N)/ν(N)) = M ∈ Z≥0.

Then for each fixed d ∈ Z≥1, we have

lim
N→∞

∑nN
j=1 j

d −
∑

c∈λ(N)/ν(N) hdc

MndN
= 1.

Proof. Take N large enough so that aft(λ(N)/ν(N)) = M and nN � M . Let m ∈ λ(N)/ν(N)

be such that aft(λ(N)/ν(N)) = M = nN − arm(m) so m is the first cell in its row and column,

as in the proof of Lemma 6.3.5. Consider three regions of λ(N)/ν(N):
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(i) The rightmost arm(m)−M = nN − 2M cells in the row of m.

(ii) The remaining leftmost M cells in the row of m.

(iii) The remaining M cells in λ(N)/ν(N).

Construct T ∈ RSYT(λ(N)/ν(N)) iteratively as in the proof of Lemma 6.3.5 as follows. First

add cells in region (iii) row by row starting at the topmost row proceeding from left to right,

stopping just before inserting the row of m. Next add the cells from region (ii) from left to

right. Now add the remaining cells in region (iii) row by row starting at the row immediately

below the row of m proceeding from left to right. Finally insert the cells from region (i) from

left to right. It is easy to see that the cells in region (i) are the lowest cells in their column,

from which it follows that T indeed satisfies the column and row decreasing conditions.

We now consider the contributions of regions (i)-(iii) to the quotient

∑nN
j=1 j

d −
∑

c∈λ(N)/ν(N) hdc

MndN
.

Recall that Tc − hc can be interpreted as the number of times a cell inserted after cell c was

not inserted in the same hook as c. It follows that Tc − hc = 0 for region (i), leaving only

contributions from the 2M cells in regions (ii) and (iii), a bounded sum. For region (ii), we

have TC − hc ≤M , so that

T dc − hdc = (Tc − hc)hd−1(Tc, hc) ≤ (2M)dnd−1
N .

Dividing by MndN , cells in region (ii) contribute 0 to the sum in the limit. Finally, for region

(iii), we find 1 ≤ hc ≤M + 1 and nN − 2M + 1 ≤ Tc ≤ nN , so that for each of the M cells c

in region (iii),

(nN − 2M + 1)d − (M + 1)d ≤ T dc − hdc ≤ ndN − 1d.

Dividing by ndN , both bounds are asymptotic to 1 as nN → ∞. Adding up all M such
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contributions, the result follows.

Recall from Definition 6.2.2 that we associate a block diagonal skew partition to any finite

sequence of partitions λ. The following theorem is a generalization of Theorem 6.1.6.

Theorem 6.4.2. Let λ(1), λ(2), . . . be a sequence of block diagonal skew partitions such that

limN→∞ |λ(N)| = ∞ and aft(λ(N)/ν(N)) = M is constant. Let XN := Xλ(N)/ν(N) [maj] be the

corresponding random variable for the maj statistic. Then X∗1 , X
∗
2 , . . . converges in distribution

to Σ∗M .

Proof. Using Equation (6.17) and Lemma 6.4.1, we have for d ≥ 2 that

lim
N→∞

(κλ
(N)

d )∗ = lim
N→∞

κλ
(N)

d

(κλd)
d/2

= lim
N→∞

(Bd/d)
(∑nN

j=1 j
d −

∑
c∈λ(N) hdc

)
(B2/2)d/2

(∑nN
j=1 j

2 −
∑

c∈λ(N) h2
c

)d/2
= lim

N→∞

(Bd/d)

(B2/2)d/2
MndN

(Mn2
N)d/2

=
(MBd/d)

(MB2/2)d/2
.

From Example 6.2.15 and the homogeneity and additivity properties of cumulants, we have

(κΣM
d )∗ =

κΣM
d

(κΣM
2 )d/2

=
(MBd/d)

(MB2/2)d/2
.

The result now follows from the equivalent formulation of Theorem 6.2.26 in terms of

cumulants.
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6.5 Limiting Distribution Classification

We now give the generalization of Theorem 6.1.7 to λ, Theorem 6.5.1, and analyze more

carefully the discrete case of Theorem 6.1.7, resulting in Theorem 6.5.2.

Theorem 6.5.1. Let λ(1), λ(2), . . . be a sequence of block diagonal skew partitions. Then the

sequence (Xλ(N) [maj]∗) converges in distribution if and only if

(i) aft(λ(N))→∞; or

(ii) |λ(N)| → ∞ and aft(λ(N)) is eventually constant; or

(iii) the distribution of Xλ(N) [maj] is eventually constant.

The limit law is N (0, 1) in case (i), Σ∗M in case (ii), and discrete in case (iii).

Proof. The backwards direction follows from Theorem 6.3.8 and Theorem 6.4.2. In the

forwards direction, let λ(N) be such a sequence where (Xλ(N) [maj]∗) converges in distribution.

If |λ(N)| is bounded, then there are only finitely many distinct λ(N), forcing case (iii). If

|λ(N)| is unbounded, then we have subsequences satisfying either (i) or (ii) since the sequence

converges in distribution, which from Theorem 6.3.8 and Theorem 6.4.2 gives convergence

in distribution to N (0, 1) or Σ∗M , which are continuous, distinct distributions. The result

follows.

A well-known corollary of Theorem 5.2.2 is that for partitions λ and ν of n, maj is

equidistributed on SYT(λ) and SYT(ν) if and only if b(λ) = b(ν) and the multisets {hc : c ∈ λ}

and {hd : d ∈ ν} are equal. These hook multisets do not entirely characterize the partition—

see [43]. The following theorem gives a similar result even if we consider the standardized

random variables corresponding with Xλ[maj] and Xν [maj].

Theorem 6.5.2. Let λ and ν be partitions. Then Xλ[maj]∗ and Xν [maj]∗ have the same

distribution if and only if
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(i) the multisets of hook lengths {hc : c ∈ λ} and {hd : d ∈ ν} are equal; or

(ii) the multisets {hc : c ∈ λ} and {|λ|} t {hd : d ∈ ν} are equal; or

(iii) λ and ν are each either a single row or column; or

(iv) λ, ν ∈ {(2, 1), (2, 2)}.

Moreover, case (ii) occurs if and only if, up to transposing,

(a) λ = (n) and ν = (n− 1) for n ≥ 2; or

(b) λ = (r + 1, 12r+2) and ν = (2r+1, 1r) for r ≥ 1; or

(c) λ = (s, 1s+2) and ν = (s, s, 1) for s ≥ 4; or

(d) λ = (3, 15) and ν = (32, 1), or λ = (4, 16) and ν = (33, 1).

Proof. Let n := |λ| and m := |ν|. Let fλ(q) = [n]q !∏
c∈λ[hc]

which is a polynomial by Theorem 5.2.2

which has constant coefficient 1. Let fλ = fλ(1) = | SYT(λ)|. Let f ν and f ν(q) defined

similarly.

In the backwards direction, if (i) holds, then n = m, σ = τ , and fλ(q) = f ν(q), so Xλ[maj]∗

and Xν [maj]∗ have the same distribution. Similarly if (ii) holds fλ(q) = f ν(q), σ = τ , and

Xλ[maj]∗ and Xν [maj]∗ have the same distribution again. Condition (iii) holds if and only if

the distributions are concentrated at a single point. For (iv), we have f (2,1)(q) = 1 + q and

f (2,2)(q) = 1 + q2, so the normalized distributions are clearly equal. We will shortly see that

in each of the cases (a)-(d), condition (ii) in fact holds.

In the forwards direction, suppose Xλ[maj]∗ and Xν [maj]∗ have the same distribution.

Since fλ(q) has constant coefficient 1, Xλ[maj] is concentrated at a single point if and only if

fλ = 1, which occurs if and only if λ is a single row or column which is covered by case (iii).

It is easy to see that fλ = 2 if and only if λ ∈ {(2, 1), (2, 2)} which is covered by case (iv).
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Assume fλ, f ν > 2. We claim that there are two adjacent non-zero coefficients of fλ(q),

and simiarly for f ν(q). To prove this, we note the constant coefficient is 1 and the linear

coefficient is the number of inner corners of λ by Remark 6.2.6 which is zero if and only if

λ is a rectangle with at least 2 rows and columns. Since λ 6= (2, 2), the second and third

coefficient of fλ(q) are nonzero by Remark 6.2.6 completing the claim. Since fλ(q) and f ν(q)

each have constant term 1 and two adjacent non-zero coefficients, then it follows from the

assumption Xλ[maj]∗ and Xν [maj]∗ have the same distribution that

fλ(q) =
[n]q!∏
c∈λ[hc]q

=
[m]q!∏
d∈ν [hd]q

= f ν . (6.25)

Without loss of generality, we can assume n ≥ m. If n = m, we have
∏

c∈λ[hc]q =
∏

d∈ν [hd]q,

from which it follows that the multisets of hook lengths are equal by considering multiplicities

of zeroes at all primitive roots of unity as in case (i).

