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March 28th, 2016: Introduction, Polytopes, Face Lattices, Graphs

1 Remark
The course web page is www.math.washington.edu/~novik/583. Office hours are on Tuesdays from
1:30-2:30 and Fridays from 10:30-11:30 in C-416. Textbooks include Ziegler, Grünbaum, Barvinok, and
Matousek. See the class description on the course web site for more precise references.

2 Definition
We will use Rd ∶= {(x1, . . . , xd) ∶ xi ∈ R} with the standard topology and inner product.

3 Definition
A subset C ⊂ Rd is convex if for all x, y ∈ C, the line connecting x and y lies entirely within C, i.e.

[x, y] ∶= {tx + (1 − t)y ∶ 0 ≤ t ≤ 1} ⊂ C.

where [x, y] is the interval between x and y.

4 Example
Rd itself is convex. A hyperplane is

h ∶= {x ∶ ⟨a, x⟩ = b}

where a ∈ Rd is non-zero, b ∈ R are fixed. The corresponding closed half-spaces are

h− ∶= {x ∶ ⟨a, x⟩ ≤ b}

h+ ∶= {x ∶ ⟨a, x⟩ ≥ b}

We may likewise define open half-spaces by replacing inequality with strict inequality.

5 Remark
The arbitrary intersection of convex sets is convex, which follows immediately from the definition. We

will take the convention that the empty intersection is Rd itself (where of course we will have fixed
some dimension beforehand), which is indeed convex.

6 Definition
If X ⊂ Rd, then the convex hull of X is

conv(X) ∶=⋂ convex sets that contain X,

which is itself convex.
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7 Example
Consider six points in the plane, where four of the points are vertices of a trapezoid and two of the
points are inside the trapezoid. The convex hull of those six points is the (closed) trapezoid. Note that
the convex hull of finitely many points is necessarily bounded.

8 Definition
A V -polytope is a convex hull of finitely many points.

9 Definition
An H-polyhedron is an intersection of finitely many closed half-spaces.

10 Example
Take two half-spaces in the plane whose borders are parallel to the x-axis and which intersect in a
“strip.” The result is an unbounded H-polyhedron, so it cannot be a V -polytope.

11 Definition
An H-polytope is a bounded H-polyhedron, i.e. a bounded intersection of finitely many closed

half-spaces.

12 Remark
One of our first goals is to prove the following equivalence of the preceding polytope definitions, after

which we will be able to just use the term polytope .

13 Theorem
A subset X ⊂ Rd is an H-polytope if and only if it is a V -polytope.

14 Definition
If K ⊂ Rd is closed and convex, then a hyperplane h ⊂ Rd is a supporting hyperplane of K if

(i) h ∩K ≠ ∅

(ii) All points of K lie on the same side of h, i.e. h+ ∩K =K or h− ∩K =K.

(Condition (ii) is independent of the choice of a and b above.)

15 Definition
A face of K is the intersection of K with a supporting hyperplane.

16 Example
Consider a semi-circle in the plane. Any tangent vector to the circular part is a supporting hyperplane.
At the vertices of the semi-circle, there are many supporting hyperplanes intersecting the semi-circle
only at that vertex. This shows that every point on the circular part is itself a face, and the straight
part is also a face.

17 Definition
If K is convex, the dimension of K is

dimK ∶= dim of the smallest affine subspace that contains K.

Here an affine subspace is any translation of a linear subspace. The smallest such subspace is often

called the affine hull of K.

18 Example
The dimension of the closed unit disk in R2 is 2. The dimension of a line segment (not a singleton) in

any Rd is 1.
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19 Remark
A face of a convex set is a convex set. Note that any hyperplane h = h+ ∩ h− is an H-polyhedron. If P
is an H-polytope, it is a bounded set of the form P = ∩h+i , and it follows that a face of P is itself an
H-polytope.

20 Definition
0-dimensional faces of P are called vertices . 1-dimensional faces of P are called edges .

Codimension-1 faces are called facets . Codimension-2 faces are called ridges . We call ∅ and

P improper faces .

21 Remark
A preview of things to come: we’ll show for a polytope P that. . .

• A face of a polytope is a polytope.

• The set L(P ) of all faces of P including ∅, P can be partially ordered by P , giving it the structure
of a graded lattice with minimum and maximum.

• A polytope has finitely many faces, i.e. L(P ) is finite.

• The dual L(P )op, i.e. L(P ) ordered by reverse inclusion, is the face lattice of some polytope Q
called the dual of P . (Q is only defined up to combinatorial type.)

• If F ≤ G are faces of P , the interval [F,G] is also the face lattice of a polytope.

22 Example
There are many polytopes which are geometrically different but have the same face lattice. For a
simple example, every (non-degenerate) quadrilateral in R2 has the same face lattice.

23 Definition
Two polytopes P and Q are combinatorially isomorphic if

L(P ) ≅ L(Q)

as abstract lattices.

24 Remark
One may continuously deform a quadrilateral into a triangle, which clearly does not preserve the
isomorphism class of the underlying face lattice.

25 Definition
The graph of a polytope P , denoted G(P ) is a graph whose vertices are the vertices of P and whose

edges are the edges of P .

26 Remark
Can we reconstruct the face lattice of a polytope from its graph? The answer is “sometimes.” We have

27 Theorem (Steinitz, circa 1922)
A (finite, simple) graph is the graph of a 3-dimensional polytope if and only if it is planar and
3-connected.

Recall that planar means we can draw the graph in the plane without edges intersecting at interior
points. Intuitively, if we have a polytope and “look at it” very close to one of the vertices, we’ll see a
planar graph. Also, a graph is 3-connected if you cannot disconnect it by removing 3 vertices. It is not
too hard to show that these conditions on a graph are necessary, but sufficiency takes more work. In
the three-dimensional case, the graph does indeed determine the combinatorial isomorphism type.

28 Corollary
For all 3-dimensional polytopes P , there exists a combinatorially isomorphic polytope Q such
that all vertices of Q have rational coordinates.
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One would naively think the analogue would be true in all dimensions by “wiggling” each vertex
slightly. However, one encounters issues when faces are not simplices. Already for the cube, each
face is in a sense overdetermined, so “wiggling” some of the vertices will almost never preserve the
combinatorial isomorphism type.

29 Open Problem
Does every 3-polytope admit a realization with all edges having rational lengths?

The analogue of Steinitz’ theorem is indeed false already in dimension 4.

30 Theorem (Richter-Gebert, 1995)
There exists a 4-dimensional polytope with 33 vertices that has no realization with rational
coordinates.

(That is, there is no polytope combinatorially isomorphic to it all of whose vertices have rational
coordinates.)

31 Theorem (Perles)
There exists an 8-dimensional polytope with 12 vertices that has no realization with rational
coordinates.

Can we at least figure out the dimension from the graph? Not in general: for all d ≥ 4 and all
n ≥ d + 1, there exists a d-dimensional polytope P with n vertices such that G(P ) =Kn where Kn is
the complete graph on n-vertices. Indeed, as n grows, there are exponentially many such graphs. On
the other hand, we have:

32 Theorem (Blind-Blind, 1987)
The face lattice of a simple polytope can be reconstructed from its graph.

The proof is constructive/produces an algorithm. We will hopefully go through Gil Kalai’s proof
this quarter.

33 Definition
If P is a d-dimensional polytope and v is a vertex of P , then v lies in at least d edges. We call

P a simple polytope if every vertex lies in exactly d edges.

For instance, a (closed) cube in R3 is a simple polytope. A square pyramid is not simple since the
apex has 4 incident edges instead of 3.

34 Definition
Let P be a polytope. The face numbers of P are

fi ∶= #number of i-dimensional faces of P .

35 Conjecture (Hirsh, 1957)
If P is a d-dimensional polytope with n facets, then the diameter of G(P ) is ≤ n − d.

36 Theorem (Santos, 2010)
The conjecture is false. Further questions remain, e.g. is the diameter a polynomial?

March 30th, 2016: Convex Combinations; Theorems of Radon,
Tverberg, Helly, Caratheodory
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37 Remark
Homework 1 has been posted on our web page and is due next Friday. Some possible papers for
presentations are also on the web page.

38 Remark
Today we’ll discuss general facts about convex sets. Recall that a subset of Rd is called convex if for all
x, y ∈ C, the interval [x, y] ∶= {tx + (1 − t)y ∶ 0 ≤ t ≤ 1} ⊂ C. Any intersection of convex sets is convex,
and the convex hull of a subset S in Rd is the intersection of all convex sets containing S, which is
hence convex. This description is well-defined but unwieldy, so we will first describe conv(S) in a “nice
algebraic” way.

Note: today we will give many details, though later we will leave more details up to the reader.

39 Example
Consider a triangle with vertices x, y, z. Any point on the edge from x to z is a linear combination of
x, z, and any point in the interior of the triangle lies on a line from y to a point on the edge between x
and z. Writing things out formally, one finds

conv{x, y, z} = {αx + βy + γz ∶ α,β, γ ≥ 0, α + β + γ = 1}.

40 Proposition
Given a set S ⊂ Rd, we have

conv(S) = {
m

∑
i=1

αipi ∶m ∈ N, αi ≥ 0,∑
i

αi = 1, pi ∈ S} .

Proof Call the right-hand side A. We need to show that A ⊃ S, that A is convex, and that for all
convex C ⊃ S, C ⊃ A. We have:

A ⊃ S: If p ∈ S, then p = 1 ⋅ p ∈ A.

A is convex: If p, q ∈ A, then we may write p = ∑i αipi with αi ≥ 0, ∑i αi = 1, pi ∈ S, and q = ∑i βiqi with
βi ≥ 0, ∑i βi = 1, qi ∈ S. Since A allows zero coefficients, we may set X ∶= {pi}ni=1∪{qi}mi=1 =
{xj}j and write p = ∑j αjxj , q = ∑j βjxj with αj , βj ≥ 0 and ∑j αj = 1 = ∑j βj . Then for
all 0 ≤ t ≤ 1, we have

tp + (1 − t)q =∑
j

(tαj + (1 − t)βj)xj ,

where the coefficients in parentheses are evidently non-negative and sum to 1. Thus
tp + (1 − t)q ∈ A, as required.

C ⊃ A: Let C ⊃ S be convex. Pick any p ∈ A, so p = ∑mi=1 αipi, with αi ≥ 0, ∑i αi = 1, pi ∈ S. We
will show p ∈ C by induction on m. If m = 1, this says p = 1 ⋅ p ∈ S ⊂ C. If m > 1, then if
αm = 1, the remaining αi must be zero, and we again have p ∈ C, so suppose αm < 1. Now
write

p = (α1p1 +⋯ + αm−1pm−1) + αmpm

= (1 − αm)
m−1

∑
i=1

αi
1 − αm

pi + αmpm =∶ (1 − αm)q + αmpm.

If q ∈ C, then since pm ∈ C, the above shows p ∈ C by convexity. Notice that the coefficients
on q are certainly non-negative and they sum to 1 since

m−1

∑
i=1

αi
1 − αm

= ∑
m−1
i=1 αi

1 − αm
= 1 − αm

1 − αm
= 1.

Thus q is a convex combination of m− 1 points in C, which is inductively in A, completing
the proof.
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41 Remark
Points of the form ∑mi=1 αipi as above are called convex combinations . In the proof above, we
essentially showed that convex combinations of convex combinations are convex combinations.

42 Remark
For the rest of the lecture, we will discuss three nice theorems due to Radon, Helly, and Caratheodory.

43 Theorem (Radon, 1913)
Let x1, . . . , xm be m ≥ d + 2 points in Rd. Then there is a set partition

{1,2, . . . ,m} =∶ [m] = S∐T

such that
conv{xi ∶ i ∈ S}⋂ conv{xj ∶ j ∈ T} ≠ ∅.

44 Example
One may think of the two sets as arising from coloring points as red or blue. In dimension d = 1,
we have at least three points on a line. Color the outermost two points red and the interior
point blue.

In dimension d = 2, we have at least four points. If three of the points are vertices of a
triangle and the remaining point is inside the triangle, we are again done. If the four points
form a non-degenerate quadrilateral, we may color opposite vertices the same color, and we are
again done.

Proof We begin by adding an extra dimension, namely let vi ∶= ( 1
xi

) ∈ Rd+1. We have at least

m ≥ d+ 2 vectors in Rd+1, so they must be linearly dependent. That is, there exist λi ∈ R not all
zero such that ∑i λivi = 0. In particular,

∑
i

λi = 0, ∑
i

λixi = 0.

Set S ∶= {i ∈ [m] ∶ λi > 0}, T ∶= {j ∈ [m] ∶ λj ≤ 0}. Since the sum of the λi is zero and not all
coefficients are zero, it follows that both S and T are non-empty. Set t ∶= ∑i∈S λi = ∑j∈T −λj .
We now have

∑
i∈S

λi
t
xi = ∑

j∈T

−λj
t
xj .

The coefficients have been chosen to sum to 1 and are evidently non-negative, so we are done.

45 Theorem (Tverberg, 1966)
If p1, . . . , pm ∈ Rd where m ≥ (r − 1)(d + 1) + 1, then there exists a set partition

[m] = S1∐⋯∐Sr

such that
r

⋂
j=1

conv{pi ∶ i ∈ Sj} ≠ ∅.

46 Remark
The original proof was quite long, though if we have a spare lecture we could now prove it in an
hour. The r = 2 case is Radon’s theorem. There are now “colorful” and “topological” versions of
this result as well.

47 Theorem (Helly, 1921)
Let K1,K2, . . . ,Kn be convex sets in Rd, with n ≥ d+ 1 such that every d+ 1 of these sets have a point
in common. Then ∩ni=1Ki ≠ ∅.
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48 Example
At d = 1, we have a collection of closed intervals in the real line. Given that any pair of them
intersect non-trivially, one can quickly convince oneself that they all must intersect non-trivially
using the minimum/maximum of the intervals. At d = 2, a Venn diagram provides an instance of
this theorem: three circles arranged so that every two intersect non-trivially have a non-trivial
triple overlap.

Proof Idea: use induction on n. If n = d + 1, the statement is trivial. The inductive assumption for n
implies that for n − 1, so we may assume that

K1 ∩K2 ∩⋯ ∩ K̂i ∩⋯ ∩Kn ≠ ∅,

where the hat denotes we omit the ith term. We then have p1, . . . , pn ∈ Rd with n ≥ d + 2 for
which we can apply Radon’s theorem. The details are left to homework.

49 Remark
In the definition of conv(S), we allowed m ∈ N to be arbitrary. One may ask if it suffices to consider
only m up to a certain size. Caratheodory’s theorem says that we may choose d + 1 as this upper
bound. Precisely:

50 Theorem (Caratheodory)
If S ⊂ Rd and x ∈ conv(S), then there exists R ⊂ S such that ∣R∣ ≤ d + 1 such that x ∈ conv(R).

51 Example
Consider a non-degenerate hexagon. One may triangulate the hexagon using convex hulls of
triples of vertices, which is just a restatement of Caratheodory’s theorem in this context.

Proof Idea: let x = ∑mi=1 λipi with pi ∈ S, λi ≥ 0, ∑i λi = 1. We may restrict to the case when m = d+2.
As in the proof of Radon’s theorem, one may use linear dependence after “lifting” to a higher
dimension to eliminate one of the coefficients while the rest of the expression is still a convex
combination. The remaining details are again left to homework.

52 Definition
Let x1, . . . , xm ∈ Rd and consider vi ∶= ( 1

xi
) ∈ Rd+1. If there is a non-trivial linear dependence relation

between the vi, then we say that x1, . . . , xm are affinely dependent .

53 Remark
For further information on theorems along these lines, one may look at Matousek, §1.2, 1.3; or Igor
Pak, Ch. 1, Ch.2.

54 Remark
Next time we will prove a separation theorem for convex sets and use that theorem to begin proving
that V -polytopes and H-polytopes are equivalent.

April 1st, 2016: Separation theorem; Farkas’ Lemma; Duality

55 Remark
Today we’ll discuss the separation theorem and duality. Our goal is again laying groundwork for the
equivalence of V-polytopes and H-polytopes.

56 Theorem
Let C,D ⊂ Rd be disjoint compact convex sets. Then there exists a hyperplane h ⊂ Rd such that
C ⊂ h+ − h and D ⊂ h− − h.
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57 Example
Take two convex polygons in the plane which are disjoint. The the claim is that there is a line
touching neither polygon such that each polygon is on a different side of the line.

Compactness is essential for strict separation. For instance, suppose C ⊂ R2 is the closed
half-plane y ≤ 0 and D is the region above and including the right half of the hyperbola y = 1/x.
These are convex and disjoint, but any separating hyperplane h is forced to be the x-axis, which
is contained in C.

58 Remark
For a more general statement, see Matousek. The same statement holds if C is compact convex
and D is merely closed convex.

Indeed, if they are both merely convex (still disjoint), it works except we can no longer
guarantee that they intersect h trivially. That is, there exists a hyperplane h ⊂ Rd such that
C ⊂ h+, D ⊂ h−.

Proof Define dist∶Rd ×Rd → R by (x, y)↦ dist(x, y). Now dist∶C ×D → R is a continuous map from
a compact set to R, so it achieves its minimum, say d0. Since C,D are disjoint, d0 > 0. Now, we
have x0 ∈ C, y0 ∈D such that dist(x0, y0) = d0 and dist(x, y) ≥ d0 for all x ∈ C, y ∈D. Take h to
be the hyperplane perpendicular to the line segment [x0, y0] passing through the midpoint. Say
x0 ∈ h+ − h, y0 ∈ h− − h.

We must show C ⊂ h+−h, D ⊂ h−−h. Suppose to the contrary that we have some y′ ∈D∩h+.
Since D is convex, it contains the segment [y0, y

′], but dist(x0, [y′, y0]) < d0, a contradiction.

59 Lemma (Farkas, geometric statement)
If P = conv(V ) ⊂ Rd where V ⊂ Rd is finite, then either 0 ∈ P or there exists a hyperplane h ⊂ Rd such
that P ⊂ h+ − h and 0 ∈ h− − h.

Proof Say 0 /∈ P . Now {0} is convex and compact. Certainly P is convex. It is the convex hull of a
compact set, which is compact by homework, though we give a more direct argument as well. If
V = {v1, . . . , vr}, then conv(V ) is the set of convex combinations of v1, . . . , vr, which is evidently
a “closed condition.” Moreover, it is bounded: given ∑ni=1 αivi with αi ≥ 0, ∑i αi = 1, we have

∣∑
i

αivi∣ ≤∑
i

∣vi∣.

The result now follows from the separation theorem.

60 Remark
Suppose we have a matrix with d rows, n columns,

A = [v1 ⋯ vn]

with vi ∈ Rd. Let P ∶= conv{v1, . . . , vn}. Consider two cases:

0 ∈ P : We have 0 = ∑ni=1 αivi with αi ≥ 0, ∑i αi = 1. That is, Ax = 0 has a non-negative, non-trivial
solution.

0 /∈ P : By Farkas’ lemma, we have some hyperplane h such that P ⊂ h− − h and 0 ∈ h+. Recall that h is
defined in terms of constants a ∈ Rd −{0}, b ∈ R, so that 0 ∈ h+ −h says precisely that 0 = ⟨0, a⟩ > b,
so b is negative. On the other hand, vi ∈ h− − h says ⟨a, vi⟩ < b < 0. Equivalently, aTA has all
negative entries.

These considerations lead to the following version of Farkas’ lemma:

61 Lemma (Farkas’ lemma, algebraic version)
If A is a d × n matrix, then either Ax = 0 has a non-negative and non-trivial solution, or there exists

some a ∈ Rd such that aTA has all negative coordinates.
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62 Notation
For now we will use the term “duality” following Matousek, §5.1, 5.2. We will switch to “polarity”
later when we switch sources. We will use this notion to prove the equivalence of V-polytypes and
H-polytopes.