From here on, assume n > m. The multiplicity of a zero of a primitive nth root of unity

in (6.25) is 0 on the right, so from the left λ must have a hook of length n so it itself a hook

shape partition. Since λ is not a single row or column by the assumption fλ > 2, we know λ

does not have a cell with hook length n− 1. Consequently, the multiplicity of a zero at a

primitive (n − 1)th root of unity in (6.25) is 1 on the left, forcing m = n − 1 on the right.

Thus (6.25) becomes

[m+ 1]q
∏
d∈ν

[hd]q =
∏
c∈λ

[hc]q, (6.26)

and as before the multiset condition (ii) must hold. This completes the proof of the first

statement in the theorem.

For the second statement, suppose (ii) holds, so the multisets {hc : c ∈ λ} and {|λ|}t{hd :

d ∈ ν} are equal. Then, m = n − 1 and λ has a cell with hook length |λ|, so λ is a hook

shape partition (n− k, 1k) for some 0 ≤ k ≤ n, and

{hd : d ∈ ν} = [m− k] t [k]. (6.27)
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By transposing if necessary, we may assume k ≥ m− k is the maximum hook length in ν. If

λ has one cell with hook length 1, then (a) holds. Otherwise, both λ and ν have precisely

two cells with hook length 1, so ν is the union of two rectangles and not itself a rectangle. If

ν were a hook, then it would have a hook length equal to m which would imply λ has a cell

of hook length m = n− 1 contradicting the fact that λ has two outer corners. Thus ν is not

itself a hook.

Transposing ν if necessary, its first two rows are equal, say ν1 = ν2 = s. If ν ′1 = ν ′2, one

may check that the cell furthest from the origin in the intersection of the two rectangles

forming ν would be the only cell of its hook length, and that moreover its two neighbors in

the intersection would each have one larger hook length, contrary to (6.27). It follows that

ν = (st, 1r) where r ≥ 1, s ≥ 2, and t ≥ 2. We now have several cases.

• If s = 2, the hook lengths of ν are {1, . . . , r, r + 2, . . . , r + t + 1, 1, . . . , t}. The “gap”

between r and r + 2 together with (6.27) forces t = r + 1, so that ν = (2r+1, 1r) with

r ≥ 1. Here k = r + t+ 1 = 2r + 2, resulting in case (b).

• If s ≥ 3, the last two columns of ν already contain two cells with hook length 2. If

r > 1, the first column would also have a cell with hook length 2, contradicting (6.27),

so r = 1.

– If s = 3, the hook lengths of ν are {1, . . . , t, 2, . . . , t+ 1, 1, 4, 5, . . . , t+ 3}. Because

of the “gap” between t + 1 and t + 3, this is of the form in (6.27) if and only if

t = 2 or t = 3, resulting in case (d).

– Suppose s > 3. If t ≥ 3, then the final three columns of ν contain three cells

with hook length 3, contradicting (6.27), so t = 2. The hook lengths of ν are

then {1, 1, 2, . . . , s− 1, s+ 1, 2, 3, . . . , s, s+ 2}, which is already of the form (6.27),

resulting in case (c).

The reverse implications from (a)-(d) to (ii) were verified in the course of the above argument.
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Remark 6.5.3. The proof of Theorem 6.5.2 applies more generally to arbitrary scaling

factors and translations of the distributions of Xλ[maj] and Xν [maj], and not just those

coming from means and variances.

6.6 Internal Heroes Classification

As a corollary of Stanley’s formula, we know that for every partition λ ` n ≥ 1 there is a

unique tableau with minimal major index b(λ) and a unique tableau with maximal major

index
(
n
2

)
− b(λ′). These two agree for shapes consisting of one row or one column, and

otherwise they are distinct. It is easy to identify these two tableaux in SYT(λ).

Definition 6.6.1.

1. The max-maj tableau for λ is obtained by filling the outermost, maximum length, vertical

strip in λ with the largest possible numbers |λ|, |λ| − 1, . . . , |λ| − `(λ) + 1 starting from

the bottom row and going up, then filling the rightmost maximum length vertical strip

containing cells not previously used with the largest remaining numbers, etc.

2. The min-maj tableau of λ is obtained similarly by filling the outermost, maximum

length, horizontal strip in λ with the largest possible numbers |λ|, |λ|−1, . . . , |λ|−λ1 +1

going right to left, then filling the lowest maximum length horizontal strip containing

cells not previously used with the largest remaining numbers, etc.

See Figure 6.6 for an example. Note that the max-maj tableau of λ is the transpose of the

min-maj tableau of λ′.

The qb(λ)+1 coefficient of SYT(λ)maj(q) can be computed as in Remark 6.2.6, resulting in

the following.

Corollary 6.6.2. We have [qb(λ)+1] SYT(λ)maj(q) = 0 if and only if λ is a rectangle. If λ is

a rectangle with more than one row and column, then [qb(λ)+2] SYT(λ)maj(q) = 1.
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1 2 3 5 9 13

4 6 10 14

7 11 15

8 12 16

17

(a) A max-maj tableau and its outermost
vertical strip.

1 3 4 11 16 17

2 6 7 15

5 9 10

8 13 14

12

(b) A min-maj tableau and its outermost
horizontal strip.

Figure 6.6: Max-maj and min-maj tableau for λ = (6, 4, 3, 3, 1).

A similar statement holds for maj(T ) =
(
n
2

)
− b(λ′)− 1 by symmetry. Thus, SYTmaj(q)

has internal zeros when λ is a rectangle with at least 2 rows and columns. We will show these

are the only exceptions, proving Theorem 6.1.9.

Definition 6.6.3. Let E(λ) denote the set of exceptional tableaux of shape λ consisting of

the following elements.

(i) For all λ, the max-maj tableau for λ.

(ii) If λ is a rectangle, the min-maj tableau for λ.

(iii) If λ is a rectangle with at least two rows and columns, the unique tableau in SYT(λ)

with major index equal to
(
n
2

)
− b(λ′)− 2. It is obtained from the max-maj tableau of λ

by applying the cycle (2, 3, . . . , `(λ) + 1), which reduces the major index by 2.

For example, E(64331) consists of just the max-maj tableau for 64331 in Figure 6.6a,

while E(555) has the following three elements:

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

1 2 7 10 13

3 5 8 11 14

4 6 9 12 15

1 4 7 10 13

2 5 8 11 14

3 6 9 12 15

.
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We prove Theorem 6.1.9 by constructing a map

ϕ : SYT(λ) \ E(λ) −→ SYT(λ)

with the property

maj(ϕ(T )) = maj(T ) + 1.

For most tableau T , we can find another tableau T ′ of the same shape such that maj(T ′) =

maj(T ) + 1 by applying some simple cycle to the values in T , meaning a permutation whose

cycle notation is either (i, i+ 1, . . . , k− 1, k) or (k, k− 1, . . . , i+ 1, i) for some i < k. We will

show there are 5 additional rules that must be added to complete the definition.

We note that technically the symmetric group Sn does not act on SYT(λ) for λ ` n since

this action will not generally preserve the row and column strict requirements for standard

tableaux. However, Sn acts on the set of all fillings of λ using the alphabet {1, 2, . . . , n} by

acting on the values. We will only apply permutations to tableaux after locating all values

in some interval [i, j] = {i, i + 1, . . . , j} in T . The reader is encouraged to verify that the

specified permutations always maintain the row and column strict properties.

6.6.1 Rotation Rules

We next describe certain configurations in a tableau which imply that a simple cycle will

increase maj by 1. Recall, the cells of a tableau are indexed by matrix notation.

Definition 6.6.4. Given λ ` n and T ∈ SYT(λ), a positive rotation for T is an interval

[i, k] ⊂ [n] such that if T ′ := (i, i+ 1, . . . , k − 1, k) · T , then T ′ ∈ SYT(λ) and there is some j

for which

{j} = Des(T ′)−Des(T ) and {j − 1} = Des(T )−Des(T ′).

Intuitively, a positive rotation is one for which j − 1 ∈ Des(T ) becomes j ∈ Des(T ′) and all

other entries remain the same. Consequently, maj(T ′) = maj(T ) + 1. We call j the moving
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descent for the positive rotation.

The positive rotations can be characterized combinatorially as follows. The proof is

omitted.

Lemma 6.6.5. An interval [i, k] is a positive rotation for T ∈ SYT(λ) if and only if i < k

and there is some necessarily unique moving descent j with 1 ≤ i ≤ j ≤ k ≤ n such that

(a) i, . . . , j − 1 forms a horizontal strip, j − 1, j forms a vertical strip, and j, j + 1, . . . , k

forms a horizontal strip;

(b) if i < j, then i appears strictly northeast of k and i− 1 is not in the rectangle bounding i

and k;

(c) if i = j, then i− 1 appears in the rectangle bounding i and k;

(d) if j < k, then k appears strictly northeast of k − 1 and k + 1 is not in the rectangle

bounding k and k − 1; and

(e) if j = k, then k + 1 appears in the rectangle bounding k and k − 1.

See Figure 6.7 for diagrams summarizing these conditions.

In addition to the positive rotations above, we can also apply negative rotations, which

are defined exactly as in Definition 6.6.4 with (i, i + 1, . . . , k − 1, k) replaced by (k, k −

1, . . . , i+ 1, i) and the rest unchanged. Combinatorially, negative rotations can be obtained

from positive rotations by applying inverse-transpose moves, that is, by applying negative

cycles (k, k − 1, . . . , i) to the transpose of the configurations in Figure 6.7 and reversing the

arrows. Explicitly, we have the following analogue of Lemma 6.6.5. See Figure 6.8 for the

corresponding diagrams.

Lemma 6.6.6. An interval [i, k] is a negative rotation for T ∈ SYT(λ) if and only if i < k

and there is some necessarily unique moving descent j with 1 ≤ i ≤ j ≤ k ≤ n such that
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���XXXi− 1 i · · · j − 1
k

j · · · k − 1 ���XXXk + 1
−→

���XXXi− 1 i+ 1 · · · j
i

j + 1 · · · k ���XXXk + 1

(a) Schematic of a positive rotation with i < j < k.

���XXXi− 1 i i+ 1 · · · k − 1
k k + 1

−→ ���XXXi− 1 i+ 1 · · · k − 1 k
i k + 1

(b) Schematic of a positive rotation with i < j = k.

i− 1 k
i i+ 1 · · · k − 1 ���XXXk + 1

−→ i− 1 i
i+ 1 i+ 2 · · · k ���XXXk + 1

(c) Schematic of a positive rotation with i = j < k.

Figure 6.7: Summary diagrams for positive rotations.

(a) i, . . . , j forms a vertical strip, j, j + 1 forms a horizontal strip, and j + 1, . . . , k forms a

vertical strip;

(b) if i < j, then i+1 appears strictly southwest of i and i−1 is not in the rectangle bounding

i and i+ 1;

(c) if i = j, then i− 1 appears in the rectangle bounding i and i+ 1;

(d) if j < k, then i appears strictly southwest of k and k + 1 is not in the rectangle bounding

i and k; and

(e) if j = k, then k + 1 appears in the rectangle bounding i and k.
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j + 1
j + 2

...
k

���XXXi− 1 i ���XXXk + 1
i+ 1
i+ 2

...
j

−→

j
j + 1

...
k − 1

���XXXi− 1 k ���XXXk + 1
i

i+ 1
...

j − 1

(a) i < j < k.

���XXXi− 1 i
i+ 1

...
k − 1
k k + 1

−→

���XXXi− 1 k
i

i+ 1
...

k − 1 k + 1

(b) i < j = k.

i− 1 i+ 1
i+ 2

...
k

i ���XXXk + 1

−→

i− 1 i
i+ 1

...
k − 1

k ���XXXk + 1

(c) i = j < k.

Figure 6.8: Summary diagrams for negative rotations.

Example 6.6.7. The tableau

1 2 6 7 9

3 4 8 13

5 11 12 15

10 14

allows positive rotation rules with [i, k] ∈ {[5, 6], [8, 9], [8, 10], [8, 11], [9, 13]}, and the tableau

1 3 8 10 15

2 4 9 11

5 7 13 14

6 12
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allows negative rotation rules with [i, k] ∈ {[4, 6], [6, 7], [11, 12]}.

It turns out that for the vast majority of tableaux, some rotation rule applies. For example,

among the 81, 081 tableaux in SYT(5442), there are only 24 (i.e., 0.03%) on which we cannot

apply any positive or negative rotation rule. For example, no rotation rules can be applied to

the following two tableaux:

1 2 3 4 5

6 7 8 9

10 11 12 13

14 15

and

1 2 3 8 12

4 6 9 13

5 7 10 14

11 15

.

The following lemma and its corollary give a partial explanation for why rotation rules are

so common. Given a tableaux T , let T |[z] denote the restriction of T to those values in [z].

Lemma 6.6.8. Let T ∈ SYT(λ) \ E(λ). Suppose z is the largest value such that T |[z] is

contained in maxmaj(µ) for some µ. If T |[z+1] is not of the form

1 2 · · · i

i+ 1 z + 1

i+ 2
...

z

then some negative rotation rule applies to T .

Proof. Since T 6∈ E(λ), T is not maxmaj(λ), so λ is not a one row or column shape. We have

z ≥ 2 since both two-cell tableaux are the max-maj tableau of their shape. Since maxmaj(µ)

is built from successive, outermost, maximal length, vertical strips as in Figure 6.6a, the

same is true of T |[z].
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First, suppose z is not in the lowest row of T |[z]. Let i be the value in the topmost corner

cell in T |[z] which is strictly below z. Let j ≥ i be the bottommost cell in the vertical strip

of T |[z] which contains i. See Figure 6.9a. We verify the conditions of Lemma 6.6.6, so the

negative [i, z]-rotation rule applies with moving descent j. By construction, i, . . . , j forms

a vertical strip, j, j + 1 forms a horizontal strip, and j + 1, . . . , z forms a vertical strip. If

i < j, then since i is a corner cell, i+ 1 appears strictly southwest of i, and i− 1 is above

both i and i+ 1 so i− 1 is not in the rectangle bounding i and i+ 1. If i = j, we see that

i− 1 appears in the rectangle bounded by i and i + 1. We also see that i appears strictly

southwest of z, and z + 1 is not in the rectangle bounding i and z since i is a topmost corner

and z is maximal.

Now suppose z is in the lowest row of T |[z]. In this case, T |[z] is the max-maj tableau of

its shape, so that z < |λ| and z + 1 exists in T since T 6∈ E(λ). By maximality of z, z + 1

cannot be in row 1 or below z. Let i < z be the value in the the rightmost cell of T |[z] in the

row immediately above z + 1. See Figure 6.9b. We check that the negative [i, z]-rotation rule

applies with moving descent j = z using the conditions in Lemma 6.6.6. By construction,

i, . . . , z forms a vertical strip. Since z+1 is not below z, we see that z, z+1 forms a horizontal

strip. Since z + 1 is in the row below i, i + 1 appears strictly southwest of i. We also see

that z + 1 appears in the rectangle bounded by i and z by choice of i. It remains to show

that i− 1 is not in the rectangle bounding i and i+ 1. Suppose to the contrary that i− 1 is

in the rectangle bounding i and i+ 1. Then i would have to be in row 1 by choice of i < z.

Consequently i + 1 is in row 2 and strictly west of i, forcing i − 1 to be in row 1 also. It

follows from the choice of z that T |[i] is a single row, the values i, i+ 1, . . . z form a vertical

strip, and T |[z+1] is of the above forbidden form, giving a contradiction.

Corollary 6.6.9. If T ∈ SYT(λ) \ E(λ) and 1 ∈ Des(T ), then some negative rotation rule

applies to T .

Proof. Let z be as in Lemma 6.6.8. Clearly z ≥ 2 and T |[2] is a single column, so T |[z+1]

cannot possibly be of the forbidden form.
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1 3 6
2 4 7
5 8 11
9
10

−→

1 3 6
2 4 10
5 7 11
8
9

(a) For the tableau on the left above, i = 7 and z = 10 since T |[10] is the max-maj tableau of shape
33211, 10 is in the lowest row, 11 is in row 3, and 7 is the largest value in T |[10] in row 2. Apply the
negative rotation (10, 9, 8, 7) to get the tableau on the right, and observe maj has increased by 1.
The moving descent is j = z = 10.