63 Remark
First, an intuitive discussion of duality. Given X ⊂ Rd, we can consider the set X∗ ⊂ (Rd)∗ given

by all linear functionals f ∶Rd → R whose values on X are all ≤ 1. Instead of working literally in the
dual space (Rd)∗, we will work in Rd by using the linear isomorphism induced by the standard inner
product. Precisely, use

Rd ∼→ (Rd)∗

a ∈ Rd ↦ ⟨−, a⟩.

64 Definition
The duality transform is the mapping D0 from non-zero points p ∈ Rd to hyperplanes D0(p) given

by
D0(p) ∶= {x ∈ Rd ∶ ⟨x, p⟩ = 1}.

65 Example
Using P = (2,0), D0(P ) is the line x = 1/2. Using P = (1,1), D0(P ) is the line x + y = 1. In
general, if P has distance δ from the origin, D0(P ) is the hyperplane perpendicular to the line
segment [0, P ] at distance 1/δ from the origin.

Let D0(p)− denote the half-space that contains 0.

66 Definition
Given X ⊂ Rd, define the dual of X as

X∗ ∶= ⋂
x∈X−{0}

D0(x)−.

67 Example
We have {0}∗ = Rd using our usual convention for empty intersections.

Now suppose X is the x-axis in R2. Then each non-zero point P ∈X has D0(P )− given by a
half-plane with boundary parallel to the y-axis containing 0. It follows that X∗ here is simply
the y-axis. Note that whether or not we include 0 in X does not affect the dual.

68 Remark
If X = conv(V ) for V a finite set, one may show that X∗ is ∩v∈V {v}∗. See homework.

69 Example
Let X be a triangle in the plane containing the origin as an interior point. One may check that
X∗ is also a triangle containing the origin.

Note that
X∗ = {y ∈ Rd ∶ ∀x ∈X, ⟨x, y⟩ ≤ 1}.

From now on, we may take this as the definition.

70 Remark
Our next goal is to try to understand X∗∗. First some general remarks about X∗.

Note that X∗ is the intersection of some closed half-spaces, which are closed and convex, so X∗ is
closed and convex. Certainly 0 ∈X∗. Also, A ⊂ B implies A∗ ⊃ B∗.

We may expect X∗∗ ⊃X, which by the above considerations implies X∗∗ ⊃ conv(X ∪ {0}). Indeed,
our next goal is to show equality holds.
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71 Theorem
X∗∗ = conv(X ∪ {0}).

72 Corollary
If X is convex, closed, and contains 0, then X∗∗ =X.

Proof For the ⊃ inclusion, as noted above it suffices to show X∗∗ ⊃X. If x ∈X, then ⟨x, y⟩ ≤ 1 for all
y ∈X∗ by definition. Since x ∈X∗∗ if and only if ⟨x, y⟩ ≤ 1 for all y ∈X∗, the inclusion follows.

We will prove the ⊂ inclusion next lecture. Equivalently, we may show that v /∈ conv(X ∪ {0})
implies v /∈X∗∗. Equivalently, we may show that there exists a ∈X∗ such that ⟨v, a⟩ > 1.

73 Remark
Imagine X is a closed circle in R3 not intersecting the origin. We are considering the cone
connecting X to the origin. For v not on that cone, by the separation theorem we have
some hyperplane dividing them. We will essentially choose a above as the vector defining
this hyperplane. More details next time.

April 4th, 2016: Duality, V-polytopes, and H-polytopes

74 Remark
Recall that if p ∈ Rd − {0}, then D0(p) ∶= {x ∈ Rd ∶ ⟨p, x⟩ = 1}, and D0(p)− ∶= {x ∈ Rd ∶ ⟨p, x⟩ ≤ 1}. One

may take D0(0)− ∶= Rd. If X ⊂ Rd, then the dual of X is X∗ ∶= ∩x∈XD0(x)− = {y ∈ Rd ∶ ⟨x, y⟩ ≤ 1,∀x ∈
X}.

75 Theorem
For any X ⊂ Rd, we have X∗∗ = conv(X ∪ {0}). In particular, if 0 ∈ X and X is closed and convex,
then X∗∗ =X.

Proof Last time we proved the easy direction, ⊃, by showing X∗∗ ⊃X. Today we will give the other
containment, or really its contrapositive.

For convenience, call the right-hand side Q. Pick v ∈ Rd −Q. We must show v /∈X∗∗. Since
Q is closed and convex, and {v} is trivially compact and convex, by the separation theorem
we have some hyperplane h that strictly separates v and Q. Since 0 ∈ Q, we have 0 /∈ h, so we
can “normalize” h and write h ∶= {x ∶ ⟨a, x⟩ = 1}. Since ⟨0, a⟩ = 0 < 1, we have Q ⊂ h− − h and
v ∈ h+ − h. Hence ⟨v, a⟩ > 1 and for all x ∈ Q, ⟨x, a⟩ ≤ 1. Since X ⊂ Q, this last statement says
a ∈X∗. However, ⟨v, a⟩ > 1 now says v /∈X∗∗, completing the proof.

76 Remark
During the proof, we may imagine some point v and some cone over a set X which is convex and
closed, which are separated by h. After normalizing, the normal of h is in X∗ but not in X∗∗.

77 Remark
Last time we proved the separation theorem for two compact convex disjoint sets, but we stated
it remains true when one of the sets is merely closed instead of compact. The rough argument
for proving this is to intersect the closed set with some large enough ball so that the distance is
unchanged, which reduces to the “both compact” case. See Matousek for more details and the
case when neither is compact.

78 Exercise
The following appear in homework:

• If C ⊂ Rd is convex, then C∗ is bounded if and only if 0 ∈ Int(C).
(Recall that the interior of a subset of a topological space is the set of points in the subset such
that the subset contains an open set in the ambient space containing that point.)
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• If P = conv{v1, . . . , vn}, then P ∗ = ∩ni=1D0(vi)− = ∩ni=1{x ∈ Rd ∶ ⟨x, vi⟩ ≤ 1}.

79 Corollary
We have the following:

• If P is a V -polytope, then P ∗ is an H-polyhedron.

• Moreover, if P is a V -polytope and 0 ∈ Int(P ), then P ∗ is an H-polytope.

The corollary will essentially give us one direction of the H-polytope/V-polytope equivalence for
free from the other direction, which we are now ready to prove.

80 Theorem
Each V-polytope is an H-polytope, and each H-polytope is a V-polytope.

81 Remark
This proof follows Edmonds as given by Matousek, §5.1.

Proof We begin by showing that every H-polytope is a V-polytope. We induct on d where P ⊂ Rd.
Begin at d = 1. We may assume P is in R1 and that P is a finite, bounded intersection of closed
rays. This is either a closed interval [a, b] with a ≠ b, a point, or ∅. These are, respectively,
conv{a, b}, conv{a}, conv(∅), which are all V-polytopes.

Now suppose d > 1. Let P = ∩mi=1h
−
i be a non-empty, bounded, finite intersection of closed

half-spaces in Rd. Let
Fi ∶= P ∩ hi = (∩mj=1h

−
j ) ∩ (h−i ∩ h+i ).

Thus Fi ⊂ hi is an H-polyhedron when we identify hi with Rd−1, and it inherits boundedness, so
Fi is an H-polytope. By induction, Fi is a V-polytope, so we have a finite set Vi ⊂ hi such that
Fi = conv(Vi). Set V ∶= ∪iVi. It suffices to show that P = conv(V ).

Pick any x ∈ P . Let ` be any line passing through x and consider ` ∩ P . Since P is
compact, convex, we have ` ∩ P = [y, z]. We claim y, z ∈ ∪ihi. If not, say y /∈ ∪ihi, then
y ∈ P − ∪ihi = ∩i(h−i − hi). This latter intersection is open, so there is an open neighborhood
around y contained entirely in P , so we can extend the interval [y, z], a contradiction. Hence
y, z ∈ ∪iFi, so convex combinations of y, z belong to conv(V ), giving x ∈ conv(V ) and completing
the proof of this direction.

We now show that every V-polytope is an H-polytope. Let P = conv(V ) for V ⊂ Rd finite.
We may assume P is full dimensional (by restricting to the affine hull of P if needed) and
0 ∈ Int(P ) (by translating if needed). Then by the corollary above, P ∗ is an H-polytope, so
by the other direction, P ∗ is a V-polytope. Again using the corollary, P ∗∗ is an H-polyhedron.
By the first theorem from today’s lecture, P = P ∗∗ is a bounded H-polyhedron, completing the
proof.

82 Remark
As an exercise, justify the 0 ∈ Int(P ) step above. Alternatively, see Isabella’s email.

83 Remark
Recall that a face of P is a non-empty intersection of the form F ∶= P ∩ h where h is a supporting
hyperplane of P , i.e. P ⊂ h+. Again, 0-dimensional faces are vertices, 1-dimensional faces are edges,
codimension-1 faces are facets, codimension-2 faces are ridges.

At present, we do not know that polytopes have finitely many faces, or that a polytope is the
convex hull of its vertices. We next deal with these deficiencies.

84 Theorem
Let P ⊂ Rd be a polytope. Consider

{V ⊂ Rd ∶ ∣V ∣ <∞, conv(V ) = P},

which is non-empty by the preceding theorem. Let V0 be a minimal element of this set. Then:

12



(a) V0 is the vertex set of P .

(b) If F is a face of P , then the vertex set of F is V0 ∩ F .

(c) Fix a face F of P . G is a face of F if and only if G ⊂ F and G is a face of P .

(d) If F,F ′ are faces of P , then F ∩ F ′ is a face of P .

85 Definition
If P ⊂ Rd is a polytope, write vert(P ) for the set of vertices of P . This is finite by (a).

Proof (a) Suppose v ∈ vert(P ). Let h be a supporting hyperplane of P such that P ∩ h = {v}
and P ⊂ h−. Then P − {v} = P ∩ (h− − h) is convex, so conv(P − {v}) ⊂ h− − h, and
v ∈ h ⇒ v /∈ h− − h, so v /∈ conv(P − {v}). It follows that any V above must contain v, so
v ∈ V0, giving vert(P ) ⊂ V0.

For the other inclusion, pick v ∈ V0 and set C ∶= conv(V0 − {v}). By minimality, C ⊊ P =
conv(V0), so v /∈ C. By the separation theorem, we have a hyperplane separating {v} and C.
We will finish this argument next lecture.

April 6th, 2016: Faces, Vertices, Simplicies, and the Face Lattice
Revisited

86 Remark
Today we’ll discuss faces of a polytope. We begin by finishing the theorem from the end of last class.

Note that homework 1 is due on Friday. There are office hours on Friday from 10:30 to 11:30.

87 Theorem
Let P ⊂ Rd be a polytope, and let V0 be an inclusion-minimal set among all sets V such that
P = conv(V ). Then

(a) V0 is the vertex set of P , and so P is the convex hull of its vertex set.

(b) If F is a face of P , then vert(F ) = F ∩ vert(P ).

(c) If F is a face of P , then G is a face of F if and only if G ⊂ F is a face of P .

(d) If F,F ′ are faces of P , then F ∩ F ′ is a face of P .

Proof Last time we got through half of part (a), namely vert(P ) ⊂ V0. So, consider the reverse
inclusion. Let v ∈ V0 and consider P ′ ∶= conv(V0 − {v}). By minimality of V0, we have P ′ ⊊ P ,
and in particular v /∈ P ′. By the separation theorem, there exists a hyperplane h that strictly
separates v and P ′. Let hv be the translation of h such that v ∈ hv. To show that v is a vertex
of P , it suffices to check that hv is a supporting hyperplane of P and that hv ∩ P = {v}. We
may say P ′ ⊂ h+ − h, so P ′ ⊂ h+v − hv. In particular, we may take as usual

hv ∶= {x ∶ ⟨x, a⟩ = b}

where v ∈ hv says ⟨v, a⟩ = b and V0 − {v} ⊂ h+v − hv says for all x ∈ V0 − {v}, ⟨v, a⟩ > b. Then for
any x ∈ P = conv(V0) we have a convex combination

x = αvv + ∑
w∈V −{v0}

αww.

13



where αw ≥ 0 and ∑αw = 1. Hence

⟨x, a⟩ = αv⟨v, a⟩ + ∑
w∈V0−{v}

αw⟨w,a⟩

≥ αvb + ∑
w∈V0−{v}

αwb = b.

where we have equality if and only if all αw = 0 for w ∈ V0 − {v}, so if and only if x = v. This
completes (a).

For (b), write F ∩ vert(P ) = {v1, . . . , vr} and V0 − F = {vr+1, . . . , vn}. Since F is a face, we
have a supporting hyperplane

h ∶= {x ∈ Rd ∶ ⟨x, a⟩ = b}

such that ⟨x, a⟩ = b for all x ∈ F and ⟨x, a⟩ > b for all x ∈ P − F . If x ∈ F ⊂ P , we have a convex
combination

x = ∑
w∈V0

αww =
r

∑
i=1

αivi +
n

∑
j=r+1

αjvj

with αw ≥ 0, ∑w αw = 1. We compute

b = ⟨x, a⟩ =
r

∑
i=1

αi⟨vi, a⟩ +
n

∑
j=r+1

αj⟨vj , a⟩

≥
r

∑
i=1

αib +
n

∑
j=r+1

αjb ≥ .

Indeed, equality holds if and only if αj = 0 for all j ∈ [r + 1, n]. Thus, x ∈ F iff x ∈
conv{v1, . . . , vr} = conv(V0 ∩ F ). Note that F itself is a polytope since F = P ∩ h+ ∩ h−,
so if we can show that V0 ∩ F is inclusion-minimal for finite sets whose convex hull is F , by
(a) we will be done. By minimality of V0, no vertex of V0 ∩ F is a convex combination of the
remaining vertices of V0 ∩ F , so V0 ∩ F is indeed minimal.

The proof of (c) is a problem on homework 2.

For (d), if F,F ′ are faces, we have h,h′ hyperplanes given by a, b;a′, b′, as above, where
h∩P = F , h′ ∩P ′ = F ′, P ⊂ h+, P ′ ⊂ (h′)+. Consider the hyperplane determined by a+ a′, b+ b′.
This is a supporting hyperplane which one may check intersects P in F ∩ F ′.

88 Remark
During the proof that V0 ⊂ vert(P ), we imagine that P is a convex polygon in R2 and that P ′ is
obtained by deleting one of the vertices v. Now h is a separating hyperplane of v and P ′, which
can be translated to pass through v.

(a) and (b) together imply that any polytope has only finitely many faces, since the faces
are determined by subsets of vert(P ), of which there are finitely many.

89 Aside
Take a d-dimensional polytope P and compute the number fi of i-dimensional faces of P . We would
hope that fi(P ) = min{f0(P ), fd−1(P )}, i.e. the number vertices or facets is where the minimum of
the fi is achieved. This is an open problem, at least for d large enough (probably open for d ≥ 8). It is
true for simple and simplicial polytopes, but not for the “intermediate” cases. Note that the following
relatively natural conjecture is false:

f0 ≤ f1 ≤ ⋯ ≤ fp ≥ fp+1 ≥ ⋯,

i.e. the fi need not be unimodal.

90 Example
We next discuss an important example of extremely well-behaved polytopes.
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91 Definition
A simplex is the convex hull of affinely independent points, i.e. ( 1

vi
) are linearly independent

and our simplex is conv{v1, . . . , vd}.

92 Remark
Note that injective affine transformations preserve affine independence, supporting hyperplanes,
faces, convexity, etc. Hence we may as well consider the simplex with vi ∶= ei. That is

δd−1 ∶= conv{e1, . . . , ed} ⊂ Rd

is “the” d − 1-dimensional simplex. (One sometimes takes one of the vertices to be 0 to be more
“efficient” about using the dimension of the ambient space.)

We have that δ0 is a single point in R1, δ1 is the line segment [e1, e2] in R2, δ2 is the triangle
between e1, e2, e3, etc. Since all subsets of affinely independent subsets are affinely independent, it
follows that faces of simplicies are themselves simplicies.

93 Proposition
Every subset of {e1, . . . , ed} is the vertex set of a face of δd−1. Hence the face lattice L(δd−1) is
the subset lattice on [d], i.e. the boolean lattice of rank d.

Proof We have
conv{e1, . . . , ed} = {(x1, . . . , xd) ∶ xi ≥ 0,∑

i

xi = 1}.

Now let I ∶= {i0, . . . , ik} ⊂ [d]. and say FI ∶= conv{ei ∶ i ∈ I}. To see that FI is a face, we
produce a supporting hyperplane. Indeed, take

hI ∶= {x ∈ Rd ∶ ⟨x, ei1 +⋯ + eik⟩ = 1}.

Note that the ⟨x, ei1 +⋯ + eik⟩ = xi1 +⋯ + xik . If x ∈ δd−1, this is always ≤ 1, and this is 1
precisely when x ∈ FI , so hI ∩ δd−1 = FI .

94 Definition
Let P be a polytope. We may now formally define the face poset or face lattice of P , L(P ) , as

the set of faces of P ordered by inclusion, which includes ∅ and P . The following theorem summarizes
its basic properties.

95 Theorem
Let P be a polytope.

(1) L(P ) is a finite poset.

(2) L(P ) has minimum ∅ =∶ 0̂, maximum P =∶ 1̂. (This is sometimes called “bounded”.)

(3) The atoms of L(P ) (i.e. the minimal elements of L(P ) − {0̂}) are the vertices of P .

(4) F,F ′ ∈ L(P ) implies F ∩ F ′ ∈ L(P ), so every two elements of L(P ) have a meet.

(5) Every two elements of F and F ′ have a join, i.e. L(P ) is a lattice.

(6) If F ∈ L(P ), then L(F ) = [0̂, F ], so [0, F ] is the face lattice of a polytope.

(7) L(P ) is atomic (i.e. every face is the join of some atoms, namely its vertices).

Proof These are all straightforward or formal consequences of the preceding theorem.

April 8th, 2016: Face Lattices; Quotients; Simple and Simplicial
Polytopes
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96 Remark
Recall that if P is a polytope, L(P ) is the poset of all faces of P including ∅ and P ordered by
inclusion. We proved last time that L(P ) is in fact a finite lattice with several other nice properties.

97 Theorem
We have:

(1) L(P ) is a graded lattice.

(2) L(P )op is the face lattice of some polytope (namely, P ∗ if P is full-dimensional and 0 ∈ Int(P )).

(3) For all G ⊂ F with G,F ∈ L(P ), [G,F ] is the face lattice of a polytope.

98 Definition
Any polytope whose face lattice is isomorphic to the interval [G,P ] with G ∈ L(P ) is called the

quotient of P by G, denoted by P /G . Another name for the quotient is the link of G in P .

When G is a vertex, we call this quotient the vertex figure .

At present quotients are just defined up to combinatorial isomorphism. We will eventually
see how to think of them as subcomplexes in some nice cases, for instance when G = {v} at the
end of today’s lecture.

A polytope Q such that L(Q) ≅ L(P )op is called a combinatorial dual or sometimes just

“dual.” To avoid confusion with the geometric object P ∗, we will now call P ∗ the polar of P .

Hence (2) asserts that the polar of P is (usually) a combinatorial dual.

Proof We assume P is full-dimensional and 0 ∈ Int(P ).

(1) is proved in the next homework set. The argument uses induction, the map L(P )→ L(P ∗)
below, and the fact that given a vertex v, v̂ is a facet of P ∗.

We now consider (2), L(P ∗) ≅ L(P )op. We first define a map L(P ) → L(P ∗) as follows.
Given F ∈ L(P ), let

F̂ ∶= {x ∈ P ∗ ∶ ⟨x, y⟩ = 1,∀y ∈ F}.

We must show (a) F̂ is a face of L(P ∗) and (b) that F ↦ F̂ is an inclusion-reversing bijection
L(P )→ L(P ∗). The rough idea for (a) is to replace the defining condition for F̂ which quantifies
over infinitely many y with a single point in the “interior” of F .