1 3 6 11
2 4 7 12
5 8
9 13
10

−→

1 3 6 10
2 4 7 11
5 12
8 13
9

(b) For the tableau on the left above, i = 8 and z = 12 since T |[12] is contained the max-maj tableau
of shape 44322, 12 is not in the lowest row, 8 is in the closet corner to 12 in T |[12] and below 12.
Apply the negative rotation (12, 11, 10, 9, 8) to get the tableau on the right, and observe maj has
increased by 1. The moving descent is j = 10.

Figure 6.9: Examples of the negative rotations obtained from Lemma 6.6.8.

We also have the following variation on Lemma 6.6.8. It is based on finding the largest

value q such that T |[q] is contained in an exceptional tableau of type (iii). The proof is again

a straightforward verification of the conditions in Lemma 6.6.6, and is omitted.



162

Lemma 6.6.10. Let T ∈ SYT(λ) \ E(λ). Suppose the initial values of T are of the form

1 2

3 p+ 1

4
...

... q

... ���XXXq + 1

p

or

1 2 `+ 1 · · · ... p+ 1

3 z + 1
...

...
...

...

4 z + 2
...

...
... q

...
...

...
...

... ���XXXq + 1

z ` m · · · p

.

In either case, the [p, q]-negative rotation rule applies to T .

6.6.2 Initial Block Rules

Here we describe a collection of five additional block rules which may apply to a tableau that

is not in the exceptional set. In each case, if the rule applies, then we specify a permutation of

the entries so that we either add 1 into the descent set and leave the other descents unchanged,

or we add 1 into the descent set, increase one existing descent by 1, and decrease one existing

descent by 1. Thus, maj will increase by 1 in all cases. While these additional rules are

certainly not uniquely determined by these criteria, they are also not arbitrary.

Example 6.6.11. For a given T ∈ SYT(λ), one may consider all T ′ ∈ SYT(λ) where

maj(T ′) = maj(T ) + 1. If T ′ = σ · T where σ is a simple cycle, then one of the rotation rules

may apply to T . Table 6.2 summarizes five particular T for which no rotation rules apply.

These examples have guided our choices in defining the block rules. In all but one of these

examples, there is a unique T ′ with maj(T ′) = maj(T ) + 1, though in the third case there are

two such T ′, one of which ends up being easier to generalize.

In the remainder of this subsection, we describe the block rules, abbreviated B-rules. Then,

we prove that if no rotation rules are possible for a tableau then either it is in the exceptional

set or we can apply one of the B-rules. The B-rules cover disjoint cases so no tableau admits
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Tableau T Tableaux T ′ σ Block rule

1 2 3 7
4 5 6 8

1 3 4 6
2 5 7 8 (2, 3, 4)(6, 7) B1

1 2 3 4
5 6 7

1 3 4 7
2 5 6 (2, 3, 4, 7, 6, 5) B2

1 2 3
4 6
5 7

1 3 6
2 4
5 7

,
1 4 5
2 6
3 7

(2, 3, 6, 4), (2, 4)(3, 5) B3, —

1 2 7
3 5 8
4 6 9
10

1 4 8
2 5 9
3 6 10
7

(2, 4, 3)(7, 8, 9, 10) B4

1 2
3 5
4 6
7

1 5
2 6
3 7
4

(2, 5, 6, 7, 4, 3) B5

Table 6.2: Some tableaux T ∈ SYT(λ) together with all T ′ = σ · T ∈ SYT(λ) where
maj(T ′) = maj(T ) + 1. See Definition 6.6.13 for an explanation of the final column.

more than one block rule. To state the B-rules precisely, assume T ∈ SYT(λ) \ E(λ) and no

rotation rule applies.

Notation 6.6.12. Let c be the largest possible value such that T |[c] is contained in the

min-maj tableau of a rectangle shape with a columns and b rows. Consequently, the first

a numbers in row i, 1 ≤ i ≤ b − 1, of T are (i − 1)a + 1, . . . , ia, and row b begins with

(b− 1)a+ 1, (b− 1)a+ 2, . . . , c.

Since 1 6∈ D(T ) and T 6∈ E(λ), we know a, b ≥ 2. If c+ 1 is in T , then it must be either

in position (1, a+ 1) or (b+ 1, 1). If c = ab, then c < |λ| since T 6∈ E(λ), otherwise c = |λ| is

possible. For example, the tableaux

1 2 3 4 5 16
6 7 8 9 10 17
11 12 13 14 15

,
1 2 3 4 5
6 7 8 9 10
11 12 13

,
1 2 3 4
5 9
6 10
7
8

,
1 2 7 10
3 5 8 11
4 6 9 12
13

have (a, b, c) equal to (5, 3, 15), (5, 3, 13), (4, 2, 5), and (2, 2, 3), respectively.

Definition 6.6.13. Using the notation (a, b, c), we identify the block rules with required

assumptions as follows. See Figure 6.10 for summary diagrams.
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• Rule B1: Assume c = ab, T(1,a+1) = c+ 1, T(2,a+1) = c+ 2, and a < c− 2. In this case,

we perform the rotations (2, . . . , a+ 1) and (c, c+ 1) which are sufficiently separated

by hypothesis. Then, 1, a + 1 and c become descents, and a and c + 1 are no longer

descents, so the major index is increased by 1. The B1 rule is illustrated here with

a = 5, b = 3:

B1:

1 2 3 4 5 16

6 7 8 9 10 17

11 12 13 14 15

1 3 4 5 6 15

2 7 8 9 10 17

11 12 13 14 16

The boxed numbers represent descents of the tableau on the left/right that are not

descents of the tableau on the right/left. The elements not shown (i.e,. 18, 19, . . . , |λ|)

can be in any position.

• Rule B2: Assume a ≥ 2 and c < ab so there exists a 1 ≤ k < a such that T(b,k) = c

and T(b,k+1) 6= c+ 1. In this case, we perform the rotation (2, 3, . . . , a, 2a, 3a, . . . , a(b−

1), c, c − 1, . . . , c − k + 1 = a(b − 1) + 1, a(b − 2) + 1, . . . , 2a + 1, a + 1) around the

perimeter of T |[c]. Now 1 becomes a descent, and the other descents stay the same so

the major index again increases by 1. The B2 rule is illustrated by the following (here

a = 5, b = 2 and k = 3):

B2:

1 2 3 4 5

6 7 8 9 10

11 12 13 ��ZZ14

1 3 4 5 10

2 7 8 9 13

6 11 12 ��ZZ14

The crossed out number 14 means that 14 is not in position (3, 4): it can either be in

positions (1, 6) or (4, 1), or it can be that λ = 553. Again, the numbers 15, . . . , |λ| can

be anywhere in T .
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• Rule B3: Assume a ≥ 3, c = a+ 1, and there exists k ≥ 2 such that T(2,2) = a+ k + 1,

T(3,2) = a+ k + 2, and for all i ∈ {1, 2, . . . , k} we have T(i+1,1) = a+ i. Then we apply

the rotation (2, 3, . . . , a, a + k + 1, a + 1). Now 1 becomes a descent, and the rest of

the descent set is unchanged so the major index again increases by 1. The B3 rule is

illustrated by the following (here a = 4, k = 4):

B3:

1 2 3 4

5 9

6 10

7

8

1 3 4 9

2 5

6 10

7

8

• Rule B4: Assume that a = 2, c = 3, and there exists k ≥ 2 such that {3, 4, . . . , k + 1}

appear in column 1 of T , {k + 2, k + 3, . . . , 2k} appear in column 2 in T . Further

assume that the set {2k+1, 2k+2, . . . , 3k} appears in column 3, {3k+1, 3k+2, . . . , 4k}

appears in column 4, etc., until column l for some l > 2 and T(k+1,1) = kl + 1 and

T(k+1,2) 6= kl + 2. In this case, we can perform the two rotations (k + 1, k, . . . , 3, 2) and

(k(l − 1) + 1, k(l − 1) + 2, . . . , kl, kl + 1). Now 1, k + 1 and k(l − 1) enter the descent

set, and k and k(l − 1) + 1 leave it, so the major index increases by 1. The B4 rule is

illustrated by the following (here k = 3 and l = 4):

B4:

1 2 7 10

3 5 8 11

4 6 9 12

13 ��ZZ14

1 4 7 11

2 5 8 12

3 6 9 13

10 ��ZZ14

• Rule B5: Assume that a = 2, c = 3, and there exists k > 3 such that {3, 4, . . . , k}

appear in column 1 of T , {k+1, k+2, . . . , 2k−2} appear in column 2 in T . Furthermore,
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assume T(k,1) = 2k − 1 and T(k,2) 6= 2k. Then apply the cycle (k, k − 1, . . . , 3, 2, k +

1, k + 2, . . . , 2k − 1) to T . Now 1 becomes a descent, and the rest of the descent set

remains unchanged, so the major index increases by 1. The B5 rule is illustrated by

the following (here k = 5):

B5:

1 2

3 6

4 7

5 8

9 ��ZZ10

1 6

2 7

3 8

4 9

5 ��ZZ10

Lemma 6.6.14. If T ∈ SYT(λ), T 6∈ E(λ), and 1, 2 6∈ D(T ), then either some rotation rule

applies to T or a B1, B2 or B3 rule applies.

Proof. Let c be the largest possible value such that T |[c] is contained in the min-maj tableau

of a rectangle shape with a columns and b rows, as in the definition of the block moves.

Since 1, 2 6∈ D(T ) and T 6∈ E(λ), we know 1, 2, 3 are in the first row of T so a ≥ 3, b ≥ 2,

and a+ 2 ≤ |λ|. By construction, we have T(2,1) = a+ 1 and a+ 2 must appear in position

(1, a+ 1), (2, 2), or (3, 1) in T .

Case 1: T(1,a+1) = a+ 2. Observe that

T |[a+2] =
1 2 3 · · · a a+ 2

a+ 1

and z ≥ a+ 2. Consequently, T |[z+1] cannot be of the form forbidden by Lemma 6.6.8, so a

negative rotation rule applies.

Case 2: T(2,2) = a+2. First suppose c = ab, then T(1,a+1) = c+1 by choice of c. Now consider

the two subcases, T(2,a+1) = c+ 2 and T(2,a+1) 6= c+ 2. In the former case, as in Figure 6.10a,

the B1 rule applies to T . In the latter case, one may check that an [i, c+ 1]-positive rotation
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rule applies to T where i = T(b,1). On the other hand, if c < ab, then a B2 rule applies to T

as in Figure 6.10b.

Case 3: T(3,1) = a + 2. Let k = min{j ≥ a + 2 | j 6∈ D(T )} so T(k+1,1) = a + k and

T(k+2,1) 6= a+ k+ 1, Since T 6∈ E(λ), we know a+ k+ 1 exists in T either in position (1, a+ 1)

or (2, 2), so T |[a+k+1] looks like

1 2 3 · · · a a+ k + 1

a+ 1

a+ 2
...

a+ k

or

1 2 3 · · · a

a+ 1 a+ k + 1

a+ 2
...

a+ k

.

If T(1,a+1) = a+ k + 1, then Lemma 6.6.8 shows that a negative rotation rule applies to T .

On the other hand, if T(2,2) = a+ k + 1, then observe that either a B3 move applies or the

rotation (a+ k, a+ k + 1) applies to T , depending on whether T(3,2) = a+ k + 2 or not.

Lemma 6.6.15. If T ∈ SYT(λ), T 6∈ E(λ), 1 6∈ D(T ), and 2 ∈ D(T ), then either some

rotation rule applies to T or a B1, B2, B4 or B5 rule applies.

Proof. Let k = min{j ≥ 3 | j 6∈ D(T )} so the consecutive sequence [3, k] appears in the first

column of T and k + 1 does not. By definition of k and the fact that T 6∈ E(λ), T must

have k + 1 in position (1, 3) or (2, 2). If T(1,3) = k + 1, then a negative rotation rule holds by

Lemma 6.6.8.

Assume T(2,2) = k + 1. Let ` be the maximum value such that [k + 1, `] appears as a

consecutive sequence in column 2 of T . If ` < 2(k − 1), then the negative rotation rule for

(`, `− 1, . . . , k) applies to T by the first case of Lemma 6.6.10.

If ` = 2(k − 1) and T(1,3) = ` + 1, let m be the maximum value such that [` + 1,m]

appears as a consecutive sequence in column 3 of T . We subdivide on cases for m again. If

m < 3(k−1), then the negative rotation rule (m,m−1, . . . , `) applies to T by the second case
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of Lemma 6.6.10. If m = 3(k − 1), we consider the maximal sequence of columns containing

a consecutive sequence in rows [1, k − 1] to the right of column 2 until one of two conditions

hold

1 2 `+ 1 · · · ...

3 k + 1
...

... p
...

...
...

. . . ���XXXp+ 1

k ` m · · ·

1 2 `+ 1 · · ·

3 k + 1
...

...
...

...
...

...
. . .

...

k ` m · · · p

p+ 1

In the first picture, T |[p] is not a rectangle, so we may apply a negative rotation by the

second case of Lemma 6.6.10, so consider the second picture. In the second picture, T |[p] is a

rectangle and we know p+ 1 exists in T since T |[p] is an exceptional tableau for a rectangle

shape. If p+ 2 is in row k, column 2, a negative rotation rule applies. if p+ 2 is not in row k,

column 2, then a B4-move applies.

Finally, consider the case ` = 2(k − 1) and T(k,1) = `+ 1. If T(k,2) 6= `+ 2 and k > 3, then

a B5-move applies. If T(k,2) = `+ 2 and k > 3, then the rotation (`, `+ 1) applies to T since

`− 1 is above `. If T(k,2) = `+ 2 and k = 3, then ` = 4 = T(2,2) and T(3,1) = 5 so T contains

1 2

3 4

5

.

In this case, consider the subcases c = ab or c < ab with a = 2. If c = ab, then T(1,3) = c+ 1

since T 6∈ E(λ). Either a B1-move applies if T(2,3) = c + 2 and a (c, c + 1) rotation applies

otherwise. On the other hand, if c < ab then a B2-rule applies.

Proof of Theorem 6.1.9. Given any T ∈ SYT(λ) \ E(λ), we define ϕ(T ) with the property

maj(ϕ(T )) = maj(T ) + 1. If 1 ∈ D(T ), define ϕ(T ) = (z, z − 1, . . . , i)T as in Corollary 6.6.9.

If 1, 2 6∈ D(T ), then Lemma 6.6.14 applies, so define ϕ(T ) using the specific B1, B2, B3

or rotation rule identified in the proof of that lemma. If 1 6∈ D(T ) and 2 ∈ D(T ), then
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Lemma 6.6.15 applies, so define ϕ(T ) using the specific B1, B2, B4, B5, or negative rotation

rule identified in the proof of that lemma. These rules cover all possible cases.

An inverse-transpose block rule is a block rule obtained from transposing the diagrams in

Figure 6.10 and reversing the arrows.

Definition 6.6.16. As sets, let P (λ) and Q(λ) be either SYT(λ) \ {minmaj(λ),maxmaj(λ)}

if λ is a rectangle with at least two rows and columns, or SYT(λ) otherwise.

• (Strong SYT Poset) Let P (λ) be the partial order with covering relations given by

rotations, block rules, and inverse-transpose block rules increasing maj by 1.

• (Weak SYT Poset) Let Q(λ) be the partial order with covering relations given by S ≺ T

if ϕ(S) = T or ϕ(T ′) = S ′ where S ′, T ′ are the transpose of S, T , respectively.

Corollary 6.6.17. As posets, P (λ) and Q(λ) are ranked with a unique minimal and maximal

element. If λ is not a rectangle, the rank function is given by rk(T ) = maj(T ) − b(λ).

If λ is a rectangle with at least 2 rows and columns, then the rank function is given by

rk(T ) = maj(T )− b(λ)− 2.

Proof. By Corollary 6.6.2, P (λ) and Q(λ) have a single element of minimal maj and of

maximal maj. Any element T besides these is covered by ϕ(T ) and covers ϕ(T ′)′, so is not

maximal or minimal. By construction maj increases by 1 under covering relations. The result

follows.

In Figure 6.11, we show an example of both the Weak SYT Poset and the Strong

SYT poset for λ = (3, 2, 1). More examples of these partial orders are given at https:

//sites.math.washington.edu/~billey/papers/syt.posets.

https://sites.math.washington.edu/~billey/papers/syt.posets
https://sites.math.washington.edu/~billey/papers/syt.posets
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6.7 Conjectured Deviations from Unimodality and Log-Concavity

We conjecture that almost all of the polynomials of the form SYTmaj(q) are unimodal and

log-concave. In this section, we give specific classifications of the deviations of each of these

properties. In the rare cases where unimodality or log-concavity fails, it only seems to happen

the at the very beginning and end of the sequence of coefficients or near the middle coefficient.