(a) The relative interior of F is the set

rel int(F ) ∶= F − ⋃
G∈L(F )−{F}

G,

i.e. the set of points of F in none of F ’s proper faces. It is non-empty since the interior of a
non-empty polytope is in general non-empty. Pick x0 ∈ rel int(F ) and let

F ∗ ∶= {y ∈ P ∗ ∶ ⟨y, x0⟩ = 1},

which is the intersection of P ∗ and the hyperplane defined by a = x0, b = 1. By definition of
P ∗, this hyperplane is a supporting hyperplane, so F ∗ is a face of P ∗. Trivially F̂ ⊂ F ∗, so
it suffices to prove the other inclusion, or equivalently to take y0 ∈ P ∗ − F̂ and show y0 /∈ F ∗.
We have ⟨y0, x1⟩ < 1 for some x1 ∈ F . Since x0 ∈ rel int(F ), there exists x2 ∈ F such that
x0 ∈ (x1, x2). Now ⟨y0, x2⟩ ≤ 1. Writing x0 as a convex combination of x1 and x2 with two
non-zero coefficients, it follows immediately that that ⟨y0, x0⟩ < 1, so y0 /∈ F ∗.

(b) Order-reversal is immediate. A nice trick to show this is a bijection is to show that doing

this twice yields the identity, i.e. ̂̂F = F . This is done in the next homework.
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Now consider part (3). We know [G,F ] ⊂ [0̂, F ] ⊂ L(P ) where [0̂, F ] = L(F ). That is, we
know that lower intervals are face lattices of polytopes, and we must show the same for upper
intervals. This follows immediately by duality. More precisely, the interval [G,F ] corresponds
in an order-reversing fashion to [0̂, Ĝ] in L(F̂ ), and dualizing this using (2) gives (up to a slight
abuse of notation) [G,F ] ≅ [Ĝ∗, F̂ ∗] ⊂ L(F̂ ∗).

99 Definition
Recall that fi(P ) is the number of i-dimensional faces of P . Note that the 0-dimensional faces of P
correspond to the (d − 1)-dimensional faces of P ∗, and generally that the i-dimensional faces of P
correspond to the (d − 1 − i)-dimensional faces of P ∗. The f -vector of P is

f(P ) ∶= (f−1(P ), f0(P ), . . . , fd−1(P ), fd(P ))

where sometimes f−1(P ) and/or fd(P ) are left off.

100 Example
Let P be the unit cube in R3 centered at 0. P ∗ is then two square pyramids glued together at
the square. The f -vector of P (cutting off the two ends) is (1,8,12,6,1), while the f -vector of
P ∗ is (1,6,12,8,1).

One may imagine picking a peak vertex v of P ∗, picking a supporting hyperplane, and moving
it slightly inside P ∗. The resulting intersection has vertices given precisely by intersecting the
hyperplane and edges containing v. The result in this case is a square, which is in fact the
vertex figure in this context. Doing the same operation with the cube P yields a triangle. These
observations are formalized in the next remark.

101 Remark
If v is a vertex of P , then there exists a hyperplane h = {x ∈ Rd ∶ ⟨x, a⟩ = b} such that P ⊂ h+ and
P ∩ h = {v}. Let

Q ∶= P ∩ {x ∈ Rd ∶ ⟨x, a⟩ = b + ε}

for a small ε > 0. Check: L(Q) ≅ [{v}, P ] ⊂ L(P ).

102 Remark
Recall that the lattice of a (d−1)-dimensional simplex is just the boolean lattice of rank d. In particular,
the face numbers are just

fi−1(δd−1) = (d
i
).

103 Definition
A polytope is simplicial if every facet is a simplex.

104 Remark
The following are equivalent:

(a) P is a simplicial d-dimensional polytope.

(b) Every facet of P has exactly d vertices.

(c) Every face of P is a simplex.

(d) [0, F ] is a boolean lattice for every F ∈ L(P ) − {P}.

Pictorially, all of the lower intervals are boolean lattices, in particular the ones below the
coatoms, except that L(P ) need not itself be a boolean lattice.

105 Definition
A polytope P is simple if P ∗ is simplicial.

106 Remark
The following are equivalent:
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(a) P is a simple d-dimensional polytope.

(b) [v,P ] ⊂ L(P ) is a boolean lattice of rank d for all vertexes v of P .

(c) [G,P ] ⊂ L(P ) is a boolean lattice for all G ∈ L(P ) − ∅.

(d) Every vertex is incident with exactly d edges.

(e) Every vertex is incident with exactly d facets.

Pictorially, all of the upper intervals are boolean lattices, in particular the ones above the
atoms, except that L(P ) need not be.

107 Example
A cube is simple and its dual is simplicial. A square pyramid is not simple because the peak vertex
lies on too many edges and is not simplicial because the square has too many vertexes.

108 Remark
Note that if P is simple, then every face of P is simple. If P is simple and v is a vertex lying on edges
e1, . . . , ek, then there is a unique face of P containing those edges. As an exercise, pick your favorite
condition above to see this.

Dually, if P is simplicial, then all quotients are simplicial.

April 11th, 2016: Cyclic polytopes; Neighborliness

109 Remark
Today we’ll discuss cyclic polytopes and neighborliness. See Matusek, §5.4; Barvinok, Ch. 6.

110 Definition
The curve q(t) ∶= (t, t2, t3, . . . , td) ∈ Rd is called the moment curve in Rd. Pick n and t1 < t2 < ⋯ <
tn ∈ R. Suppose n ≥ d + 1. Now conv{q(t1), . . . , q(tn)} is called a cyclic polytope , written C(d,n)

111 Example
Consider d = 2. The moment curve is just the parabola (t, t2). A cyclic polytope for n = 4 with,
say t1 < t2 < 0 < t3 < t4, is a trapezoid.

112 Remark
Any d + 1 distinct points on the moment curve are affinely independent. To see this, note that
the determinant of the matrix whose columns are these points with 1 appended is

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 ⋯ 1
t1 t2 ⋯ td+1

t21 t22 ⋯ t2d+1

⋮ ⋮ ⋱ ⋮
td1 td2 ⋯ tdd+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= ∏
1≤i<j≤d+1

(tj − ti) ≠ 0.

Thus C(d,n) is a d-dimensional polytope and all of its proper faces are simplices. (No facet can
have more than d vertices.) Hence C(d,n) is a simplicial d-dimensional polytope.

113 Definition
A (simplicial) d-polytope P is called m- neighborly if every collection of m vertices of P is the vertex

set of a face of P . (The homework states this definition without the “simplicial” assumption.)
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114 Example
A d-dimensional simplex is (d + 1)-neighborly. 2-neighborliness means that every two vertices
form an edge, i.e. G(P ) is a complete graph.

115 Theorem
We have:

(a) Every collection of k ≤ ⌊d/2⌋ points q(ti1), . . . , q(tik) is the vertex set of a face of C(d,n).

(b) (Gale’s evenness condition.) Write vi ∶= q(ti). A d-tuple Vd ∶= (vi1 , . . . , vid) is the vertex set of a
facet of C(d,n) if and only if for every two points vi, vj ∈ V − Vd (say i < j)

∣Vd ∩ {vi+1, . . . , vj−1}∣ is even.

116 Example
We illustrate (b). Take d = 4 with t1 < t2 < ⋯ < t8. Suppose in our 4-tuple V4 that we’ve already
picked t2, t3, t7. If we were to include t1 in V4, then between t6 and t8 we would have oddly
many elements of V4, so we would not get a facet. The name for (b) comes from the fact that,
roughly, the blocks of chosen vertices aside from the first and last must come in even sizes.

Proof We begin with (a). Take I = {i1, . . . , ik} ⊂ [n] such that k ≤ ⌊d/2⌋. We must show {vi1 , . . . , vik}
forms the vertex set of a face. It suffices to exhibit an appropriate supporting hyperplane,
namely we find c = (γ1, . . . , γd) ∈ Rd − {0} and α ∈ R such that

⟨c, vi⟩ = α ∀i ∈ I
⟨c, vj⟩ > α ∀j ∈ [n] − I.

Consider
p(t) ∶= (t − t1 + 1)d−2k(t − ti1)2⋯(t − tik)

2.

The first factor is roughly there to ensure deg p(t) = d without affecting the sign of p on V .
Notice that

p(t) = γdtd + γd−1t
d−1 +⋯ + γ1t + γ0.

Further, p(ti) = 0 for all i ∈ I and p(tj) > 0 for all j ∈ [n] − I. Now take c ∶= (γ1, γ2, . . . , γd) and
α ∶= −γ0. Then

⟨q(ti), c⟩ = γdtdi + γd−1t
d−1
i +⋯ + γ1ti = p(ti) + α.

By construction, this is α if i ∈ I and is > α if i ∈ [n] − I, proving (a).

Now consider (b). Every d + 1 points on the moment curve are affinely independent, so
every d points are affinely independent, so every d points Vd ∶= {ti1 , . . . , tid} define a unique
hyperplane H in Rd. These points form a facet precisely when this hyperplane is supporting.
Hence we must show that H is a supporting hyperplane if and only if the evenness condition
holds. Consider the intersection of H and the moment curve; it certainly contains Vd, and since
every d + 1 points on the moment curve are affinely independent, the intersection is precisely
Vd. Hence Vd divides the normal curve into d + 1 arcs, and in fact the intersection multiplicity
must be 1 at each point, so these segments alternate which side of H, H+ or H−, they are on. It
follows that conv(Vd) is a facet if and only if H is a supporting hyperplane if and only if all
points of V − Vd are on the same side of H if and only if every 2 points of V − Vd are separated
on the moment curve M by an even number of points on Vd.

117 Remark
The picture we have in mind during the proof of (b) is a hyperplane with a curve “bobbing” in
and out of the hyperplane at discrete points, creating “segments” between points of intersection.
It is forced to “switch sides” each time it goes through the hyperplane since the roots are simple.
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118 Example
Let’s compute the face numbers of C(d,n). If k ≤ ⌊d/2⌋, every k vertices form a face, so

fk−1(C(d,n)) = (n
k
), ∀k ≤ ⌊d/2⌋.

One may compute the other “half” of the f -vector from the Gale evenness condition, though the
expression isn’t so nice.

119 Conjecture (Upper Bound Conjecture; Motzkin, 1957))
Among all polytopes of dimension d with n vertices, the cyclic polytope C(d,n) simultaneously
maximizes all the face numbers. Precisely, if P is a d-polytope and f0(P ) = n, then

fi−1(P ) ≤ fi−1(C(d,n)), ∀i.

120 Remark
The preceding example shows the conjecture holds for the first “half” of all i. It took another
13 years to show the second half indeed holds (McMullen, 1970). It turns out one may prove the
simplicial case using “h-vectors” and use a simple trick to get the general form, which will be
the focus of later lectures.

The original conjecture included a second part saying that cyclic polytopes are the unique
polytopes with this property, which turns out to be quite false, as there are exponentially many
others. In particular, the maximality statement holds for all triangulations of (d−1)-dimensional
spheres, a result due to Stanley (1975). It also holds for all odd-dimensional (homology) manifolds
and all even-dimensional manifolds whose Euler characteristic is the Euler characteristic of a
sphere, namely 2, a result due to Novik.

121 Remark
Our next main goal is the following theorem. Recall that P is simplicial iff P ∗ is simple, and P has n
vertices iff P ∗ has n facets. In particular, C(d,n)∗ is simple with n facets.

122 Theorem
Among all (simple) d-dimensional polytopes with n facets, C(d,n)∗ simultaneously maximizes all face
numbers.

123 Remark
We will get rid of the adjective “simple” in several lectures. An important tool we’ll use is the

concept of h-numbers. Roughly, take a simple polytope P in Rd and choose a linear functional
ρ∶Rd → R “generically” in the sense that ρ is injective on vert(P ). An obvious such functional
on the cube is the “height” in 3D. In the usual orientation, this will not be a generic linear
functional. However, we may rotate the cube or “wiggle it slightly” to get a generic height
function. Now we can orient edges using the values of the height function, from smaller heights
to larger. For instance, if we’ve generically rotated our cube to become a “diamond” standing
on its point, the edges are all directed upwards. Since P is simple, each vertex has degree d,
so the in-degree of each vertex is in [0, d]. For our cube, these numbers are 0,1,1,2,1,2,2,3,
say. We define h-numbers by counting the number of vertices of a specified in-degree, yielding
h0, h1, . . . , hd = 1, 3, 3, 1 for this example. At the moment it is not clear this vector is independent
of ρ. We will use several nice consequences of this fact next time. On Friday we will prove the
theorem.

Proof See next lecture; we will prove the theorem on Friday.

April 13th, 2016: h-vectors of simple polytopes
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124 Remark
Today we’ll discuss h-vectors of simple polytopes. Homework 2 is due this Friday; homework 3 is due
next Friday.

125 Definition
Let P be a simple d-dimensional polytope in Rd. (Recall that equivalently each vertex is adjacent

to precisely d edges, i.e. G(P ) is d-regular.) Pick a generic linear functional ρ∶Rd → R, meaning ρ

is injective on vert(P ). (Indeed, it suffices to have ρ(vi) ≠ ρ(vj) whenever vi and vj are connected
by an edge.) Orient the edges of P using ρ by declaring v → w whenever ρ(v) < ρ(w). Note that
degG(P )(v) = d, so 0 ≤ indegρ

G(P )(v) ≤ d.

In this situation, we define

hρi (P ) ∶= # of vertices of in-degree i.

For instance, hρ0(P ) + hρ1(P ) +⋯ + hρd(P ) = f0(P ) is the number of vertices of P .

126 Theorem
Let P be simple, ρ generic on P . Then

d

∑
k=0

fk(P )xk =
d

∑
i=0

hρi (P )(x + 1)i.

127 Remark
Generating functions are often convenient or illuminating, though we may also write things
in terms of coefficients. Using x ↦ x − 1 and the binomial theorem, the preceding equation is
equivalent to

hρi (P ) =
d

∑
k=i

(−1)k−i(k
i
)fk(P ),

and similarly

fk(P ) =
d

∑
i=k

( i
k
)hρi (P ).

In particular, establishing lower bounds on the fi’s can be done by establishing lower bounds on
the hi.

128 Example
We have

hd = fd = 1

h0 = f0 − f1 + f2 −⋯ + (−1)d−1fd−1 + (−1)d =∶ χ(P ) + (−1)d

hd−1 = fd−1 − d

hd−2 = fd−2 − (d − 1)fd−1 + (d
2
)

where χ(P ) is the Euler characteristic of P .

129 Corollary
The hρi are independent of ρ. Hence we may define

hi(P ) ∶= hρi (P )

for any simple P and any generic ρ on P .

130 Corollary
If P is simple and d-dimensional, then
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(1) hi(P ) ≥ 0

(2) hi(P ) = hd−i(P ) for all i

(3) We have the Euler relation :

f0 − f1 + f2 −⋯ + (−1)d+1fd−1 = χ(P ) =
⎧⎪⎪⎨⎪⎪⎩

0 if d is even

2 if d is odd.

131 Remark
(1) is silly from our definition since the hi’s are defined to count something. However,
from the alternating sum of fk’s expression, this is far from obvious.

Proof Again (1) is immediate from our definition. For (2), hi(P ) = hρi (P ) is the number of
vertices of in-degree i using ρ. We may use −ρ as well, which interchanges in-degrees and
out-degrees. Hence the number of vertices of in-degree i with respect to −ρ is the number
of vertices of in-degree (d − i) with respect to ρ, so

hρi (P ) = h−ρi (P ) = hρd−i(P ).

For (3), we’ve noted h0(P ) = χ(P ) + (−1)d, but h0(P ) = 1, forcing χ(P ) = 0 if d is even
and 2 if d is odd.

132 Proposition
Let Q be a k-dimensional simple polytope in Rd. For instance, Q may be a face of P above.

Let ρ be a generic functional Rd → R with respect to Q and suppose v is a vertex of Q. Assume
that all edges incident with v are oriented into v, so ρ(v) > ρ(u) for all neighboring vertices u of
v, i.e. ρ(v) is a “local maximum.” Then ρ has a “global maximum” on Q at v, i.e. ρ(v) > ρ(w)
for all vertexes w ≠ v.

133 Remark
If a generic linear functional is used to orient the edges of P , then the resulting oriented
graph has the following properties:

• acyclic;

• has a unique sink;

• the same holds for the induced orientation of G(F ) for all faces F of P .

The second point is equivalent to the proposition. The first point is clear. The third is
essentially a restatement of the fact that faces of a simple polytope are simple.

Proof The idea is that “locally a simple polytope behaves like a cube.” Formally, the k edges
incident to a vertex yield linearly independent vectors based at that vertex, so v together
with its neighbors u1, . . . , uk are affinely independent. Hence we may use a bijective affine
transformation T taking Aff(Q) → Rk sending v ↦ 0, ui ↦ ei, where T (Q) is a simple
polytope in Rk. Hence without loss of generality we may suppose v = 0, ui = ei, and
ρ(0) = 0 with ρ(ei) < 0. Since Q is simple, the edges {0, e1}, . . . , {0, ei−1} must determine
a facet. The equation of the supporting hyperplane of this facet is xd = 0 since it contains
the given edges. Since ed ∈ Q, Q must have non-negative dth coordinates. Repeating this
argument for each coordinate, Q lives in the first orthant of Rk, i.e. all its points have
non-negative coordinates. Hence for any (x1, . . . , xd) ∈ P , we have xi ≥ 0, and

ρ(x1, . . . , xd) =∑
i

xiρ(ei) ≤ 0 = ρ(0),

as required.
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Proof We are now ready to prove the theorem, which will by counting pairs (F, v) where F is a
k-face of P and v ∈ vert(F ) where ρ(v) is the maximum value of ρ on F .

• Each face has a unique such v, so we are just counting the number of k-dimensional faces,
giving fk(P ).

• On the other hand, pick a vertex v and consider the number of faces F where (F, v) is
such a pair. Suppose v has in-degree i with corresponding neighbors u1, . . . , ui, so v has
out-degree d − i. Since P is simple, the interval [v,P ] is a boolean lattice, so any set of s
edges of P that contain v define a unique s-dimensional face. For our fixed v, we are then
interested precisely in size k subsets of {u1, . . . , ui}, since we can only use incoming edges,
giving (i

k
) such pairs. Hence the number of pairs is

∑
v∈vert(P )

(indeg v

k
) =

d

∑
i=0

( i
k
)hρi (P ).

Hence we’ve shown

fk(P ) =
d

∑
i=k

( i
k
)hρi (P ).

We must only show this is invertible. Multiplying this by xk and summing from k = 0 to d and
applying the binomial theorem gives

d

∑
k=0

fk(P )xk =
d

∑
k=0

(
d

∑
i=k

( i
k
)hρi (P ))xk

=
d

∑
i=0

hρi (P )
i

∑
k=0

( i
k
)xk

=
d

∑
i=0

hρi (P )(x + 1)i.

134 Remark
Our goal for next time is to prove the upper bound theorem for simple polytopes (McMullen, 1970),
namely if P is a simple d-polytope with fd−1(P ) = n, then fi(P ) ≤ fi(C(d,n)∗) for all i. (We could
state this for simplicial polytopes without the duals.) We will actually prove the inequality holds on
the h-numbers,

hi(P ) ≤ hi(C(d,n)∗),∀i.

Since the hi’s are symmetric, it suffices to prove this for the last “half” of the i, namely for i ≥ d/2.
We know the first half of the f -vector of the cyclic polytope, so by computing its dual, we know the
second half of the f -vector of its dual. Then to compute hi in the simple world we only need to know
the fk with k ≥ i. Hence we have an explicit formula for hi(C(d,n)∗) when i ≥ d/2, which is part of
homework 3. We’ll then actually show that hi(P ) is bounded by the resulting rather nice binomial
coefficient.

April 15th, 2016: Proof of the Upper Bound Theorem

135 Remark
Today we will prove the upper bound theorem; see Barvinok, Ch. VI.7. Next week we will discuss why
the “simple” adjective may be removed.
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136 Theorem
If P is a (simple) d-dimensional polytope with n facets, then

fi(P ) ≤ fi(C(d,n)∗), ∀0 ≤ i < d − 1.

137 Remark
The theorem can be interpreted in terms of linear optimization. Given a polytope P defined
as the intersection of {x ∶ ⟨x, aj⟩ ≤ bj} for j ∈ [n], we have an absolute bound on the number
of i-dimensional faces. Recall f0(C(d,n)∗) = fd−1(C(d,n)) and f0 = h0 +⋯ + hd, which by the
symmetry condition from last time is roughly 2(h0+⋯+hd/2). Now hd−i(C(d,n)∗) = (n−k+i−1

i
) ∼

ni for all i ≤ ⌊d/2⌋, so in all f0 ∼ O(nd/2) by the upper bound theorem. That is, the number of
vertices needed to define the solution set of our system of linear inequalities is roughly at worst
polynomial in the number of inequalities to half the dimension.

138 Remark
Recall that if P is a simple d-polytope, then

d

∑
i=0

hi(P )xi =
d

∑
j=0

fj(P )(x − 1)j

so that

fj(P ) =
d

∑
i=j

(i
j
)hi(P ).

The binomial coefficients are non-negative, so to prove the upper bound theorem, it suffices to
prove the following stronger result, which does require P simple:

Indeed,
hi(P ) ≤ hi(C(d,n)∗) ∀0 ≤ i < d − 1.

139 Remark
Last time we proved the Dehn-Sommerville relations , namely that for any simple d-polytope
hi(P ) = hd−i(P ) for all i. Hence, it suffices to prove the following version of the preceding claim:

hd−i(P ) ≤ hd−i(C(d,n)∗), ∀i ≤ ⌊d/2⌋.

Proof We begin by computing the right-hand side of the last expression. Recall that for every
i ≤ ⌊d/2⌋, every set of i vertices of C(d,n) yields a face. It follows that

fi−1(C(d,n)) = (n
i
) ∀i ≤ ⌊d/2⌋

so that

fd−i(C(d,n)∗) = (n
i
), ∀i ≤ ⌊d/2⌋.

Using the relations above, we have hd = fd = 1, hd−1 = n−d, . . . , and more generally hd−i depends
only on face numbers at index d − i and higher. It follows that

hd−i(C(d,n)∗) = (n − d + i − 1

i
), ∀i ≤ ⌊d/2⌋.

(The remaining details of this computation are on the homework.) Hence, it suffices to show

hd−i(P ) ≤ (n − d + i − 1

i
), i ≤ ⌊d/2⌋.

We will prove this by induction on dimension. This requires comparing h-numbers for a polytope
and for its facets, which is done using the following lemmas.
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140 Notation
We set h−1(F ) ∶= 0, and more generally any h-numbers at indexes below 0 or above d − 1
are zero.

141 Lemma
If P is a simple d-polytope and F is a facet of P , then hi(P ) ≥ hi−1(F ).

Proof Recall our geometric definition of h-numbers. We take a polytope P and a linear
functional ρ∶Rd → R which is injective on vertices. We then direct edges in G(P )
from vertices with smaller ρ to larger ρ, and hi(P ) is the number of vertices of
in-degree i.

Since F is a facet, we have a hyperplane H such that P ∩H = F and P ⊂H−.
Say H = ⟨x ∶ ⟨x, a⟩ = b}. We can’t quite use ρ(x) = ⟨x, a⟩ since it’s not generic, but
note that for this ρ, ρ(v) > ρ(u) for all v ∈ vert(F ), u ∈ vert(P ) − F . It is easy to
see that we may perturb ρ slightly to some ρ̃ so that ρ̃ is injective on vertices of P
and ρ̃(v) > ρ̃(u) for all such v, u. Now pick a vertex v in F ; since P is simple, v
has d neighboring vertices (that is, connected by an edge), and F is a facet so it
contains precisely d − 1 of these. For the unique neighboring vertex u of v which is
not in F , the edge {v, u} is directed from u to v, so that

indegF (v) = indegP (v) − 1.

Hence

hi(P ) = #{v ∈ vert(P ) ∶ indegP (v) = i}
= #{v ∈ vert(F ) ∶ indegF (v) = i − 1}

+#{v ∈ vert(P ) − vert(F ) ∶ indegP (v) = i}
= hi−1(F ) + (something non-negative).

The result follows.

142 Lemma
Let P be a simple d-polytope. Then

∑
F

hi(F ) = (i + 1)hi+1(P ) + (d − i)hi(P )

where the sum is over facets F of P .

Proof We will again use the geometric definition of h-numbers above. Choose a linear
functional ρ∶Rd → R generic on P . Consider counting pairs (v,F ) where F is a
facet of P , v ∈ vert(F ), and indegF (v) = i. We may of course use ρ on either a face
F or P .

• Each F contributes exactly hi(F ) such pairs, so the total number of pairs is
the left-hand side of the equation above.

• On the other hand, pick a vertex v of P and count the number of pairs which
contain it. We consider two cases.

– Suppose indegP (v) = i. Then we know v has degree d in G(P ) and i
edges are directed into d, so d − i edges are directed outwards. Also,
there are precisely d facets containing d, which are defined by deciding
which edge to drop. In that facet, the in-degree of v is again i if and
only if we’ve dropped one of the d − i outwardly directed edges. That is,
if P is simple, each facet of P through v is defined uniquely by an edge
{v, uj} it does not contain. It follows that the number of pairs that v
contributes is d − i. This corresponds precisely to the second term on
the right-hand side of the equation above.
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– Suppose indegP (v) = i + 1. The same reasoning as in the previous case
applies except in reverse, namely we must drop one of the incoming
edges, of which there are i+1, resulting in the first term on the right-hand
side of the equation above.

– The same argument shows that the remaining indegP (v)’s do not con-
tribute.

Continuing the proof of the theorem, we now induct on i. First note that for all P ,

hd = 1 = (n − d + 0 − 1

0
), hd−1 = n − d = (n − d + 1 − 1

1
).

Hence we may assume as base cases that the required inequality holds for i = 0 (and i = 1).
Inductively, suppose it holds for all i ≤ r; we must show it holds for i = r + 1. By the first lemma,
we have for all facets F

hd−r(P ) ≥ hd−r−1(F )⇒ nhd−r(P ) ≥∑
F

hd−r−1(F ).

Now using the second lemma at i = d − r − 1,

∑
F

hd−r−1(F ) = (d − r)hd−r(P ) + (r + 1)hd−r−1(P ).

Combining these two observations gives

(n − d + r)hd−r(P ) ≥ (r + 1)hd−r−1(P ).

Applying the inductive assumption, we now have

hd−r−1(P ) ≤ n − d + r
r + 1

hd−r(P )

≤ n − d + r
r + 1

(n − d + r − 1

r
)

= (n − d + r
r + 1

).

This completes the proof.

143 Remark
For other classes of polytopes, we do not have h-vectors, but the f -vector form of the preceding theorem
still works. The idea behind amplifying it is that a non-simplicial polytope has vertex sets of faces
which are not affinely independent. Slightly perturbing these vertices gives a simplicial polytope, and
one may check this operation can only increase face numbers.

144 Remark
The above argument really only used that C(d,n)∗ is simple and ⌊d/2⌋-neighborly. There are in fact
polytopes with these properties that are not combinatorially isomorphic to C(d,n)∗.

April 18th, 2016: Reconstructing a Simple Polytope from its
Graph

145 Remark
Today we’ll discuss reconstructing a simple polytope from its graph. See §3.4 of Günter Ziegler’s book
for more. Conveniently, our machinery involving h-numbers from last week will be quite useful.
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146 Theorem (Conjectured by Perles; proved by Blind-Blind (1987))
If P1 and P2 are simple polytopes, then G(P1) ≅ G(P2)⇔ L(P1) ≅ L(P2).

147 Remark
That is, isomorphisms of graphs of simple polytopes implies combinatorial isomorphism of the
underlying polytopes. Recall that G(P ) is a graph whose vertices are the vertices of P and
whose edges are the edges of P .

Proof The ⇐ implication is essentially trivial, since the graph is encoded in the rank 2 part of the
face lattice. For ⇒, we give a very expensive algorithm. This is Kalai’s proof (1988).

Let P ⊂ Rd be a simple polytope. Let ρ∶Rd → R be a linear functional generic on P . Last
week we gave G(P ) an acyclic orientation with the following properties:

• For all faces F ≠ ∅ of P , G(F ) with the induced orientation is acyclic with a unique sink.

• G(P ) is connected. (Otherwise, any orientation of G(P ) will have at least 2 sinks.)

• hi(P ) is the number of vertices of in-degree i, which does not depend on which ρ is chosen.

Note that given any total order < on vert(P ), we can form an acyclic orientation on G(P ) using
this total order, namely given an edge between v to u, orient it from v to u if v < u. Call <
a “good order” if for all faces F of P , the induced graph G(F ) has a unique sink, including
for F = P but not for F = ∅. It is not trivial that good orders exist, though any generic linear
functional does give rise to a good order.

148 Exercise
Come up with an example of a polytope and a total order on its vertices where the
induced orientation on G(P ) has two sinks.

149 Definition
For any total order < as above, define

h<i (P ) ∶= #of vertices of in-degree i.

Further define
F < ∶= h<0 + 2h<1 + 22h<2 +⋯ + 2dh<d

and
f ∶= # of non-empty faces of P = f0 + f1 +⋯ + fd−1 + fd.

Note that h<i (P ) and F < are clearly properties of G(P ) and <, whereas this is not clear
for f .

150 Claim
For any total order < on vert(P ),

F < ≥ f

and moreover equality holds if and only if < is a good order. Hence, we can identify good
orders using just G(P ) and <.

Proof We use another double counting argument. Namely, we count pairs (F, v) where
F ∈ L(P ) − {∅}, v ∈ vert(P ), and v is a sink of G(F ), where G(F ) is oriented
according to a total order < on vert(P ). Note that G(F ) has at least one sink, so
the number of such pairs is at least f , and it is equal to f if and only if there is a
unique sink for all F , i.e. if and only if < is a good order.

On the other hand, we may count these pairs vertex by vertex as follows. For
a vertex v, say v has in-degree k in G(P ). By simplicity, v has out-degree d − k.
Furthermore, every subset of the k incoming edges gives rise to a distinct face
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where v is a sink (including the empty subset), and for v to be a sink we may not
choose any of the d − k outgoing edges. Hence v is a sink of G(F ) for precisely
2k distinct F , so the number of pairs is precisely ∑dk=0 2kh<k(P ) = F >. The result
follows.

151 Claim
An induced subgraph H of G(P ) is a graph of a k-face of P if and only if H is connected,
k-regular, and vert(H) form an initial segment of some good order on vert(P ).
152 Remark

Recall the definition of induced subgraph . Given a graph G, an induced subgraph

H of G is obtained by restricting the vertex set of G to some subset where there is
an edge between u1 and u2 in H if and only if there is an edge between u1 and u2

in G. For instance, take a complete graph on 5 vertices. All induced subgraphs on
3 vertices must be complete. In particular, choosing 3 of the 5 vertices and only
taking “outside edges of the pentagon,” the result is not induced.

The “initial segment” condition means that there is a good (total) order on
vert(G) such that every element of vert(H) is < every element of vert(G)−vert(H).

The two claims prove the theorem by giving an algorithm for finding k-faces
of P . Namely, look at all good orders of G(P ), look at all initial segments, and
check if the resulting induced graph H is connected and k-regular. This step is
extremely computationally expensive.

Proof (⇐) Suppose F is a k-dimensional face, so F is a simple k-polytope. As remarked
at the beginning of class, G(F ) is connected and k-regular. Now F is a face, so
there exists a supporting hyperplane H such that H ∩ P = F and P ⊂ H+. Now
H = {x ∶ ⟨a, x⟩ = b}; take ρ∶x ↦ ⟨a, x⟩ and perturb ρ slightly to make it generic
while ensuring the values of ρ on vert(F ) remain smaller than the values of ρ on
vert(P ) − vert(F ). It follows that vert(F ) is an initial segment on the good total
order given by ρ.

(⇒) Suppose H is an induced subgraph of G(P ) which is connected, k-regular,
and its vertices form an initial segment of vert(P ) under a good order <. Let v
be the maximum of vert(H) under <. Since H is k-regular, v has k neighbors in
vert(H), say u1, . . . , uk. Since P is a simple polytope, the edges {v, ui} define a
unique k-dimensional face F . By maximality, v is a sink of G(F ), and since < is a
good order, v is the unique sink of G(F ). That is, for all w ∈ vert(F ), w ≤ v, and
in particular vert(F ) ⊂H. Both H and G(F ) are connected and k-regular, where
now G(F ) ⊂ H, from which it follows that G(F ) = H. This completes the claim
and theorem.

153 Remark
The above (implicit) algorithm for constructing L(P ) from G(P ) is exponential in the size of the
graph. A polynomial time algorithm was found by Eric Friedman (DCG, 2009); the paper is quite
short and would be appropriate for anyone interested to present. The next homework gives a simple
case of his algorithm.

General polytopes are not reconstructible from G(P ). For instance, G(C(d,n)) =Kn already loses
any information about d. On the other hand, any simplicial d-polytope P can be reconstructed from
Skel⌊d/2⌋(P ) (proved by Perles), which can be generalized quite a bit to triangulations of spheres and
manifolds with appropriate modifications:

154 Definition
The k-skeleton of P , Skelk(P ) consists of all the faces of P of dimension ≤ k.

If P is simplicial, then P ∗ is simple, so the vertices of P ∗ correspond to the facets of P , the edges
of P ∗ correspond to ridges of P . The following notion is then natural:
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155 Definition
The facet-ridge graph of a polytope P is the graph whose vertices are given by facets of P and

where two vertices have an edge between them if their facets intersect in a ridge. The theorem
above then says that any simplicial polytope may be reconstructed from its facet-ridge graph.

156 Open Problem
The following related problem is open. Can triangulations of spheres be reconstructed from
their facet-ridge graph? The problem is open even in the “shellable” case, which we’ll discuss
more next week.

April 20th, 2016: Draft

157 Remark
Today we’ll discuss centrally symmetric polytopes. Remember that homework 3 is due on Friday.
There will be office hours on Friday from 10:30 to 11:30.

158 Remark
We begin with a few more remarks on cyclic polytopes. We had defined the cyclic polytope C(d,n) as

the convex hull conv{φ(t1), . . . , φ(tn)} on the moment curve φ∶R→ Rd given by t↦ (t, t2, . . . , td). If

d = 2k, then in fact the following trigonometric moment curve φ∶R→ R2k may be used:

φ(t) ∶= (cos t, sin t, cos 2t, sin 2t, . . . , coskt, sinkt) ∈ R2k.

We proved that C(d,n) is ⌊d/2⌋-neighborly, meaning that any set of k ≤ ⌊d/2⌋ vertices are the vertices
of some face.

We also proved the upper bound theorem: if P is a d-dimensional simplicial polytope with n vertices,
then fi(P ) ≤ fi(C(d,n)). We now remove the adjective “simplicial” from the previous sentence.

Proof (Sketch.) Let P be any d-dimensional polytope with n vertices v1, . . . , vn. Taking suf-
ficiently small neighborhoods of vertices, pick ṽi “generic” in that neighborhood of vi.Let
P̃ ∶= conv{ṽ1, . . . , ṽn}. Then {ṽ1, . . . , ṽn} are the vertices of P̃ , so (i) f0(P̃ ) = n. By genericity,
(ii) P̃ is simplicial. Furthermore, (iii) fi(P ) ≤ fi(P̃ ). By the simplicial upper bound theorem,
we have

fi(P ) ≤ fi(P̃ ) ≤ fi(C(d,n)).
Claims (i) and (ii) are straightforward to verify, though (iii) requires a little care. (This argument
essentially shows that simplicial polytopes are dense with respect to Hausdorff distance.)

We picture the above procedure by taking small neighborhoods around the vertices of a cube
and perturbing them each slightly. Each square face gets broken up into two triangles.

159 Definition
A polytope P ⊂ Rd is centrally symmetric if x ∈ P ⇒ −x ∈ P . We will also assume P is full-dimensional,

so 0 ∈ Int(P ).
160 Remark

If v ∈ vert(P ), then −v ∈ vert(P ), so 0 ∈ [v,−v] is an interior point, so [v,−v] cannot be an edge.

161 Example
Consider two square pyramids glued at their square bases. This is centrally symmetric. It

is dual to the three-dimensional cube (centered at 0). More generally, let Cd denote the

d-dimensional cube centered at 0. Then (Cd)∗ = {e1, . . . , ed,−e1, . . . ,−ed} is the d-dimensional

cross polytope .
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In light of the remark, we modify our definition of k-neighborly in the case of centrally symmetric
poltyopes.

162 Definition
A centrally symmetric d-dimensional polytope P with vertex set V is k-neighborly if for all
I ⊂ V , ∣I ∣ ≤ k such that I doesn’t contain antipodal vertices, then I forms the vertex set of a
face.

Indeed, (Cd)∗ is d-neighborly in the above sense. Cross polytopes are a natural analogue of simplices
in the centrally symmetric setting.

163 Question

• How neighborly can a centrally symmetric polytope be? For instance, for cyclic polytopes, it
goes up to ⌊d/2⌋.

• Is there a centrally symmetric analogue of C(d,n)?

• What is the largest number of i-dimensional faces a centrally symmetric d-polytope with n
vertices can have?

Roughly, the answers for the second and third points are unknown, though we’ll give some
asymptotics on the first one.

164 Theorem ((a) due to Linial-Novik, 2006; (b) due to Barvinok-Novik, 2008)

(a) A centrally symmetric d-dimensional polytope with more than 2d vertices cannot be even 2-
neighborly.

(b) If P is a centrally symmetric d dimensional polytope with n vertices, then f1(P ) ≤ n2

2
(1 − 1

2d ).

165 Remark
If P is centrally symmetric and 2-neighborly with n vertices, then f1(P ) = (n

2
)−n/2 = n2

2
(1−o(1)).

Proof We sketch some of the ideas to give the flavor of the arguments. For (a), assume P is d-
dimensional, centrally-symmetric, and 2-neighborly. We must show that ∣V ∣ ≤ 2d. The main
trick is to look at a family of translates of P and not just P itself. More specifically, consider
{Pv ∶= P + v∣v ∈ V }. Claim: if P is centrally symmetric and 2-neighborly, then all Pv have
pairwise disjoint interiors. How does this help? It is an easy exercise to check that convexity of
P implies Pv ⊂ 2P where 2P denotes doubling each coordinate. Now we compute

vol(∪v∈V Pv) = ∑
v∈V

vol(Pv) = ∑
v∈V

vol(P ) = ∣V ∣vol(P )

On the other hand, the left-hand side satisfies

2d vol(P ) = vol(2P ) ≥ vol(∪v∈V Pv).

Since the volume is non-zero, it follows that ∣V ∣ ≤ 2d. As for the claim, assume there exist
v ≠ w with v,w ∈ V such that Int(Pv) ∩ Int(Pw) ≠ ∅. Then we have x, y ∈ Int(P ) such that
x + v = y + w, so (x − y)/2 = (w − v)/2. Since P is centrally symmetric, if y ∈ Int(P ), then
−y ∈ Int(P ), and it follows that [x,−y] ⊂ Int(P ), so that (x−y)/2 = (w−v)/2 ∈ Int(P ). Consider
two cases. If w = −v, then (w − v)/2 = −v is a vertex, which certainly is not an interior point.
Hence w ∈ V − {v,−v}. Since P is 2-neighborly, we have an edge from w to −v, but then its
midpoint (w − v)/2 is not an interior point, a contradiction.
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166 Remark
During the argument for (a), we imagine P as the square in R2 and we compute translates
of the square centered on each of the four vertices. This rough trick goes back at least to
Minkowski and recurs from time to time.