Recall that a polynomial P (q) =
∑n

i=0 ciq
i is unimodal if

c0 ≤ c1 ≤ · · · ≤ cj ≥ cj+1 ≥ · · · ≥ cn

for some j, and P (q) is log-concave if c2
i ≥ ci−1ci+1 for all integers 0 < i < n. A polynomial

with nonnegative coefficients which is log-concave and has no internal zero coefficients is

necessarily unimodal [90]. By Theorem 6.1.9, we know exactly where internal zeros occur so

log-concavity would imply unimodality in these cases.

We say P (q) is nearly unimodal if instead

c0 ≤ c1 ≤ · · · ≤ cj, cj+1 = cj − 1 < cj+2 ≤ · · · ≤ cbn
2
c

for some j and P (q) has symmetric coefficients. Also, a symmetric polynomial P (q) is nearly

log-concave if c2
i ≥ ci−1ci+1 for all 1 < i < bn

2
c − 1.

Conjecture 6.7.1. The polynomial SYTmaj(q) is unimodal if λ has at least 4 corners. If

λ has 3 corners or fewer, then SYTmaj(q) is unimodal except when λ or λ′ is among the

following partitions:

1. Any partition of rectangle shape that has more than one row and column.

2. Any partition of the form (k, 2) with k ≥ 4 and k even.

3. Any partition of the form (k, 4) with k ≥ 6 and k even.

4. Any partition of the form (k, 2, 1, 1) with k ≥ 2 and k even.
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5. Any partition of the form (k, 2, 2) with k ≥ 6.

6. Any partition on the list of 40 special exceptions:

(3, 3, 2), (4, 2, 2), (4, 4, 2), (4, 4, 1, 1), (5, 3, 3), (7, 5), (6, 2, 1, 1, 1, 1),

(5, 5, 2), (5, 5, 1, 1), (5, 3, 2, 2), (4, 4, 3, 1), (4, 4, 2, 2), (7, 3, 3), (8, 6), (6, 6, 2),

(6, 6, 1, 1), (5, 5, 2, 2), (5, 3, 3, 3), (4, 4, 4, 2), (11, 5), (10, 6), (9, 7), (7, 7, 2),

(7, 7, 1, 1), (6, 6, 4), (6, 6, 1, 1, 1, 1), (6, 5, 5), (5, 5, 3, 3), (12, 6), (11, 7), (10, 8),

(15, 5), (14, 6), (11, 9), (16, 6), (12, 10), (18, 6), (14, 10), (20, 6), (22, 6).

Conjecture 6.7.1 was checked for all partitions up to size n = 50. Each of the Case 2

families (k, 2), (k, 4), or (k, 2, 1, 1) have a relatively simple set of hook lengths so explicit

formulas can be derived for the coefficients of SYT(λ)maj(q). We have found explicit proofs

of near unimodality for each of these cases. They are related to known integer sequences [68,

A266755] and [68, A008642] with nice generating functions. Furthermore, the Case 2 families

are all nearly unimodal as well as 20 of the special exceptions. All rectangles with at least

2 rows and columns are nearly unimodal for 30 ≤ n ≤ 100. We conjecture this trend also

continues, hence the claim that all coefficients SYT(λ)maj(q) are close to unimodal. The Case

3 family of the form (k, 2, 2) is a bit further from being unimodal. The proof of the following

result is omitted.

Proposition 6.7.2. If λ = (k, 2, 2) for any positive integer k, then the maximal coefficient

of q−b(λ) SYTmaj(q), say cj, satisfies the equation cj = cj+1 + floor(k/6) + I(4 = (k mod 6))

and c0 ≤ c1 ≤ · · · ≤ cj and j + 1 is the median nonzero coefficient. Here I is an indicator

function which is 1 if true and 0 if false.

Log-concavity for the polynomials SYTmaj
λ (q) appears to be harder to characterize. There

are examples of partitions with even 5 corners which are not log-concave. For example fλ(q)

for λ = (9, 9, 7, 7, 5, 5, 3, 3, 2) is nearly log-concave but c2
1 = 42 = 16 < 17 = c0c2. The only
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deviation occurs at i = 1. Thus, we summarize what we have observed in the following

conjecture.

Conjecture 6.7.3. The polynomials SYT(λ)maj(q) are almost always log-concave for parti-

tions λ ` n for large n.

This conjecture is based on the fact that the normal distribution is log-concave and the

following evidence. The approximate probability that a uniformly chosen partition of n has

the log-concave property P(LC) and the corresponding probability for the nearly log-concave

property P(NLC) is given in the following table:

n 30 40 50

P(LC) 0.6734475 0.7876426 0.8753587

P(NLC) 0.8003212 0.9204832 0.9688140

.
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1 2 · · · a ab+ 1
a+ 1 a+ 2 · · · 2a ab+ 2

...
...

. . .
...

a(b− 1) + 1 a(b− 1) + 2 · · · ab

↓

1 3 · · · a+ 1 ab
2 a+ 2 · · · 2a ab+ 2
...

...
. . .

...
a(b− 1) + 1 a(b− 1) + 2 · · · ab+ 1

(a) B1.

1 2 · · · · · · · · · · · · a
a+ 1 a+ 2 · · · · · · · · · · · · 2a

...
...

. . .
...

...
. . .

...
a(b− 2) + 1 a(b− 2) + 2 · · · · · · · · · · · · a(b− 1)
a(b− 1) + a a(b− 1) + 2 · · · c− 1 c · · · ��ZZab

↓

1 3 · · · · · · · · · · · · 2a
2 a+ 2 · · · · · · · · · · · · 3a
...

...
. . .

...
...

. . .
...

a(b− 3) + 1 a(b− 2) + 2 · · · · · · · · · · · · c
a(b− 2) + 1 a(b− 1) + 1 · · · c− 2 c− 1 · · · ��ZZab

(b) B2.

1 2 · · · a− 1 a
a+ 1 a+ k + 1
a+ 2 a+ k + 2

...
a+ k

−→

1 3 · · · a a+ k + 1
2 a+ 1

a+ 2
...

a+ k

(c) B3.
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1 2 2k + 1 · · · k(`− 1) + 1
3 k + 2 2k + 2 · · · k(`− 1) + 2
4 k + 3 2k + 3 · · · k(`− 1) + 3
...

...
...

. . .
...

k + 1 2k 3k · · · k`
k`+ 1
���

�XXXXk`+ 2

↓

1 k + 1 2k + 1 · · · k(`− 1) + 2
2 k + 2 2k + 2 · · · k(`− 1) + 3
3 k + 3 2k + 3 · · · k(`− 1) + 4
...

...
...

. . .
...

k 2k 3k · · · k`+ 1
k(`− 1) + 1
���

�XXXXk`+ 2

(d) B4.

1 2
3 k + 1
4 k + 2
...

...
k − 1 2k − 3
k 2k − 2

2k − 1 ��ZZ2k

−→

1 k + 1
2 k + 2
3 k + 3
...

...
k − 2 2k − 2
k − 1 2k − 1
k ��ZZ2k

(e) B5.

Figure 6.10: Summary diagrams for block rules.
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data/weak.syt.321.dot

(4 2 5 1 3 6)

(5 2 6 1 3 4) (4 3 5 1 2 6)

(5 3 6 1 2 4) (5 3 4 1 2 6)

(3 2 5 1 4 6)(6 3 4 1 2 5) (5 4 6 1 2 3)

(3 2 6 1 4 5) (5 2 4 1 3 6)(6 4 5 1 2 3)

(4 2 6 1 3 5)(6 2 4 1 3 5)

(4 3 6 1 2 5)(6 2 5 1 3 4)

(6 3 5 1 2 4)

data/strong.syt.321.dot

(4 2 5 1 3 6)

(5 2 6 1 3 4) (4 3 5 1 2 6)

(5 3 6 1 2 4) (5 3 4 1 2 6)

(3 2 5 1 4 6)(6 3 4 1 2 5)(5 4 6 1 2 3)

(3 2 6 1 4 5)(5 2 4 1 3 6)(6 4 5 1 2 3)

(4 2 6 1 3 5)(6 2 4 1 3 5)

(6 2 5 1 3 4) (4 3 6 1 2 5)

(6 3 5 1 2 4)

Figure 6.11: Hasse diagram of the Weak SYT Poset and the Strong SYT Poset of λ = (3, 2, 1).
Each tableau is represented by its row reading word in these pictures.
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Chapter 7

ON A THEOREM OF BAXTER AND ZEILBERGER VIA A
RESULT OF ROSELLE

A version of this chapter has been reviewed by Romik and Zeilberger. It will be submitted

for publication in the near future [96], after the possibility of strengthening the argument to

give a local limit theorem has been fully explored.