The proof of the claim shows that if P is centrally symmetric and v,w ∈ V , then
IntPV ∩ IntPw = ∅ if and only if {−v,w} are not the vertex set of an edge.

We turn to (b) and give fewer details. Say ∣V ∣ = n and again consider Pv ∶= P + v ⊂ 2P .
Hence, we have n polytopes of volume vol(P ) sitting inside something of volume 2d vol(P ). It
follows that “on average” an interior point of 2P is covered by n

2d translates of P . Hence, for
“an average” vertex v of P , the interior of Pv intersects with the interiors of at least n

2d − 1 other
polytopes Pw. Thus the average degree of a vertex of P (in the graph of P ) is at most

(n − 1) − ( n
2d

− 1) = n(1 − 1

2d
) .

Multiplying by n/2 converts this upper bound on the average degree to the stated upper bound
on the number of edges.

(One may make this rigorous by introducing indicator functions of sets and using Hölder’s
inequality.)

167 Theorem (Barvinok-Lee-Novik, 2013)

(a) For all m ≥ 2, there is a centrally symmetric polytope of dimension 2(m + 1) which is 2-neighborly
with 2(3m − 1) vertices.

(b) For allm,s ≥ 2, there is a centrally symmetric polytope of dimension 2(m+1) that hasN = 2s(3m−1)
vertices and ≥ (N

2
) (1 − 1

3m ).

168 Remark
(a) is roughly saying there exist centrally symmetric d-polytopes that are 2-neighborly and have

roughly
√

3
d

vertices. (b) roughly says there exist centrally symmetric d-dimensional polytopes

with N ≫ 0 vertices and ≈ N2

2
(1 − 1√

3
d ) edges.

Proof We again give sketches. Define a variation on the trigonometric moment curve,

Φm(t) ∶= (cos t, sin t, cos(3t), sin(3t), cos(32t), sin(32t), . . . , cos(3mt), sin(3mt)).

Note that Φm(t) = −Φm(π + t). It is thus convenient to think of Φm as defined on the circle
S1 ⊂ C. Claim: pick 2(3m − 1) equally spaced points on S1, namely

Am ∶= {aj ∶=
π(j − 1)
3m − 1

∣j = 1,2, . . . ,2(3m − 1)} .

Then conv{Φm(aj) ∶ j = 1,2, . . . ,2(3m − 1)} is a 2(m + 1)-dimensional polygon; it is centrally
symmetric; it has 2(3m − 1) vertices; and it is 2-neighborly.

169 Remark
The m = 1 case of the curve above was considered by Smilanski (1985). Cutting off the
first two coordinates roughly gives Φm−1(3t). Using these two “projections” gives a way
to analyze the structure of the whole polytope.

April 25th, 2016: Draft
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170 Remark
Today we’ll show that polytopes are shellable. Recall that if C is a pure k-dimensional polytopal
complex, then a shelling of C is a linear ordering F1, F2, . . . , Fs of facets of C such that

(i) Either C is 0-dimensional or...

(ii) ...for all 1 < j ≤ s, Fj ∩ (F1 ∪⋯∪Fj−1) ⊂ ∂Fj is non-empty and of the form G1 ∪⋯∪Gr for facets
G1, . . . ,Gr of ∂Fj is a beginning of a shelling of C(∂Fj).

Last time we saw some examples where the condition (ii) failed for different reasons, where for
instance ∂Fj is not pure for a square. To be extremely precise, we would need to replace each Fi and
Gi with C(Fi) and C(Gi). Indeed, we also need C(∂F1) in the “or” case above, but this is automatic
from today’s main theorem.

171 Definition
A polytope P is shellable if its boundary complex C(∂P ) is shellable.

172 Theorem (Brugesser-Mani; 1970)
Every polytope is shellable. In fact, for every d-dimensional polytope P ⊂ Rd and any point x ∈ Rd −P
in “general position,” there exists a shelling of P in which the facets “visible from x” come first.

173 Remark
We first make the terms in quotes precise.

174 Definition
A point x ∈ Rd − P is in general position with respect to P if x is not on the affine span
of any facet (proper face) of P . Given such a point x and a facet F of P where H is the
affine span of F , then F is visible from x if P and x lie on opposite sides of H.

175 Example
Let P be a regular hexagon centered on the origin with two vertxes on the horizontal axis.
Letting x be a point on the vertical axis very slightly above the topmost (horizontal) facet
(line segment), x is in general position and only that topmost facet is visibile from x.

176 Definition
A line ` ⊂ Rd is in general position with respect to a polytope P ⊂ Rd if

(i) ` is not parallel to the affine span of any facet of P ;

(ii) ` intersects the interior of P non-trivially;

(iii) if H1, . . . ,Hm are the affine spans of the facets of P , then the m intersection points
{pi} ∶= ` ∩Hi are all distinct;

(iv) the intersection point pi is in general position with respect to Fi in the affine hull of
Fi.

The idea of the proof is the following. We begin by picking a “generic” line passing through
some facet F1 visible from x. We travel along the line away from the polytope, imagining the
polytope is a “planet” and we are in a “rocket ship.” Eventually we will cross the affine span of
another facet F2, after which point F2 will be visible from the rocket ship. After we “get to
infinity” we wrap around and start coming back for a landing on the other side of the polytope.
For this part, we order the facets using the order in which they become invisible from the rocket
ship.

The formal proof will be by induction on the dimension. The ordering of facets obtained

from this procedure is called a line shelling . A helpful observation is that reversing the order

of a line shelling gives another line shelling. Hence assuming...
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(i) ...our claims about line shellings hold in dimension d − 1;

(ii) F is a (d − 1)-dimensional polytope;

(iii) a point x is in the affine span of a facet F but not in F is in general position;

(iv) and G1, . . . ,Gt is a line shelling of F such that all facets of ∂F visible from x come first...

then Gt,Gt−1, . . . ,G1 is also a line shelling and the facets of F not visible from x come first.
The proof of this claim is just to use the same line but going in the opposite direction.

177 Remark
If P is a polytope and F1, . . . , Fs is any shelling order (not necessarily a line shelling) of ∂F ,
then Fs, Fs−1, . . . , F1 is also a shelling. This property fails for more general objects as we
saw last time. Indeed, taking five unit squares oriented along the axes centered on points
(0,0), (0,1), (0,2), (−1,2), (1,2), this order gives a shelling, but its reversal does not.

If P is a d-polytope in Rd with 0 ∈ Int(P ). Suppose we have written P as a minimal
intersection of hyperplanes

P = ∩mi=1{x ∶ ⟨x, ai⟩ ≤ 1},

(i.e. that P = Q∗ where Q = conv{a1, . . . , am}). Suppose x0 ∈ Rd − P is in general position, so
x0 violates at least one inequality, say ⟨x0, as⟩ > 1. Hence the facet Fs ∶= P ∩ {x ∶ ⟨x, as⟩ = 1} is
visible from x0. On the other hand, if all facets of P are visible from x0, then ⟨x0, ai⟩ > 1 for all
i. But then for any y ∈ conv{a1, . . . , am}, ⟨x0, y⟩ > 1. However, P = Q∗, so 0 ∈ Q, a contradiction
since ⟨x0, 0⟩ = 0. In summary, for any point in general position with respect to a polytope P ⊂ Rd
with 0 ∈ Int(P , there exists a facet visible from x0 and there exists a facet invisible from x0.

Proof We show that line shellings are shellings by induction on d.

• In the d = 1 case, there is very little to check, since the boundary complex is zero-
dimensional.

• In the inductive step, assume that for every (d − 1)-dimensional polytope Q and any
point y in the affine hull of Q but not Q itself in general position with respect to Q, and
any line `′ ∋ y in general position with respect to Q, that the following holds. Note that
`∩Q = [a, b] for some a, b; order the facets of Q by traveling from a to ∞, then from ∞ to
b in the obvious way. Assume this ordering, i.e. the line shelling of Q with respect to `, is
in fact a shelling of Q.

Now we have a d-polytope P , x ∈ Rd − P in general position, and a line ` through x in
general position with respect to P . Intersecting ` with P and removing interior points of
P yields two rays starting at some points p1 and p2. Say the ray starting at p1 contains
x. As before, order the facets of P by traveling along ` starting at p1, going through
x, and coming back around to hit pm. Call the intersection points of the affine hulls
of facets with this line in this order p1, p2, . . . , pm. We must show this yields a shelling
of P . By genericity, it is easy to check that this is indeed a linear order on facets, say
F1 < F2 < ⋯ < Fm. For j ≥ 2, we have

Fj ∩ (F1 ∪⋯ ∪ Fj−1) =
⎧⎪⎪⎨⎪⎪⎩

the union of facets of Fj visible from pj

the union of facets of Fj invisible from pj .

By our earlier observation, both of these unions are non-empty. We must now argue
that each of these are beginnings of shellings of Fj . But this is precisely the inductive
assumption together with the observations that they are both non-empty and that the
reversal of a line shelling is again a line shelling. Note that when we reach x, the facets
visible from x will be precisely the facets which have been included in the shelling.
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178 Corollary
Suppose P is a polytope.

(1) If F,G are any two facets of P , then there exists a shelling of ∂P starting with F and ending with
G.

(2) Let v be any vertex of P . Then there exists a shelling of P such that the facets containing v come
first.

Proof For (i), pick a generic point in F and a generic point in G, and use the line between them to
create a line shelling.

For (ii), if v lies in F1, . . . , Fr and not in Fr+1, . . . , Fm, take corresponding hyperplanes
H1, . . . ,Hm where P ⊂H−

i . Now pick

w ∈ (H+
1 −H1) ∩⋯ ∩ (H+

r −Hr) ∩ (H−
r+1 −Hr+1) ∩⋯ ∩ (H−

m −Hm).

Take a generic line through w. The remaining details are left as an exercise.

April 27th, 2016: Draft

179 Remark
Today we’ll say more on shellability and introduce simplicial complexes. Recall the theorem from last
time, namely that every polytope is shellable. We proved a more precise result, namely if F1, . . . , Fs is
a line shelling of P , then Fs, Fs−1, . . . , F1 is also a line shelling of P (so both of these are shellings of
∂P ). In particular,

Fj ∩ (Fj+1 ∪ Fj+2 ∪⋯ ∪ Fs)
⎧⎪⎪⎨⎪⎪⎩

is non-empty if j < s
is empty if j = s.

180 Theorem (Euler-Poincaré Formula)
If P ⊂ Rd is a d-dimensional polytope, then

f0(P ) − f1(P ) +⋯ + (−1)d−1fd−1(P ) = 1 + (−1)d−1.

181 Remark
We had earlier proven this for simple polytopes using h-numbers. The left-hand side can be
thought of as the definition of the Euler characteristic of the complex of the boundary C(∂P ).

182 Definition
If D is a polytopal complex of dimension d, then the reduced Euler characteristic of D is

χ̃(D) ∶= −f−1(D) + f0(D) −⋯ + (−1)dfd(D).

Note that if D1 and D2 are polytopal complexes and if (miraculously) D1 ∪D2 is also polytopal,
then

χ̃(D1 ∪D2) = χ̃(D1) + χ̃(D2) − χ̃(D1 ∩D2),

which is essentially a simple version of inclusion-exclusion.

Proof We induct on d. We will prove the following: if F1, F2, . . . , Fs with s ∶= fd−1(P ) is a line
shelling of P , then

χ̃(C(F1) ∪⋯ ∪ C(Fj)) =
⎧⎪⎪⎨⎪⎪⎩

0 if 1 ≤ j < s
(−1)d−1 if j = s.
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The j = s case translates directly to the required formula. In the base case d = 1, we have
two facets F1, F2, both of which are points. The reduced Euler characteristic of either of these
facets is −1 + 1 = 0. The Euler characteristic of the complex consisting of both of these facets is
−1 + 2 = 1 = (−1)1−1, as required.

We now give the inductive step, where we go from d − 1 to d. We further induct on j. At
j = 1, we have

χ̃(C(F1)) = χ̃(C(∂F1)) + (−1)d−1 ⋅ 1

= (−1)(d−1)−1 + (−1)d−1 = 0

(where 1 = fd−1(C(F1)), and the second equality uses the inductive assumption). We now
consider going from j − 1 to j. We have

χ̃(C(F1) ∪⋯ ∪ C(Fj−1) ∪ C(Fj)) = χ̃(C(F1) ∪⋯ ∪ C(Fj−1)) + χ̃(C(Fj)) − χ̃(C(Fj) ∩ (C(F1) ∪⋯ ∪ C(Fj−1))).

The first term on the right is zero by induction; the second term is zero by the j = 1 computation;
and the third term is subtracting the reduced Euler characteristic of the beginning of a line
shelling of Fj . By the inductive hypothesis, this become

=
⎧⎪⎪⎨⎪⎪⎩

0 if j < s
−χ̃(C(∂Fj)) if j = s.

The j = s case hence gives −(−1)(d−1)−1 = (−1)d−1, completing the result.

183 Remark
We now turn to (shellable) simplicial complexes.

184 Definition
Recall that a geometric simplicial complex C is a finite collection of simplicies such that

(1) If Σ ∈ C and σ is a face of Σ, then σ ∈ C.

(2) If Σ1,Σ2 ∈ C, then Σ1 ∩Σ2 is a face of both Σ1 and Σ2.

Recall further that each such k-dimensional Σ is some conv{p1, . . . , pk+1} for affinely independent
points p1, . . . , pk+1, and moreover the facets of Σ are precisely of the form

conv{pi1 , . . . , pis ∶ {i1, . . . , is} ⊂ [k + 1]}.

This observation essentially says that, at least as far as the face lattice is concerned, we can “forget
the geometry.” This is formalized by the next definition.

185 Definition
An abstract simplicial complex ∆ on a (finite) vertex set V is a collection of subsets of V such that

• if F ∈ ∆ and G ⊂ F , then G ∈ ∆;

• {v} ∈ ∆ for all v ∈ V

(The second axiom is sometimes omitted.)

Given a geometric simplicial complex C, we get an abstract simplicial complex by sending each
Σ ∈ C to its set of vertices. In particular, note that requirement (2) above is automatically satisfied
since F1 ∩F2 ⊂ F1 with F1 ∈ ∆ implies F1 ∩F2 ∈ ∆. We will shortly say how to “reverse” this operation.
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186 Definition
If ∆ is an abstract simplicial complex, we refer to the elements of F ∈ ∆ as faces , we say the

dimension of F is dimF ∶= ∣F ∣ − 1, and dim ∆ ∶= max{dimF ∶ F ∈ ∆}. In this way we can still define

face numbers for ∆,

fi−1(∆) ∶= #{F ∈ ∆ ∶ dimF = i − 1} = #{F ∈ ∆ ∶ ∣F ∣ = i}

with corresponding f -vector
f(∆) ∶= (f−1(∆), . . . , fdim ∆(∆)).

187 Example
Suppose ∆ is an abstract simplicial complex of dimension dim ∆ = d−1. If d = 0, then dim ∆ = −1
forces either ∆ = ∅ or ∆ = {∅}, with V = ∅. It ends up being useful for induction to have
these two complexes. In the first case, the f -vector is just (0), whereas in the second case, the
f -vector is (1). In particular, note that f−1(∆) is not simply defined to be 1 as we had done for
polytopes.

For a more complicated example, consider the convex hull of three vertices in R1 labeled
3,1,2 and appearing in this order. The polytope thus produced “forgets” about the vertex 1,
but we can make a simplicial complex which remembers 1 using V = {1,2,3} with

∆ = {{1,2},{1,3},{1},{2},{3},∅}.

This is the abstract simplicial complex associated to the geometric simplicial complex consisting
of the convex hull of vertices 3 and 1, together with the convex hull of vertices 1 and 2.

188 Definition
A geometric realization of an abstract simplicial complex ∆ is defined as follows. If ∆ has vertex set

V = {v1, . . . , vn}, the geometric realization of ∆ is a geometric simplicial complex in Rn defined in the
naive way, namely

F = {vi1 , . . . , vik} ⊂ V ↦ conv{vi1 , . . . , vik} =∶ ∣∣F ∣∣

∆↦ ∪F ∈∆∣∣F ∣∣ =∶ ∣∣∆∣∣ .

189 Example
Using ∆ on three vertices from the preceding example gives the pair of line segments in R3 given
by [e3, e1] and [e1, e2], which is clearly “the same” as the complex we started with.

190 Remark
While one must technically check ∣∣∆∣∣ is indeed a geometric simplicial complex, this is easy.
Using the geometric realization, we can think of an abstract simplicial complex ∆ as a topological
space using the topology induced from Rn on ∣∣∆∣∣. This motivates the following definition.

191 Definition
Let ∆ be an abstract simplicial complex. If ∣∣∆∣∣ is homeomorphic to the d− 1-dimensional sphere Sd−1,

then we call ∆ a simplicial sphere .

192 Definition
Let ∆ be an abstract simplicial complex. ∆ is pure of dimension d − 1 if all of its maximal faces have

the same dimension d − 1.

193 Example
Take the boundary of a simplex with some line segments “hanging off.” The geometric realization
is homotopy equivalent to a sphere, but it is not homeomorphic to a sphere, so the complex is
not a simplicial sphere. There are several variations on this definition which we may or may not
get to, including homology spheres.
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194 Remark
If ∆ is d-dimensional, then it can always be embedded in R2d+1 as follows. Let v1, . . . , vn be the vertices

of ∆ and pick n “generic” points of R2d+1 and repeat the previous construction. The point is that if
the points have been chosen sufficiently generically, d-dimensional convex hulls will never “accidentally
intersect.”

Note that some d-dimensional simplicial complexes are not embeddable in R2d. For instance, if
d = 1, we find that the complex graph K5 is not embeddable in R2, and the bipartite graph (double
check) K3,3 is not embeddable in R2.

195 Example
Set V ∶= [2d + 3]. Set

∆ ∶= {F ⊂ V ∶ ∣F ∣ ≤ d + 1}.

Then ∆ is d-dimensional and it has been shown that ∆ is not embeddable in R2d. If d = 1, this
is just the K5 example above.

For an analogue of K3,3, take d + 1 triples of vertices, and form faces by picking at most one
vertex from each triple. This is the “join” of three vertices d + 1 times, which we will talk about
later. The result is not embeddable in R2d.

These examples begin to motivate the following wide open conjecture:

196 Conjecture
If ∆ is a d-dimensional complex embeddable in R2d, then

fd ≤ (d + 2)fd−1.

The conjecture is known for d = 1 when it says f1 ≤ 3f0, but this is easy.

197 Example
If P is a simplicial polytope, then C(∂P ) is a simplicial sphere. Indeed, any 2-dimensional simplicial
sphere is the boundary complex of some 3-dimensional polytope, though this fails in dimension ≥ 3.

April 29th, 2016: Draft

198 Remark
Recall that we are discussing simplicial complexes, where a simplicial complex ∆ on a vertex set V is a
collection of subsets of V such that

• If G is a face of F ∈ ∆, then G ∈ ∆

• {v} ∈ ∆ for all v ∈ V .

Further recall that we defined the geometric realization ∣∣∆∣∣ of ∆. We may define the f -vector for
∆ using the geometric realization or using ∆ directly,

f(∆) = (f−1(∆), f0(∆), . . . , fdim(∆)(∣Delta)).

Warning: the simplicial complex ∆ of the boundary of a d-polytope has dim(∆) = d − 1.