7.1 Main Results

As in Chapter 1, for a permutation w = w1 · · ·wn ∈ Sn, the inversion and major index

statistics are given by

inv(w) := #{i < j : wi > wj} and maj(w) :=
∑

i∈[n−1]
wi>wi+1

i.

It is well-known that inv and maj are equidistributed on Sn with common mean and standard

deviation

µn =
n(n− 1)

4
and σ2

n =
2n3 + 3n2 − 5n

72
.

(These results also follow easily from the arguments in this chapter.) In [7], Baxter and Zeil-

berger proved that inv and maj are jointly independently asymptotically normally distributed

as n→∞. More precisely, define normalized random variables on Sn

Xn :=
inv−µn
σn

, Yn :=
maj−µn

σn
. (7.1)
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Theorem 7.1.1 (Baxter–Zeilberger, [7]). For each u, v ∈ R, we have

lim
n→∞

P[Xn ≤ u, Yn ≤ v] =
1

2π

∫ u

−∞

∫ v

−∞
e−x

2/2e−y
2/2 dy dx.

See [7] for further historical background. Baxter and Zeilberger’s argument involves mixed

factorial moments and recurrences based on combinatorial manipulations with permutations.

Romik suggested a generating function due to Roselle, quoted as Theorem 7.2.2 below,

should provide another approach. Zeilberger subsequently offered a $300 reward for such an

argument. The aim of this chapter is to give such a proof. For further context, see [103] and

[98].

7.2 Consequences of Roselle’s Formula

Here we recall Roselle’s formula, originally stated in different but equivalent terms, and derive

a generating function expression which quickly motivates Theorem 7.1.1.

Definition 7.2.1. Let Hn be the bivariate inv,maj generating function on Sn, i.e.

Hn(p, q) :=
∑
w∈Sn

pinv(w)qmaj(w).

Theorem 7.2.2 (Roselle, [77]). We have

∑
n≥0

Hn(p, q)zn

(p)n(q)n
=
∏
a,b≥0

1

1− paqbz
(7.2)

where (p)n := (1− p)(1− p2) · · · (1− pn).

The following is the main result of this section.

Theorem 7.2.3. There are constants cµ ∈ Z indexed by integer partitions µ such that

Hn(p, q)

n!
=

[n]p![n]q!

n!2
Fn(p, q) (7.3)
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where

Fn(p, q) =
n∑
d=0

[(1− p)(1− q)]d
∑
µ`n

`(µ)=n−d

cµ∏
i[µi]p[µi]q

(7.4)

and [n]p! := [n]p[n− 1]p · · · [1]p, [c]p := 1 + p+ · · ·+ pc−1 = (1− pc)/(1− p).

An explicit expression for cµ is given below in (7.12). The rest of this section is devoted

to proving Theorem 7.2.3. Straightforward manipulations with (7.2) immediately yield (7.3)

where

Fn(p, q) := (1− p)n(1− q)nn! · {zn}

(∏
a,b≥0

1

1− paqbz

)
(7.5)

and {zn} here refers to extracting the coefficient of zn. Thus it suffices to show (7.5) implies

(7.4). By standard arguments, the zn coefficient of the product over a, b in (7.5) is the

bivariate generating function of size-n multisets of pairs (a, b) ∈ Z2
≥0, where the weight of

such a multset is its sum.

Definition 7.2.4. For λ ` n, let Mλ be the bivariate generating function for multisets of

pairs (a, b) ∈ Zn≥0 of type λ, i.e. some element has multiplicity λ1, another element has

multiplicity λ2, etc.

We clearly have

{zn}

(∏
a,b≥0

1

1− paqbz

)
=
∑
λ`n

Mλ(p, q), (7.6)

though the Mλ are inconvenient to work with, so we perform a change of basis.

Definition 7.2.5. Let P [n] denote the lattice of set partitions of [n] := {1, 2, . . . , n} with

minimum 0̂ = {{1}, {2}, . . . , {n}} and maximum 1̂ = {{1, 2, . . . , n}}. Here Λ ≤ Π means

that Π can be obtained from Λ by merging blocks of Λ. The type of a set partition Λ is the

integer partition obtained by rearranging the list of the block sizes of Λ in weakly decreasing

order. For λ ` n, set

Λ(λ) := {{1, 2, . . . , λ1}, {λ1 + 1, λ1 + 2, . . . , λ1 + λ2}, . . .},
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which has type λ.

Definition 7.2.6. For Π ∈ P [n], let RΠ denote the bivariate generating function for lists

L ∈ (Z2
≥0)n where for each block of Π the entries in L from that block are all equal. Similarly,

let SΠ denote the bivariate generating function of lists L where in addition to entries from

the same block being equal, entries from two different blocks are not equal.

We easily see that

RΛ(p, q) =
∏
A∈Λ

1

(1− p#A)(1− q#A)
(7.7)

and that

RΛ(p, q) =
∑

Π:Λ≤Π

SΠ, (7.8)

so that, by Möbius inversion on P [n],

SΠ =
∑

Λ:Π≤Λ

µ(Π,Λ)RΛ. (7.9)

Under the “forgetful” map from lists to multisets, a multiset of type λ ` n has fiber of size(
n
λ

)
. It follows that

SΠ(λ) =
n!

λ!
Mλ (7.10)

where λ! := λ1!λ2! · · · . Combining in order (7.5), (7.6), (7.10), (7.9), and (7.7) gives

Fn(p, q) =
n∑
d=0

[(1− p)(1− q)]d
∑
λ`n

λ!
∑

Λ:Π(λ)≤Λ
#Λ=n−d

µ(Π(λ),Λ)∏
A∈Λ[#A]p[#A]q

. (7.11)

Now (7.4) follows from (7.11) where

cµ =
∑
λ`n

λ!
∑

Λ:Π(λ)≤Λ
type(Λ)=µ

µ(Π(λ),Λ). (7.12)

This completes the proof of Theorem 7.2.3.
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Remark 7.2.7. From (7.12), c(1n) = 1 since the sum only involves Λ = 0̂. Letting p → 1

in (7.4), the only surviving term is d = 0 and λ = (1n). Consequently, Hn(1, q) = [n]q!,

recovering a classic result of MacMahon [61, §1].

Remark 7.2.8. Using (7.3), we see that the probability generating function (discussed below

in Example 7.4.3) Hn(p, q)/n! differs from [n]p![n]q!/n!2 by precisely the correction factor

Fn(p, q). Using (7.5), this factor has the following combinatorial interpretation:

Fn =
n! · g.f. of size-n multisets from Z2

≥0

g.f. of size-n lists from Z2
≥0

.

Intuitively, the numerator and denominator should be the same “up to first order.” Theo-

rem 7.3.1 will give one precise sense in which they are asymptotically equal.

7.3 Estimating the Correction Factor

This section is devoted to showing that the correction factor Fn(p, q) from Theorem 7.2.3

is negligible in an appropriate sense, Theorem 7.3.1. Recall that σn denotes the standard

deviation of inv or maj on Sn.

Theorem 7.3.1. Uniformly on compact subsets of R2, we have

Fn(eis/σn , eit/σn)→ 1 as n→∞.

We begin with some simple estimates starting from (7.11) which motivate the rest of

the inequalities in this section. We may assume |s|, |t| ≤ M for some fixed M . Setting

p = eis/σn , q = eit/σn , we have |1 − p| = |1 − exp(is/σn)| ≤ |s|/σn. For n sufficiently large

compared to M , we also have |s/σn| � 1 and so, for all c ∈ Z≥1, |[c]p| = |[c]exp(is/σn)| ≥ 1.

Thus for n sufficiently large, (7.11) gives

|Fn(eis/σn , eit/σn)− 1| ≤
n∑
d=1

|st|d

σ2d
n

∑
λ`n

λ!
∑

Λ:Π(λ)≤Λ
#Λ=n−d

|µ(Π(λ),Λ)|. (7.13)
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Lemma 7.3.2. Suppose λ ` n with `(λ) = n− k, and fix d. Then

∑
Λ:Π(λ)≤Λ
#Λ=n−d

µ(Π(λ),Λ) = (−1)d−k
∑

Λ∈P [n−k]
#Λ=n−d

∏
A∈Λ

(#A− 1)! (7.14)

and the terms on the left all have the same sign (−1)d−k. The sums are empty unless

n ≥ d ≥ k ≥ 0.