(Homework 5 will be due next Friday; homework 6 will be due two Friday’s from then.)
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199 Definition
If ∆ is a (d − 1)-dimensional simplicial complex, then the h-vector of ∆

h(∆) ∶= (h0, h1, . . . , hd)

defined by
d

∑
i=0

hi(∆) ⋅ xd−i =
d

∑
j=0

fj−1(∆) ⋅ (x − 1)d−i.

Warning: While the h-numbers are always defined by the above formula, sometimes the h-
polynomial is ∑di=0 hi(∆) ⋅ xi instead of the left-hand side of the preceding expression. Of course, when
the Dehn-Sommerville relations apply, both definitions agree, but in general they can be different.

200 Remark
Note that the above condition is equivalent to

hi(∆) =
i

∑
j=0

(−1)i−j(d − j
d − i

)fj−1(∆).

In particular, h0 = f−1 = 1, and

hd =
d

∑
j−0

(−1)d−jfj−1(∆)

= fd−1 − fd−2 +⋯ ± f−1

= (−1)d−1χ̃(∆).

In particular, note that hd (and other h-numbers) might be negative! For instance, consider
the “bowtie” composed of two triangles touching at a single point. The f -vector is (1,5,6,2),
and the h-vector is (1,2,−1,0).

201 Definition
The face poset F(∆) consists of the faces of ∆ ordered by inclusion. This is not a lattice in general

essentially because faces are not generally closed under unions in any sense. One sometimes formally
adds a maximum and writes

F̂(∆) ∶= F(∆)∐{1̂}.

202 Notation
If F is a finite set, write F as the collection of all subsets of F ordered by inclusion, which is an

honest boolean lattice. Note that if F is the vertex set of a simplex, then F agrees with C(convF ).
Also write ∂F ∶= F − {F}.

203 Remark
In this notation, a simplicial complex ∆ is shellable if there exists an ordering F1, F2, . . . , Fm of
facets of ∆ such that

F j ∩ (F 1 ∪⋯ ∪ F j−1)

a non-empty, pure (d − 2)-dimensional subcomplex of ∂F j for all j ≥ 2. (The initial segment
condition is trivial for simplices.)

204 Example
Consider the six points

P1 = (0,0), P2 = (1,0), P3 = (2,0), P4 = (2,1), P5 = (3,1), P6 = (3,0)
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with edges

F1 = {P1, P2}, F2 = {P2, P3}, F3 = {P3, P4},
F4 = {P3, P5}, F5 = {P4, P5}, F6 = {P5, P6},
F7 = {P5, P6}

The shelling condition at j = 5 works out because F 5 = {{P4, P5},{P4},{P5},∅} intersects the
preceding elements in {{P4},{P5},∅}, which is pure of the correct dimension.

205 Definition
If F1, F2, . . . , Fm is a shelling of a simplicial complex ∆, write

F j ∩ (F 1 ∪⋯ ∪ F j−1) = G1 ∪⋯ ∪Gr.

Let {vij} ∶= Fj −Gi. In this notation, let Rj ∶= {v1
j , . . . , v

r
j}.

206 Example
Using the preceding example, we find R1 = ∅, R2 = {3}, R3 = {4}, R4 = {5}, R5 = {4,5}. Note

that Gi by assumption has precisely one fewer vertices than Fj , so the vij are well-defined.

207 Remark
Given a shelling as above, we are building up ∆ successively as F 1 ∪ ⋯ ∪ F j−1. What is the

collection of new faces added when adding F j to this collection? Since Fj −Gi = {vij}, we have

vij /∈ Gi, so Rj = {v1
j , . . . , v

r
j} /⊂ Gi, and Rj /⊂ F 1 ∪ ⋯ ∪ F j−1. Hence Rj is a new face, so every

element of [Rj , Fj] is new as well. Might there be additional new faces outside of this interval?

Suppose Rj /⊂ G ⊂ Fj , so we have some i such that vij /∈ G, so G ⊂ Gi since Fj −Gi = {vij}. In
particular, [Rj , Fj] is precisely the set of new faces.

To summarize: if F1, . . . , Fm is a shelling of a simplicial complex ∆, then Rj is the unique
minimal face added at shelling step j. (The converse happens to hold as well.) That is, we have
a partition of the face poset into disjoint boolean intervals

F(∆) =∐
j

[Rj , Fj].

208 Example
Consider ∂{a, b, c, d}. Take

F1 = {a, b, c}, F2 = {a, b, d}, F3 = {a, c, d}, F4 = {b, c, d}.

Compute the Rj . We have R1 = ∅, R2 = {d}, R3 = {c, d}, R4 = {b, c, d}. Geometrically, this
action occurs in the boundary complex of a tetrahedron; it is a good, easy exercise to draw it
out yourself.

At the first step, we added the interval [∅, abc] = {∅, a, b, c, ab, ac, bc, abc}. At the second step,
we added the interval [d, abd] = {d, bd, ad, abd}. At the third step, we added [cd, acd] = {cd, acd},
and at the final step we added [bcd, bcd] = {bcd}.

209 Remark
The preceding decomposition F(∆) = ∐j[Rj , Fj] allows us to easily compute f -numbers. In
particular, for all ` = 0,1, . . . , d,

f`−1(∆) =
m

∑
j=1

f`1([Rj , Fj])

=
m

∑
j=1

(d − ∣Rj ∣
` − ∣Rj ∣

)

=
d

∑
i=0

(d − i
` − i

)#{j ∶ ∣Rj ∣ = i}
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Comparing this last expression to the defining relation for h-numbers shows that hi(∆) = #{j ∶
∣Rj ∣ = i}. We now summarize this discussion.

210 Definition
Given a shelling order for a simplicial complex ∆ in the notation above, if ∣Rj ∣ = i then we say that the
jth shelling step is of type i.

211 Corollary
If ∆ is a shellable simplicial complex, then hi(∆) is the number of steps of type i.

212 Corollary
If ∆ is a shellable simplicial complex, then hi(∆) ≥ 0 for all i.

213 Proposition
If ∆ is a shellable (d − 1)-dimensional simplicial sphere, then hi(∆) = hd−i(∆) for all i.

Proof We deduce this as an immediate consequence of a nice property about restriction faces
of reversed shellings in this context. Precisely,

214 Lemma
If F1, . . . , Fm is a shelling of a simplicial sphere, then Fm, . . . , F2, F1 is also a
shelling, and R(Fj) = Fj −R′(Fj), where R(Fj) denotes the restriction face with
respect to the original shelling and R′(Fj) uses the reversed shelling.

Proof If ∆ is a simplicial (d − 1)-dimensional sphere, then χ̃(∆) = (−1)d−1, so
hd = (−1)d−1χ̃(∆) = 1. Hence, the total number of steps of type d is hd,
which is 1. Hence F j ∩ (F 1 ∪⋯ ∪ F j−1) = ∂F j for precisely one j. Since the
intersection j =m clearly has this property, it follows that for all j <m, this
intersection is a proper subset of ∂Fm. Consequently, F j∩(F j+1∪⋯Fm) ≠ ∅.
Since ∆ is a sphere, every (d − 2)-dimensional face of ∆ is in exactly two
facets. It follows that the increasing intersection above is the rest of the
facets of Fj , from which the result follows.

May 2nd, 2016: Draft

215 Remark
Today we will be characterizing the face numbers of simplicial complexes. Recall that for a simplicial
complex ∆, if ∆ is shellable, then hi(∆) ≥ 0 for all i. Moreover, if ∆ is a shellable (d − 1)-dimensional
sphere, then hi(∆) = hd−i(∆) for all i. In fact,

216 Theorem
If ∆ is any (d − 1)-dimensional simplicial sphere (not necessarily shellable), then

• (Klee, 1964.) hi = hd−i

• (Stanley, 1975.) hi ≥ 0

Klee’s hi = hd−i result are also referred to as the Dehn-Sommerville relations. These results suggest
questions along the lines of the following: which integer vectors are the f -vectors of (simplicial, shellable,
etc.) complexes?

217 Lemma
For any pair (a, i) of positive integers, then there exists a unique expression for a of the following form:

a = (ni
i
) + (ni−1

i − 1
) + (ni−2

i − 2
) +⋯ + (nj

j
)

where ni > ni−1 > ⋯ > nj ≥ j ≥ 1.
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218 Example
Let a = 40, i = 3. One may check that (7

3
) = 35 is the largest binomial coefficient with 3 on

bottom which is not greater than 40. Then (3
2
) = 3 is the largest binomial coefficient with 2 on

bottom which is not greater than 5. The next step gives (2
1
), so

40 = (7

3
) + (3

2
) + (2

1
).

Proof We prove existence; uniqueness is left as an exercise, though both proofs are similar. We
induct on a and i. Our bases case are a ≤ i, so that

a = (i
i
) + (i − 1

i − 1
) +⋯ + (i − (a − 1)

i − (a − 1)
),

or i = 1, so that a = (a
1
). Now assume the statement holds for all (a′, i′) witha′ < a and

i′ ≤ i. Consider (a, i) and find the maximum n such that (n
i
) ≤ a. Take ni ∶= n. Note that

(n
i
) ≤ a < (n+1

i
), so m ∶= a − (n

i
) satisfies

0 ≤m < (n + 1

i
) − (n

i
) = ( n

i − 1
).

If m = 0, then a = (ni

i
) and we are done. Otherwise, we can apply our inductive assumption to

(m, i − 1), so

m = (ni−1

i − 1
) + (ni−2

i − 2
) +⋯ + (nj

j
)

where ni−1 > ni−2 > ⋯ > nj ≥ j ≥ 1. Adding (ni

i
) to this expression gives a in the appropriate

form so long as ni > ni−1. Since m < (ni−1
i−1

), we indeed have ni > ni−1 since ( ni

i−1
) is too big to be

included in the expression for m.

219 Definition
If (a, i) ∈ Z>0 the expression

a = (ni
i
) + (ni−1

i − 1
) +⋯ + (nj

j
)

with ni > ⋯ > nj ≥ j ≥ 1 is called the ith canonical representation of a. We further define “bumping”

operations

a(i) ∶= ( ni
i + 1

) + (ni−1

i
) +⋯ + ( nj

j + 1
)

a⟨i⟩ ∶= (ni + 1

i + 1
) + (ni−1 + 1

i
) +⋯ + (nj + 1

j + 1
)

where (k
`
) = 0 if k < `. For convenience we also define 0(i) ∶= 0 =∶ 0⟨i⟩.

220 Theorem (Kruskal-Katona, circa 1961)
A positive integer vector

F = (F−1, F0, F1, . . . , Fd−1)

is the f -vector of some (d − 1)-dimensional simplicial complex if and only if F−1 = 1 and for all i ≥ 1,

Fi ≤ F (i)
i−1.

221 Remark
Schützenberger proved this earlier, but nobody noticed; Stanley calls it Schützenberger’s theorem,
but Kruskal-Katona is overwhelmingly common. We will discuss existence today. Next time we
will give a few remarks on necessity.

Proof (sketch). Write N ∶= {1,2, . . .} and (N
i
) ∶= {S ⊂ N ∶ ∣S∣ = i}.
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222 Definition
The reverse lexicographic order on (N

i
) ( rev-lex ; less commonly, co-lex or anti-lex) is

defined as follows. If F,G ∈ (N
i
), compute the symmetric difference F∆G ∶= (F −G) ∪

(G − F ). Say F <rev-lex G if maxF∆G ∈ G.

223 Remark
We run into problems if we try to use lexicographic order immediately. For instance,
if i = 2, we begin with

{1,2} < {1,3} < {1,4} < ⋯,
and we never get to {2,3}. In lexicographic order, we compare left-to-right:

F ∶= {3,5,6,9,10} >lex {3,4,7,9,10} =∶ G.

In rev-lex order, we compare right-to-left, where here 6 < 7 is used as the tie-breaker
to give F <rev-lex G. Here the symmetric difference is F∆G = {4,5,6,7}, the
maximum of which is 7 ∈ G.

224 Example
We have

{1,2,3} < {1,2,4} < {1,3,4} < {2,3,4} < {1,2,5} < {1,3,5} < {2,3,5} < ⋯.

One may ask for a given F ∈ (N
i
) what position F has in the rev-lex total order.

225 Lemma
Let F = {k1+1, k2+1, . . . , ki+1} ∈ (N

i
). Then the number of elements of (N

i
) smaller

than F in rev-lex order is precisely

(ki
i
) + (ki−1

i − 1
) +⋯ + (k1

1
)

such sets.

Proof Suppose G < F in rev-lex order. In the first case, suppose the ith element
(the largest element) of G is smaller than ki + 1, i.e. G ⊂ [ki]. There are
precisely (ki

i
) such sets. In the second case, suppose the ith element of G

is ki + 1, i.e. G = H ∪ {ki + 1} where H ∈ (ki−1
i−1

). There are (ki−1
i−1

) such sets.
Continuing in this way gives the expression.

Given a simplicial complex ∆, we know that its (i − 1)-dimensional faces form an initial
segment of (N

i
) with respect to rev-lex order.

226 Example
Say (14

6
) + (7

5
) + (5

4
) is the number of 5-dimensional faces. How many 6-dimensional faces

can we have? Notice that all 6-element subsets of [14] are accounted for by the first term.

All 6-element subsets of the form G∪{15} where G ∈ ([7]
5
) are accounted for by the second

term. All 6-element subsets of the form H ∪ {8,15} where H ∈ ([5]
4
) are accounted for by

the third term. Hence the 6-dimensional faces arise from 7-element subsets of [14], etc.
More on this next time.

227 Theorem (Stanley, 1975)
An integer vector H = (H0,H1, . . . ,Hd) is the h-vector of a shellable (d − 1)-dimensional simplicial

complex if and only if H0 = 1, H1 ≥ 0, and for all i ≥ 1, 0 ≤Hi+1 ≤H⟨i⟩
i .

228 Remark
If ∆ is shellable, then h1 = n − d = (n−d

1
) with n = f0. By the theorem, h2 ≤ h⟨1⟩

1 = (n−d+1
2

), and

similarly h3 ≤ h⟨
22⟩ = (n−d+2

3
), etc. These expressions appear in the upper bound theorem. We

also have hi = hd−i for all i. Hence we have the following corollary:
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229 Corollary (Stanley, 1975)
If ∆ is a (d − 1)-dimensional shellable sphere, then

hi(∆) ≤ hi(C(d, f0(∆))).

(“Shellable” can be replaced by “simplicial” above.)

230 Theorem (The g-theorem)
An integer vector h = (h0, h1, . . . , hd) is the h-vector of some d-dimensional simplicial polytope if and
only if

• hi = hd−i
• 1 = h0 ≤ h1 ≤ h2 ≤ ⋯ ≤ h⌊d/2⌋

• gi+1 ∶= hi+1 − hi ≤ (hi − h⟨i⟩
i−1) = g

⟨i⟩
i for all i ≤ ⌊d/2⌋ − 1.

231 Remark
The whole statement was conjectured by McMullen in 1970. Billera-Lee proved sufficiency in
1980. Stanley proved necessity in 1980. (The story is that Stanley was so motivated by Billera-
Lee’s result that he proved it quite quickly.) Stanley’s proof used quite a bit of commutative
algebra and algebraic geometry though is only two pages. McMullen wanted an elementary
proof of such an elementary statement, which he gave over a series of papers totaling around
100 pages.

232 Conjecture (The g-conjecture)
The same result holds for (d − 1)-dimensional simplicial spheres.

233 Remark
The Billera-Lee construction continues to give sufficiency. The statement that h1 ≤ h2 is
known to hold even for simplicial spheres (and more generally), a result which goes by
the name of the lower bound theorem. We will discuss this over the coming week. The
next conjectured inequality, h2 ≤ h3, is still wide open for simplicial spheres.

May 4th, 2016: Draft

234 Remark
We were discussing the Kruskal-Katona theorem. Recall that if f = (1, f0, f1, . . . , fd−1), this is the

f -vector of some (d − 1)-dimensional simplicial complex if and only if 0 < fi ≤ f (i)
i−1 for all 1 ≤ i ≤ d − 1.

Last time we began discussing the ⇐ direction, i.e. constructing simplicial complexes if the inequalities
are satisfied. We introduced rev-lex order on (N

i
). If F = {n1 + 1 < n2 + 1 < ⋯ < ni + 1} ∈ (N

i
), we showed

that there are exactly

(ni
i
) + (ni−1

i − 1
) +⋯ + (n1

1
)

rev-lex smaller elements of (N
i
). Note that some of the ni for i small may be zero; in our canonical

form, we ignored them. Our reasoning was actually more precise and described the initial segment
ending at F explicitly as follows.

If a = (ni

i
) + (ni−1

i−1
) + ⋯ + (nj

j
) where ni > ni−1 > ⋯ > nj ≥ j ≥ 1, then the first a elements of (N

i
) in

rev-lex order are as follows:

([ni]
i

)∐{H ∪ {ni + 1} ∶H ∈ ([ni−1]
i − 1

)}

∐{H ∪ {ni−1 + 1, ni + 1} ∶H ∈ ([ni−2]
i − 2

)}

⋯∐{H ∪ {nj+1 + 1, . . . , n1 + 1} ∶H ∈ ([nj]
j

)}.
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235 Example
We began the following example last time; there was a minor mistake (which has been corrected

above). Let a = (14
6
) + (7

5
) + (5

4
). The first a elements of (N

6
) are then

S ∶= ([14]
6

)∐{H ∪ {15} ∶H ∈ ([7]
5

)}

∐{H ∪ {8,15} ∶H ∈ ([5]
4

)}

By definition,

a(6) = (14

7
) + (7

6
) + (5

5
),

and the corresponding initial a(6) elements of (N
7
) are

T ∶= ([14]
7

)∐{G ∪ {15} ∶ G ∈ ([7]
6

)}

∐{G ∪ {8,15} ∶ G ∈ ([5]
5

)}

Recall that ∆ is a simplicial complex if (T ∈ ∆, S ⊂ T ) implies S ∈ ∆.

236 Corollary
Let (1, f0, f1, . . . , fd−1) be a positive integer vector. Define ∆i to be the first fi−1 elements of

(N
i
) in rev-lex order, with ∆0 ∶= ∅. Define ∆ ∶= ∆0∐∆1∐⋯∐∆d−1. Then ∆ is a simplicial

complex if and only if fi ≤ f (i)
i−1.

Proof (Sketch.) Using the preceding example, every 6-element subset of T is contained in S,
and if we added another 7-element subset to T , some 6-element subset of it would not
belong to S. The proof follows quickly by using this sort of reasoning.

The corollary finishes sufficiency (i.e. existence). A complex as in the corollary is called a

compressed complex (or sometimes a rev-lex complex). For necessity, one approach going back

to Erdös-Ko-Rado is combinatorial shifting . This is an operation that transforms any simplicial

complex ∆ into a compressed simplicial complex with the same face numbers. The second direction of
the corollary then gives necessity. Combinatorial shifting is accomplished by replacing single elements
of subsets S ∈ ∆ with other, smaller element in an appropriate way. This certainly does not change the
face number; there are many proofs that this operation can indeed be defined and give a compressed
simplicial complex. It would take a lecture or two to give a proof, so we will not take the time.

237 Example
The inequalities 0 < fi ≤ f (i)

i−1 for all 1 ≤ i ≤ d − 1 at i = 1 using f0 = n = (n
1
) gives f1 ≤ (n

2
), which

is just the fact that a graph with n vertices cannot have more than (n
2
) edges. In some sense,

the Kruskal-Katona theorem is generalizing this observation to higher dimensions.

238 Definition
A d-dimensional polytope P (n, d) with n vertices is a stacked polytope if

• it is a simplex (n = d − 1), or

• n > d + 1 and P (n, d) is obtained from some P (n − 1, d) by “building a shallow pyramid on one
of the facets.”

239 Remark
In contrast with cyclic polytopes, P (n, d) is not well-defined up to combinatorial isomorphism.
That is, two stacked d-dimensional polytopes with n vertices may not be combinatorially
isomorphic. Nonetheless, as we showed on the homework, the face numbers are the same for all
P (n, d).
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240 Example
Starting with a regular triangle in the plane gives P (3, 2). Gluing a second regular triangle onto
one edge and erasing the common edge yields a quadrilateral P (4, 2). Doing this one more time
gives a pentagon P (5,2).

241 Remark
During the recursive step, we find

fj(P (n, d)) = fj(P (n − 1, d)) +
⎧⎪⎪⎨⎪⎪⎩

(d+1
j+1

) − ( d
j+1

) if j ≤ d − 2

d − 1 j = d − 1.

= ⋯ =
⎧⎪⎪⎨⎪⎪⎩

(d+1
j+1

) + (n − d − 1)(d
j
) if j ≤ d − 2

(d + 1) + (n − d − 1)(d − 1) if j = d − 1

As we showed in the homework, the h-vector is

h(P (n, d)) = (1, n − d,n − d, . . . , n − d,1).

242 Theorem (Lower Bound Theorem)
If P is a simplicial d-dimensional polytope with n vertices, then

fj(P ) ≥ fj(P (n, d))

for all 1 ≤ j ≤ d − 1.

243 Remark
In contrast to the upper bound theorem, this theorem really only works for simplicial polytopes,
and it is easy to construct examples illustrating this.

The theorem was first proved by Barnette (1973) using shellability. We will go through
Kalai’s proof which uses “rigidity.” The first step of the proof is due to McMullen-Perles-Walkup,
which reduces theorem to the j = 1 case for all P and is sometimes called MPW reduction.

If j = 1, d ≥ 3, the condition is f1(P ) ≥ f1(P (n,3)) = (d+1
2
) + (n − d − 1)d = df0 − (d+1

2
), or

equivalently f1 − df0 + (d+1
2
) ≥ 0. Recall that

f1 = h2 + (d − 1)h1 + (d
2
)df0 = dh1 + d2

so that the condition is h2 − h1 ≥ 0.

Proof (Outline.)

Step 1: Show that if h2(Q) ≥ h1(Q) for all simplicial polytopes of dimension d − 1, then fj(P ) ≥
fj(P (n, d)) for all j ≥ 1.

Step 2: Show that h2 ≥ h1 using rigidity theory.

We will fill in this outline for the remainder of this lecture and in the next lecture.

244 Remark
We describe MPW reduction.

245 Notation
Write φk(n, d) ∶= fk(P (n, d)). Given any (d − 1)-dimensional simplicial complex C, write

γ(C) ∶= f1(C) − φ1(n, d) =
⎧⎪⎪⎨⎪⎪⎩

h2(C) − h1(C) if d ≥ 3

f1(C) − f0(C) if d = 2.

For instance, if C is the boundary of a polygon, this is zero.
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If P is a polytope and F is a face of P , we defined a quotient polytope P /F up to combinatorial
isomorphism by L(P /F ) ≅ [F,P ] ⊂ L(P ). If F is a vertex, we noted this can be done by intersecting
P with a hyperplane “near” the vertex.

The key claim in MPW reduction is the following. If P is a d-dimensional simplicial polytope,
f0(P ) = n, and 1 ≤ k ≤ d − 1, then

fk(P ) − φk(n, d) =∑
F

w(F )γ(P /F )

where the sum is over faces F ∈ C(∂P ) such that −1 ≤ dimF < k − 1 where the weights w(F ) are all
strictly positive.

We note that L(P /F ) is indeed a simplicial polytope, which follows essentially by noting that
intervals in boolean lattices are intervals.

246 Corollary
If γ(Q) ≥ 0 for all simplicial Q, then the lower bound theorem holds. Moreover, if fk(P ) =
φk(n, d) for a single value of k, then γ(P ) = 0.
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247 Remark
Today we will discuss the lower bound theorem, motion, and rigidity.

Recall that the lower bound theorem states the following. If P is a simplicial (d − 1)-dimensional
polytope with n vertices, then fi−1(P ) ≥ fi−1(P (n, d)), where P (n, d) is any d-dimensional stacked
polytope with n vertices.

We began discussing “step 1” of the proof last time. We had defined

γ(P ) ∶= f1(P ) − f1(P (n, d))

=
⎧⎪⎪⎨⎪⎪⎩

h2(P ) − h1(P ) =∶ g2(P ) if d ≥ 3

f1(P ) − f2(P ) if d = 2

We discussed the MPW reduction. If P is a simplicial (d − 1)-dimensional polytope with n vertices
and 1 ≤ k ≤ d − 1, then the claim is

fk(P ) − φk(n, d) =∑
F

w(F ) ⋅ γ(P /F )

for some positively weighted sum over F ∈ C(∂P ) with −1 ≤ dimF < k − 1, where we had set
φk(n, d) ∶= fk(P (n, d)). An immediate corollary of this claim is that if γ(P /F ) ≥ 0 for all F , then
fk(P ) ≥ fk(P (n, d)) for all k.

248 Aside
It turns out that the statement of MPW reduction holds if we replace P with any pure (d − 1)-
dimensional complex C and P /F with the link of F in C. (In this generality, we are not claiming
that the γ’s are non-negative, but we are claiming that the weights are non-negative.)

249 Definition
If C is a simplicial complex and F ∈ C, then the link of F in C is

lkC F ∶= {G − F ∶ F ⊂ G ∈ C} = {H ∶H ∈ C,H ∩ F = ∅,H ∪ F ∈ C}.
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250 Example
Consider a simplicial complex arising from a triangulation of a manifold. One would naively
think the link of a vertex would be topologically a punctured ball, i.e. a sphere. This is not
quite true, but the intuition is nonetheless that by considering vertex links we can use results
for spheres in studying manifolds or complexes.

251 Remark
We have:

(1) lkC F is a simplicial complex. If C is pure and (d− 1)-dimensional, then lkC F is also pure of
dimension d − 1 − ∣F ∣.

(2) Consider the modified face poset F̂(C) ∶= F(C)∐{1̂}. Then

F̂ (lkC F ) ≅ [F, 1̂] ⊂ F̂ (C).

In particular, if C = C(∂P ), then F̂ (C) = L(P ), so L(P /F ) = [F,P ] ≅ ̂F(lkC F). That is,
for the boundary complex of a polytope, the link is really giving us the quotient.

In particular, the statement of MPW reduction is the following. If C is a pure (d − 1)-
dimensional simplicial complex with n vertices and 1 ≤ k ≤ d − 1, then

fk(C) − φk(n, d) = ∑
F ∈C

−1≤dimF<k−1

w(F ) ⋅ γ(lkC F )

where w(F ) > 0 for all F .

(3) If F = {v1, v2} ∈ C, then
lkC F = lklkC v1(v2)

and we can iterate this for ∣F ∣ > 2. This is often useful for inductive proofs.

(4) We have

(k + 1) ⋅ fk(C) = # pairs (k-dimensional faces F , vertices v of F )

= ∑
v∈vert(C)

fk−1(lkC v)

(This was almost surely used in the homework.)

Proof (of MPW reduction; sketch) Say the vertices of C are v1, v2, . . . , vn and their degrees are
m1,m2, . . . ,mn, respectively. Note that mi = f0(lkC vi). Skipping some computations, one writes

φk(n, d) = ak(d) ⋅ n + bk(d)

for some ak(d), bk(d) where ak(d) > 0. One further shows

(k + 1)(fk(C) − φk(n, d)) = ⋯ = 2ak−1(d − 1) ⋅ γ(C) +
n

∑
i=1

(fk−1(lk vi) − φk−1(mi, d − 1)).

Here γ(C) = γ(lk∅), and induction finishes the proof.

The details of this argument are in the posted notes; they are not terribly difficult, but they are
also not terribly enlightening.

252 Remark
We now turn to Step 2 of the lower bound theorem proof. Interestingly, we will need convexity only
for three-dimensional complexes, which begins to explain why generalizations of the theorem hold for
simplicial spheres.

More precisely, we must show that if d ≥ 3 and P is a d-dimensional polytope, then γ(P ) =
h2(P ) − h1(P ) is non-negative. The idea is to use coordinates of P to define a matrix R such that
dim kerR = γ(P ), which is thus non-negative. This will take a bit of work.
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253 Remark
We first discuss framework rigidity .

254 Definition
A d-dimensional framework G (or a “framework in Rd”) is a finite collection of vertices (called

joints ) vi ∈ Rd for i ∈ [n] and a collection of edges (called bars ) vivj = conv{vi, vj} for ij in some

edge set E ⊂ ([n]
2
).

255 Remark
Thus, a d-dimensional framework is a graph G = ([n],E) together with a map ψ∶ [n] → Rd.
(Note that ψ need not be an embedding, i.e. ψ could map everything to a point, or two distinct
edges could overlap, etc.)

256 Example
Let G =K3. We can build frameworks for G in several ways:

• ψ could be constant, so the framework “is a point”;

• ψ could send the vertices to the vertices of an equilateral triangle, in which case it is an
embedding;

• ψ could send the vertices to colinear points, say with v1 < v2 < v3, in which case the edge
from 13 overlaps the edges 12 and 23.

257 Definition
A motion of a d-dimensional framework is a (smooth) function

[0,1] × [n]→ Rd

(t, i)↦ vi(t)

such that

• vi(0) = vi for all i;

• ∣∣vi(t) − vj(t)∣∣ = ∣∣vi − vj ∣∣ for all ij ∈ E and all t.

We think of vi(t) the position of the ith vertex at time t.

258 Example
Starting with a 2-dimensional framework which is a parallelogram, a trivial motion is translation.
A less trivial motion is “squishing it to become a rectangle” while preserving edge lengths.

Any Euclidean motion of Rd always gives rise to such a motion on any G ⊂ Rd. These include

translations and rotations but not reflections. We call these trivial motions . More precisely,
any

ψ∶ [0,1] ×Rd → Rd

such that ∣∣ψ(t, v) − ψ(t, v∣∣ = ∣∣v − v∣∣ for all t ∈ [0,1] and all v, v ∈ Rd, and ψ(0, v) = v for all
v ∈ Rd.

259 Definition
A d-dimensional framework is rigid if it allows only trivial motions. That is, for any motion of the

framework, it extends to a rigid motion of the whole Euclidean space.

260 Example
We have:

• An equilateral triangle in any Rn with n ≥ 2 is rigid.
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• A parallelogram in R2 is not rigid. However, we can rigidify it by adding a vertex at the
intersection of the two diagonals with four new bars and using the result as the base of a
pyramid in R3. As an exercise, find a different vertex to a parallelogram in R3 such that
the result is rigid.

261 Remark
If (v1(t), v2(t), . . . , vn(t)) for t ∈ [0,1] is a motion of G, then ∣∣vi(t) − vj(t)∣∣2 is a constant depending
on i, j for all ij ∈ E. Differentiating,

0 = 2⟨vi(t) − vj(t), v′i(t) − v′j(t)⟩.

At t = 0, writing ui ∶= v′i(0), we get

⟨vi − vj , ui − uj⟩ = 0, ∀ij ∈ E.

262 Definition
An infinitesimal motion of G ⊂ Rd is a collection of vectors u1, . . . , un ∈ Rd such that

⟨vi − vj , ui − uj = 0, ∀ij ∈ E.

Equivalently, we require projvi−vj ui = projvi−vj uj for all ij ∈ E.

263 Example
A trivial infinitesmal motion arises by taking u1 = ⋯ = un. This will eventually correspond to
translation.

Return to the pyramid of the preceding example. Let v6 be the intersection of the diagonals
of the original parallelogram. Set u1 = ⋯ = u5 = 0 with u6 perpendicular to the base. This
example shows that while rigid motions always induce infinitesimal motions, the converse does
not hold.

May 9th, 2016: Draft

(Missed.)

May 11th, 2016: Draft

264 Remark
Homework 6 is on the web; it is due next Friday. Annie Raymond will sub on Friday and Monday; she
will discuss matroidal polytopes and their intersections.

265 Remark
Recall our setup. We had a building G = (V,E) ⊂ Rd with V = {v1, . . . , vn}. An infinitesimal motion of

G is u1, . . . , un ∈ Rd such that ⟨vi − vj , ui − uj⟩ = 0 for all ij ∈ E. We denote by M(G) the space of all
infinitesimal motions of G, and we can do the same for M(Rd); these are vector spaces. Each element
of M(Rd) induces an infinitesimal motion of M(G), and infinitesimal rigidity is precisely the claim
that this induced map M(Rd)→M(G) is surjective.

Last time we proved the following theorem:

266 Theorem
dimM(Rd) = (d+1

2
). (Indeed, M(Rd) =M(Σd) where Σd is a d-dimensional simplex.)
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267 Corollary
A framework G = (V,E) in Rd (with Aff(V ) = Rd) is infinitesimally rigid if and only if

dimM(G) = (d+1
2
). In this case, every infinitesimal motion of G (or Rd) is determined by its

restriction to any d affinely independent joints of G.

268 Corollary (The Gluing Lemma)
If G and G′ are two d-dimensional infinitesimally rigid frameworks that have d affinely indepen-
dent joints in common, then G1 ∪G2 is also infinitesimally rigid.

269 Remark
We next express the space M(G) as the kernel of an appropriate matrix, which offers a convenient way
to compute the space. Recall that our goal is to find ui such that ⟨vi − vj , ui − uj⟩ = 0 for all ij ∈ E
with G = (V,E) ⊂ Rd.

Form a matrix whose rows are indexed by edges of G, of which there are f1. Group columns into
blocks of size d, where each block corresponds to a vertex of G, so there are d ⋅ f0 columns. For a
particular row indexed by ij, put zeros in each block corresponding to vertices different from vi and vj .
For the block corresponding to vi, place (vj − vi)T in it, and for the block corresponding to vj , place
(vi − vj)T in it. This matrix doesn’t have a common name, though it’s sometimes referred to as the

rigidity matrix of G or the stress matrix of G, which we’ll write as R(G,d) or perhaps just R if

G is understood.

Note that if u1, . . . , un is an infinitesimal motion of G, then ⟨vi − vj , ui⟩ = ⟨vi − vj , uj⟩ for all ij ∈ E,
and conversely. Consider multiplying the column vector

⎛
⎜⎜⎜
⎝

u1

u2

⋮
un

⎞
⎟⎟⎟
⎠

on the left by R. The result is simply a column vector with rows indexed by edges where the ij ∈ E
entry is ⟨vj − vi, ui⟩ + ⟨vi − vj , uj⟩. We have just proven:

270 Theorem
M(G) = kerR(G,d).

We may also consider the left kernel of R (or up to transpose the right kernel of RT ). Pick a row
vector λij with columns indexed by ij ∈ E. Multiplying this on the right by R gives ∑i∶ik∈E λik(vi−vk)T .

Hence an element λ of the left null space of R is an assignment of a number λij for each edge ij
such that the following holds. We require ∑i∶ik∈E λij = 0 for all k = 1, . . . , n.

271 Definition
The left null space of R = R(G,d) is called the stress space of G. Its elements are called stresses

on G.

272 Example
Pick a regular pentagon in the plane. Number vertices from 1 to 5 clockwise (say). The edges
are then 12,23,34,45,51, and stresses are choices of numbers for each edge. At vertex 1, we
require λ12(v2 − v1) + λ15(v5 − v1) = 0. Pictorially, these vectors are just the vectors pointing
from 1 to 2 and from 1 to 5, which clearly form a basis, so we require λ12 = λ15. In this way, we
have only trivial stress in this case.

273 Example
Consider a square in R2 where we’ve added the two diagonals as additional edges. We can form
a stress using edge weights of 1 for the outer edges and −1 for the diagonals. The matrix itself
is straightforward to write in this case as well.
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274 Theorem
Let G = (V,E) be a framework in Rd, where Aff(V ) = Rd, with f1 edges and f0 vertices. The following
are equivalent:

(1) G is infinitesimally rigid

(2) dimM(G) = (d+1
2
)

(3) rankR(G,d) = df0 − (d+1
2
)

(4) the dimension of the stress space is f1 − df0 + (d+1
2
)

Proof The equivalence of (1) and (2) was shown above. (3) and (4) follows from rank-nullity.

275 Remark
Recall that in the case when G comes from a simplicial polytope, the number in (4) is really
h2 − h1.

276 Corollary
Let P be a d-dimensional simplicial polytope (or in fact any (d − 1)-dimensional simplicial complex).

If P is infinitesimal (as a framework in Rd), then

h2(P ) − h1(P ) = f1 − df0 + (d + 1

2
) ≥ 0.

Proof From the previous theorem, this quantity is the dimension of a vector space, which is non-
negative.

277 Remark
To finish the proof of the lower bound theorem, we just need to show simplicial polytopes are
infinitesimally rigid. Note that this fails for more general polytopes (or complexes).

278 Theorem (Whiteley, 1984)
For d ≥ 3, d-dimensional simplicial polytopes in Rd are infinitesimally rigid.

Proof We give the sketch now; we will give the details sometimes next week.

The strategy is to induct on d. At the d = 3 base case, by the Dehn-Sommerville relations,
h2(P )−h1(P ) = 0. Hence we must show the stress space is trivial, which is precisely the following
older theorem:

279 Theorem (Dehn, 1916)
If P is a simplicial 3-dimensional polytope, then P admits only the trivial stress.

For the inductive step, take d > 3. Pick a vertex v0 ∈ P and consider the link of v0 in P . This
is essentially only defined combinatorially in general, but we noted that it can also be identified
with the vertex figure of v0. That is, Q ∶= P /v0 is P intersected with a hyperplane “close” to v0.
We know that Q is infinitesimally rigid in Rd−1 by induction.

Now define G0 to be the graph of the star of v0, meaning the vertices and edges of G0 are
the vertices and edges of the facets of P that contain v0. We’ll show that Q being infinitesimally
rigid in (d − 1) dimensions implies G0 is infinitesimally rigid in d dimensions. Now use the
gluing lemma to show that the union of all such stars is also infinitesimally rigid. This union
is precisely the graph of P , which completes the proof. We expand on the gluing lemma step
while it is still fresh.

Take v0, v1 adjacent with G0 = G(st v0), G = G(st v1). Then G0 ∩G1 contains all d vertices
of any facet that contains the edge v0v1, and this is non-empty since the polytope is pure. By
the gluing lemma, G0 ∪G1 is infinitesimally rigid. This procedure can be inductively repeated.
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280 Remark
Annie Raymond is lecturing today.

281 Definition
Take a pair M = (E(M),F(M)) where E(M) is some ground set of elements and F(M) is a family

of subsets of E(M). Call the elements of F(M) independent sets . The pair M is a matroid if

(1) S ∈ F(M) and T ⊂ S, then T ∈ F(M)

(2) S1, S2 ∈ F(M) and ∣S2∣ > ∣S1∣, then there exists e ∈ S2 − S1 such that S1 ∪ {e} ∈ F(M).
282 Example

A linear matroid is a matroid obtained in the following way. Given a matrix A, let E(M) be
the indices of the columns of A and let F(M) be the sets of indices whose columns are linearly
independent.

For instance, given

⎛
⎜
⎝

1 0 1 2 −1 0
1 1 2 3 −2 0
0 1 1 1 −1 1

⎞
⎟
⎠

then our ground set is E = [6] and our independent sets include ∅, {1}4,{2}, . . . ,{6},{1, 2}, but
not {1,2,3}. Since A is a rank three matrix, the largest independent sets here are size 3. The
second condition on independent sets is immediate from elementary linear algebra.

283 Example
A graphic matroid is a matroid obtained from a graph G = (V,E) in the following way. Let

E(M) ∶= E and F(M) be the edge sets of forests in G. (A forest is an acyclic graph.)

For instance, if G is the complete graph on 5 vertices, then independent sets include the
edges arising from the empty graph, or the boundary of a pentagon with one edge removed, etc.

284 Remark
We next discuss matroid maximization. Let M = (E,F) be a matroid and let c∶E → R be a “cost
function.” The goal is to find an independent set S ∈ F which maximizes c(S) ∶= ∑e∈S ce.