Proof. The upper order ideal {Λ ∈ P [n] : Π(λ) ≤ Λ} is isomorphic to P [n− k] by collapsing

the n − k blocks of Π(λ) to singletons. This isomorphism preserves the number of blocks.

Furthermore, recall that in P [n] we have

µ(0̂, 1̂) = (−1)n−1(n− 1)!,

from which it follows easily that

µ(0̂,Λ) =
∏
A∈Λ

(−1)#A−1(#A− 1)!. (7.15)

The result follows immediately upon combining these observations.

Lemma 7.3.3. Let λ ` n with `(λ) = n− k and n ≥ d ≥ k ≥ 0. Then

∑
Λ:Π(λ)≤Λ
#Λ=n−d

|µ(Π(λ),Λ)| ≤ (n− k)2(d−k). (7.16)

Proof. Using (7.14), we can interpret the sum as the number of permutations of [n− k] with

n− d cycles, which is a Stirling number of the first kind. There are well-known asymptotics

for these numbers, though the stated elementary bound suffices for our purposes. We induct

on d. At d = k, the result is trivial. Given a permutation of [n− k] with n− d cycles, choose

i, j ∈ [n− k] from different cycles. Suppose the cycles are of the form (i′ · · · i) and (j · · · j′).
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Splice the two cycles together to obtain

(i′ · · · i j · · · j′).

This procedure constructs every permutation of [n− k] with n− (d+ 1) cycles and requires

no more than (n− k)2 choices. The result follows.

Lemma 7.3.4. For n ≥ d ≥ k ≥ 0, we have

∑
λ`n

`(λ)=n−k

λ!
∑

Λ:Π(λ)≤Λ
#Λ=n−d

|µ(Π(λ),Λ)| ≤ (n− k)2d−k(k + 1)!. (7.17)

Proof. For λ ` n with `(λ) = n− k, λ! can be thought of as the product of terms obtained

from filling the ith row of λ with 1, 2, . . . , λi. Alternatively, we may fill the cells of λ as

follows: put n− k one’s in the first column, and fill the remaining cells with the numbers

2, 3, . . . , k+1 starting at the largest row and proceeding left to right. It’s easy to see the labels

of the first filling are bounded above by the labels of the second filling, so that λ! ≤ (k + 1)!.

Furthermore, each λ ` n with `(λ) = n− k can be constructed by first placing n− k cells in

the first column and then deciding on which of the n− k rows to place each of the remaining

k cells, so there are no more than (n− k)k such λ. The result follows from combining these

bounds with (7.16).

Lemma 7.3.5. For n sufficiently large, for all 0 ≤ d ≤ n we have

∑
λ`n

λ!
∑

Λ:Π(λ)≤Λ
#Λ=n−d

|µ(Π(λ),Λ)| ≤ 3n2d.

Proof. For n ≥ 2 large enough, for all n ≥ k ≥ 2 we see that (k + 1)! < nk−1. Using (7.17)
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gives

∑
λ`n

λ!
∑

Λ:Π(λ)≤Λ
#Λ=n−d

|µ(Π(λ),Λ)| ≤
d∑

k=0

(n− k)2d−k(k + 1)!

≤ n2d + 2(n− 1)2d−1 +
d∑

k=2

(n− k)2d−knk−1

≤ n2d + 2n2d−1 +
d∑

k=2

n2d−1

= n2d + 2n2d−1 + (d− 1)n2d−1 ≤ 3n2d.

We may now complete the proof of Theorem 7.3.1. Combining Lemma 7.3.5 and (7.13)

gives

|Fn(eis/σn , eit/σn)− 1| ≤ 3
n∑
d=1

(Mn)2d

σ2d
n

.

Since σ2
n ∼ n3/36 and M is constant, (Mn)2d/σ2d

n ∼ (362M2/n)d. Since M is constant, using

a geometric series it follows that

lim
n→∞

n∑
d=1

(Mn)2d

σ2d
n

= 0,

completing the proof of Theorem 7.3.1.

Remark 7.3.6. Indeed, the argument shows that |Fn(eis/σn , eit/σn) − 1| = O(1/n). The

above estimates are particularly far from sharp for large d, though for small d they are quite

accurate. Working directly with (7.11), one finds the d = 1 contribution to be

(1− p)(1− q)
2−

(
n
2

)
[2]p[2]q

.

Letting p = eis/σn , q = eit/σn , straightforward estimates shows that this is Ω(1/n). Conse-
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quently, the preceding arguments are strong enough to identify the leading term, and in

particular

|Fn(eis/σn , eit/σn)− 1| = Θ(1/n).

7.4 Deducing Baxter–Zeilberger’s Result

We next summarize enough of the standard theory of characteristic functions to prove

Theorem 7.1.1 using (7.3) and Theorem 7.3.1.

Definition 7.4.1. The characteristic function of an Rk-valued random variable X =

(X1, . . . , Xk) is the function φX : Rk → C given by

φX(s1, . . . , sk) := E[exp(i(s1X1 + · · ·+ skXk))].

Example 7.4.2. It is well-known that the characteristic function of the standard normal

random variable with density 1√
2π
e−x

2/2 is e−s
2/2. Similarly, the characteristic function of a

bivariate jointly independent standard normal random variable with density 1
2π
e−x

2/2−y2/2 is

e−s
2/2−t2/2.

Example 7.4.3. If W is a finite set and stat = (stat1, . . . , statk) : W → Zk≥0 is some statistic,

the multivariate probability generating function of stat on W is

P (x1, . . . , xk) :=
1

#W

∑
w∈W

x
stat1(w)
1 · · ·xstatk(w)

k .

The characteristic function of the corresponding random variable X where the w are chosen

uniformly from W is

φX(s1, . . . , sk) = P (eis1 , . . . , eisk).

From Example 7.4.3, Remark 7.2.7, and an easy calculation, it follows that the character-

istic functions of the random variables Xn and Yn from (7.1) are

φXn(s) = e−iµns/σn
[n]eis/σn !

n!
and φYn(t) = e−iµnt/σn

[n]eit/σn !

n!
. (7.18)
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An analogous calculation for the random variable (Xn, Yn) together with (7.18) and (7.3)

gives

φ(Xn,Yn)(s, t) = e−i(µns/σn+µnt/σn)Hn(eis/σn , eit/σn)

n!

= φXn(s)φYn(t)Fn(eis/σn , eit/σn).

(7.19)

Theorem 7.4.4 (Multivariate Lévy Continuity, [18, Thm. 2.6.9]). Suppose that X(1), X(2), . . .

is a sequence of Rk-valued random variables and X is an Rk-valued random variable. Then

X(1), X(2), . . . converges in distribution to X if and only if φX(n) converges pointwise to φX .

If the distribution function of X is continuous everywhere, convergence in distribution

means that for all u1, . . . , uk we have

lim
n→∞

P[X
(n)
i ≤ ui, 1 ≤ i ≤ k] = P[Xi ≤ ui, 1 ≤ i ≤ k].

Many techniques are available for proving that inv and maj on Sn are asymptotically normal.

The result is typically attributed to Feller.

Theorem 7.4.5. [25, p. 257] The sequences of random variables Xn and Yn from (7.1) each

converge in distribution to the standard normal random variable.

We may now complete the proof of Theorem 7.1.1. From Theorem 7.4.5 and Example 7.4.2,

we have for all s, t ∈ R

lim
n→∞

φXn(s) = e−s
2/2 and lim

n→∞
φYn(t) = e−t

2/2. (7.20)

Combing in order (7.20), (7.19), and Theorem 7.3.1 gives

lim
n→∞

φ(Xn,Yn)(s, t) = e−s
2/2−t2/2.

Theorem 7.1.1 now follows from Example 7.4.2 and Theorem 7.4.4.
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[10] Sara C. Billey, Matjaž Konvalinka, and Joshua P. Swanson. Distribution of major index
for standard tableaux and asymptotic normality. In preparation, 2018.

[11] Patrick Billingsley. Probability and Measure. Wiley Series in Probability and Mathe-
matical Statistics. John Wiley & Sons, Inc., New York, third edition, 1995.
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