Indeed, consider the following greedy algorithm. Order E such that c(e1) ≥ c(e2) ≥ ⋯ ≥ c(e∣E∣).
Begin at S = ∅. For j from 1 to ∣E∣, if S ∪ {ej} ∈ F , then replace S with S ∪ {ej} so long as the overall
cost actually increases.

Let Sk be the set obtained in the algorithm after k elements have been added. We claim Sk
maximizes c(S) over all S ∈ F with ∣S∣ = k.

Proof Suppose Sk = {s1, . . . , sk} and consider T = {t1, . . . , tk} ∈ F such that c(t1) ≥ ⋯ ≥ c(tk).
Further suppose to the contrary that c(T ) > c(Sk), so there exists i such that c(ti) > c(si) and
let p be the smallest such i. Now define A ∶= {t1, . . . , tp} and Sp−1 ∶= {s1, . . . , sp−1}, which are
independent sets by the first property. By the second property, we may move some element of
A over to Sp−1 and get an independent set, or formally there exists tj such that 1 ≤ j ≤ p such
that Sp−1 ∪ {tj} ∈ F and tj /∈ Sp−1. We now have c(tj) ≥ c(tp) > c(sp). However, the algorithm
would have added tp before sp, which is a contradiction.

285 Remark
Kruskal’s algorithm is (nearly? double check) the preceding algorithm applied to a graphic
matroid. Indeed, the above property completely characterizes matroids, though we won’t make
this precise or prove it.
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286 Definition
The rank of a matroid is the function

r ∶2∣E∣ → Z+
S ⊂ E ↦ r(S) ∶= max T⊂ST ∈F ∣T ∣.

287 Example
In the graphic matroid of K5, any subset of three vertices have rank 2, since the largest forest
on those vertices has two edges.

288 Proposition
The rank function satisfies the following:

(1) 0 ≤ r(S) ≤ ∣S∣ for all S ⊂ E.

(2) If S ⊂ T , then r(S) ≤ r(T ).

(3) The submodularity condition: for all S,T ⊂ E,

r(S) + r(T ) ≥ r(S ∪ T ) + r(S ∩ T )

Proof (1) and (2) are immediate. (3) is not hard, though we skip it for the sake of time (and
interest).

289 Definition
Let M = (E,F) be a matroid. The corresponding matroid polytope is given by

P ∶= conv{χS ∶ S ∈ F}

where χS is the indicator function on the subset S of E. This is a polytope in R∣E∣.

290 Example
Let G be the complete graph on three vertices numbered 1,2,3. The corresponding graphic
matroid has independent sets ∅,{12},{13},{23},{12,13},{12,23},{13,23}, which have cor-
responding indicator vectors (0,0,0), (1,0,0), (0,1,0), (0,0,1), (1,1,0), (1,0,1), (0,1,1). The
corresponding matroid polytope is the convex hull of these indicator vectors.

291 Remark
One is often interested in optimizing some linear function over some discrete set, which one
can sometimes encode as optimizing the function over the corresponding matroidal polytope.
However, the number of vertices can sometimes be prohibitively enormous, and one may instead
prefer to maximize using the half-plane description of the polytope.

292 Definition
Continuing the notation of the preceding definition, define

QI ∶= conv{x ∈ R∣E∣ ∶ ∀S ⊂ E,∑
e∈S

xe ≤ r(S);∀e ∈ E,xe ∈ {0,1}}.

The right-hand side is an integer program, which in general is very hard to solve. We have QI = P
essentially immediately. We may avoid an integer program by relaxing the final constraint as in the
following:

Q ∶= {x ∈ R∣E∣ ∶ ∀S ⊂ E,∑
e

xe ≤ r(S);∀e ∈ E,0 ≤ xe(≤ 1)}.

One has P ⊂ Q immediately. QI is the convex hull of the integer points inside of Q.

May 16th, 2016: Draft
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293 Remark
Recall the end of last lecture. We had a matroid M = (E,F), and we had a corresponding matroid

polytope P ∶= conv(χS ∶ S ∈ F ). We had a continuous analogue of the matroid polytope Q ∶= conv{x ∈
R∣E∣ ∶ ∀S ⊂ E,∑e∈S xe ≤ r(S);∀e ∈ E,xe ≥ 0}. It is clear that P ⊂ Q. Perhaps surprisingly, the reverse
containment also holds. We will give several proofs of this.

294 Proposition
In the notation above, P = Q.

Proof (First proof of proposition.) Intuitively, we begin by asking if we are missing any equalities for Q,
i.e. is dimP = dimQ? We may assume every element e ∈ E is independent, i.e. {e} ∈ F , since otherwise
xe = 0 is forced in both P and Q. Hence P contains conv{0, e1, . . . , e∣E∣}, so P is full dimensional, so Q
must be as well:

∣E∣ ≤ dimP ≤ dimQ ≤ ∣E∣.

Now we ask if we are missing any inequalities for Q. Let αTx ≤ β be a valid inequality for P ,
i.e. there exists some v ∈ P such that αT v = β and P lies on one side of αTx = β. Then

β = max
x∈P

αTx

= max
S∈F

α(S)

where α(S) ∶= ∑e∈S αe. Let F ∶= {x∗ ∈ P ∶ αTx∗ = β} be the face induced by αTx ≤ β on P . Further let
S ∶= {e ∈ E ∶ αe = maxf∈E{αf}}.

Claim: for any T ∈ F such that α(T ) = β, we have that ∣S ∩ T ∣ = r(S).

To prove the claim, assume not. S ∩ T ∈ F lies in S, so ∣S ∩ T ∣ < r(S). Extend S ∩ T to some set X
such that X ∈ F , X ⊂ S, and ∣X ∣ = r(S) using the second property of matroids repeatedly. Similarly
extend X to a set Y such that Y ∈ F , Y ⊂ T ∪X, ∣Y ∣ = ∣T ∣. Note that

α(Y ) − α(T ) = ∑
e∈Y

αe −∑
e∈T

αe

= ∑
e∈Y −T

αe − ∑
e∈T−Y

αe.

Now Y − T ⊂ S and T − Y ⊂ E − S and ∣Y − T ∣ = ∣Y ∣ − ∣T ∩ Y ∣ = ∣T ∣ − ∣T ∩ Y ∣ = ∣T − Y ∣, forcing this
sum to be non-negative. Hence α(Y ) > α(T ) = β, so αTx ≤ β is not valid, being violated by Y ∈ F , a
contradiction.

Given the claim, for any T ∈ F such that α(T ) = β, we have ∣T ∩S∣ = r(S), so taking ∑e∈S xe ≤ r(S),
F is contained in the face induced by ∑e∈S xe ≤ r(S). (Note to self: write this out a little more
carefully.)

Proof (Second proof of proposition.) The above proof focused on half-spaces. Another way to proceed is to
focus on vertices instead, which we’ll get to if we have time. We’ll give a third way here, which focuses
on duality.

For any cost function c, maxx∈P c
Tx ≤ maxx∈Q c

Tx since P ⊂ Q. It we can show equality always
holds, it will follow that P = Q. More precisely, we are maximizing cTx over ∑e∈S xe ≤ r(S) for all
S ⊂ E; xe ≥ 0 for all e ∈ E. By LP-duality (which we will not discuss), this is equal to the minimum of

∑S⊂E r(S)yS such that ∑S∶e∈S yS ≥ ce for all e ∈ E; yS ≥ 0 for all S ⊂ E.

Goal: show that for any c, we can find S∗ ∈ F such and a dual feasible solution y∗ that have the
same weight. For S∗, we can use the greedy algorithm from last lecture. Recall that it ordered elements
as weakly decreasing according to cost, iterated through those, and added elements whenever they both
preserved independence and increased the cost. Hence we use the greedy algorithm on all elements
e such that c(e) ≥ 0, say e1, . . . , eq. Suppose the greedy algorithm returns the set Sk = {s1, . . . , sk}.
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Build a dual solution as follows. For any index j ≤ k, let Sj ∶= {s1, . . . , sj} and let Uj ∶= {e1, e2, . . . , e`}
where e`+1 = sj+1.

Note that r(Uj) = r(Sj) = j since the greedy algorithm is greedy; this is why we restricted the s’s
to be non-negative. Let yS ∶= 0 for all S ⊂ E except for yUj = c(sj) − c(sj+1) for all 1 ≤ j ≤ k, where
c(sk+1) ∶= 0. We claim this is valid for the dual program of the same weight as the solution for the
primal program. We certainly have yS ≥ 0 for all S since the s’s are weakly decreasing, so we must
check that ∑S∋e yS ≥ ce. For fixed e, let t be the least index such that e ∈ Ut. We have

∑
S∋e

yS =
k

∑
j=t
yUj

= c(st) − c(st+1) + c(st+1) − c(st+2) +⋯
= c(st).

Now c(st) ≥ ce since st occurred before e in the ordering by the greedy algorithm. Hence y is a feasible
dual solution. We now compute its weight:

∑
S

r(S)yS =
k

∑
j=1

r(Uj)yUj

=
k

∑
j=1

j ⋅ (c(sj) − c(sj+1)

=
k

∑
j=1

(j − (j − 1))c(sj)

=
k

∑
j=1

c(sj) = c(Sk).

May 18th 2016: Draft

295 Remark
Isabella is lecturing again today. The plan for the rest of the quarter is as follows. Today we’ll finish
the proof of the lower bound theorem. Next time we’ll discuss a generalization of the lower bound
theorem. On Monday Sean will be lecturing on flow polytopes. Then we’ll head towards the Hirsch
conjecture.

296 Remark
Recall where we were in the proof of the lower bound theorem. We had reduced it to Dehn’s theorem
and Whiteley’s theorem. We discussed infinitesimal rigidity in d-dimensions, which we’ll sometimes

refer to as d-rigidity for clarity.

Recall that if G = (V,E) ⊂ Rd is a framework in Rd with Aff(V ) = Rd, a stress on G is a function
λ∶E → R by ij ↦ λij such that ∑j∶ij∈E λij(vi − vj) = 0 for all i. We had the following theorem in this

context: G is infinitesimally d-rigid if and only if the dimension of the stress space is f1 − df0 + (d+1
2
),

which is h2 − h1 assuming G is the graph of some (d − 1)-dimensional complex and d ≥ 3.

We begin by proving Whiteley’s theorem.

297 Theorem (Whiteley, 1984)
For all d ≥ 3, any d-dimensional simplicial polytope is infinitesimally d-rigid.
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Proof To prove this, we just need to check the base case d = 3 and induct. The base case was proven
much earlier:

298 Theorem (Dehn, 1916)
If P is a simplicial 3-dimensional polytope, then P admits only the trivial stress λ = 0.

Proof Fix P . Assume there exists a non-trivial stress λ. Label each edge ij ∈ E by +,−,
or 0 depending on the sign of λij . If there exists v ∈ V such that all edges incident
with v are labeled 0, remove v and consider the convex hull of the remaining
vertices.

Can we get a 2-dimensional complex? If so, the stress was supported on a
polygon, and we showed that polygons admit only trivial stresses, which would
imply λ = 0, contrary to our assumption, so the result is still 3-dimensional. Can
we get more edges? Yes; just label them with 0.

Can we get a non-simplicial polytope? Yes. However, we may triangulate
each 2-face by adding diagonals and label them with 0’s. The result may still be
non-simplicial, which will not bother us. Note that we did not introduce more
vertices, so we may repeat this procedure to find a polytope Q whose vertices are
a subset of the vertices of P with the property that no vertex has all zero edges
incident with it, all non-zero edges are edges of P , and every 2-face is triangulated.

Now for each triangle ∆ of Q in some 2-face, label the corners of ∆ with 0,
1, or 1/2 as follows. The edgets of the triangle have signs ε1, ε2, ε3. Label the
vertex on the edges labeled by both ε1 and ε2 as follows. If ε1 = ε2, use label 0. If
ε1 = −ε2(≠ 0), use label 1. If ε1 = 0, ε2 ≠ 0 (or ε1 ≠ 0, ε2 = 0), use label 1/2.

Claim 1: consider a vertex v of Q. The sum over all triangles ∆ containing v of
the corner label at v is ≥ 4.

Claim 2: for all triangles ∆, the sum of the corner labels is ≤ 2.

Assuming these claims for the moment, let S denote the sum of all corner labels.
By claim 1, S ≥ 4f0(Q). By claim 2, S ≤ 2f2(Q) where f2(Q) here really means
the number of triangles. Since Q is 3-dimensional, f0 − f1 + f2 = 2, and 3f2 = 2f1,
we have f2 = 2f0 − 4. (Indeed, f1 = 3f0 − 6.) But then

4f0 ≤ S ≤ 2f2 = 2(2f0) − 4) = 4f0 − 8,

a contradiction.

We turn to the proof of the claims. Begin with claim 2. There are only a
handful of cases to check by symmetry. If all edge labels are positive, all vertex
labels are 0, so the sum is 0. If there are two +’s and one −, the vertex labels
are 1,1,0, which sum to 2. If there are two +’s and one 0, the vertex labels are
1/2, 1/2, 0, which sum to 1. We won’t write out the other cases, but they work out.

For claim 1, we’ll show that there are ≥ 4 as we “circle” along the edges
incident with v. Here we imagine taking a hyperplane a small distance away from
v and we intersect it with Q, and we order the edges incident with v using the
resulting polygon. By the stress condition, we need ∑i∶iv λiv(v−vi) = 0. Consider a
supporting hyperplane of v in Q. The edges incident with v all lie on the same side
of the hyperplane, i.e. v − vi all point in the same direction relative to the normal
of the hyperplane, so the λiv cannot possibly be all of the same sign. Hence there
is at least 1 sign change, and there must be an even number of sign changes.

We must now argue that there cannot be exactly 2 sign changes, so suppose
to the contrary that there are exactly 2 sign changes. Recall that no 3 non-zero
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edges incident with v are coplanar since we began with a 3-polytope. Hence we can
strictly separate the +’s from the −’s, i.e. there exists a hyperplane H such that all
edges incident with v with label + on one side of H and all edges labeled − on the
other side. Now project these edges v − vi onto the normal n of H, say pointing in
the direction of the + edges. The contribution of the + edges to ∑i∶iv λiv(v − vi)
is (positively) in the direction of n, and the contribution of the − edges is also
(positively) in the direction of n, a contradiction.

The inductive step uses the following theorem:

299 Theorem
If P is a d-dimensional simplicial polytope (d ≥ 4), then the vertex stars of P are
infinitesimally d-rigid.

Proof Pick a vertex v0 of P , and assume without loss of generality v0 = 0. Assume
without loss of generality that the neighbors of v0 are vertices with coordinates
(v1, a1), . . . , (vm, am) where vi ∈ Rd−1 and a1, . . . , am ∈ R with ai > 1. Let Q ∶=
P /v0 = P ∩{(x1, . . . , xd) ∶ xd = 1} be the corresponding vertex figure. The vertices of
Q have coordinates (v1/a1, 1), . . . , (vm/am, 1), since they arise from the intersections
of edges of P with the above hyperplane.

By the inductive assumption, Q is infinitesimally (d − 1)-rigid. Let G0 be the
graph of the star of v0. Claim: G0 is infinitesimally d-rigid. Up to combinatorial
isomorphism, G0 is the graph of (v0 ∗ lk∂P v0). We showed in homework

h(v0 ∗ lk∂P v0;x) = h(v0;x) ⋅ h(lk∂P v0;x) = h(lk∂P v0;x).

Now

h2(st v0) − h1(st v0) = h2(lk v0) − h1(lk v0) = dim(stress space of Q)

where the second equality uses the fact that Q is infinitesimally rigid. To prove the
claim, it then suffices to show that the dimension of the stress space of G0 is the
same as the dimension of the stress space of Q. We will complete this next time.

May 20th, 2016: Draft

300 Remark
Today we will discuss generalizations of the lower bound theorem, and finish our proof from last time.

Proof (Continued from last time.) Recall that we had a d-dimensional polytope P with d ≥ 4, vertices
v1, . . . , vm ∈ Rd−1 with R ∋ ai > 1, v0 = 0 ∈ Rd, where (v1, a1), . . . (vm, am) are the neighbors of v0. If Q
is the intersection of xd = 1 and P , we know that Q is infinitesimally (d − 1)-rigid. We need to show
that the vertex figure of P at v0, call it G0, is infinitesimally rigid.

Equivalently, we need to show that the dimension of the stress d-space of G0 is the same as the
dimension of the stress (d − 1)-space of Q. If (λij) is a stress of G0, we have for each i = 1, . . . ,m

∑
ij∈E(G0)

j≠0

λij (
vi − vj
ai − aj

) + λi0 (vi
ai

) = 0

m

∑
j=1

λ0j (
vj
aj

) = 0.
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The first equation imply

∑λij(vi − vj) + λi0vi = 0

∑λij(ai − aj) + λi0ai = 0

⇒ λi0 −
1

ai
∑λij(ai − aj).

Indeed, the second equation is then redundant. Moreover, setting λij ∶= aiajλij , one checks that if

(λij) is a stress on G0, then λij is a stress on Q. In the other direction, given a stress αij on Q, one
can form a stress on G0 α̃ij ∶= 1

aiaj
αij with αi0 determined by the formula above. The result then

follows, completing the proof of the lower bound theorem.

301 Remark
We turn to generalziations of the lower bound theorem.

302 Theorem (Whiteley)
Let P be any d-dimensional polytope (not necessarily simplicial), d ≥ 3. Triangulate every 2-face

of P by adding non-intersecting diagonals. Let G̃(P ) be the corresponding graph. Then G̃(P ) is
infinitesimally rigid.

303 Corollary (Kalai, 1987)
Let P be a d-dimensional polytope (not necessarily simplicial), d ≥ 3. Let fk2 (P ) denote the

number of 2-faces of P that are k-gons. Then

f1(P ) +∑
k≥3

(k − 3)fk2 (P ) ≥ df0 − (d + 1

2
).

Proof (Sketch.) The proof is roughly the same as in the above proof of the lower bound
theorem. The left-hand side is the number of edges of G̃(P ), so the left-hand side minus
the right-hand side is precisely the dimension of the stress space of G̃ by Whiteley’s
theorem, which is non-negative.

304 Aside
Consider

∑
k≥1

(k − 3)fk2 (P )

=∑kfk2 (P ) − 3∑ fk2 (P )
= #{pairs (2-face F of P , vertex v of F )} + f2(P )
=∶ f02 − 3f2.

Here f02 is an example of a flag f -number , which we will not presently discuss further.

305 Definition
If G = (V,E) is an abstract graph, we say it is generically d-rigid if almost all embeddings (in the

sense above; these need not be injective) of G in Rd are infinitesimally rigid.

306 Remark
Homework problem number 3 in this terminology says that graphs of simplicial 3-polytopes are
generically 3-rigid. We have a low-dimensional miracle: every 2-dimensional simplicial sphere is
the boundary complex of some 3-dimensional polytope. We can then restate the result of the
homework problem as saying graphs of simplicial 2-dimensional spheres are generically 3-rigid.

307 Lemma (The Cone Lemma)
If G = (V,E), the cone over G is

CG ∶= {(V ∐{v0},E∐{v0v ∶ v ∈ V }}.

Then G is generically (d − 1)-rigid if and only if CG is generically d-rigid.
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308 Lemma (The Gluing Lemma)
Let G1 = (V1,E), G2 = (V2,E2) such that

• G1 and G2 are generically d-rigid,

• ∣V1 ∩ V2∣ ≥ d.

Then G1 ∪G2 = (V1 ∪ V2,E1 ∪E2) is generically d-rigid.

309 Theorem (Kalai, 1987)
The graph of any connected (d − 1)-dimensional simplicial manifold ∆ (with d ≥ 3) is generically rigid,
and so h2(∆) − h1(∆) ≥ 0.

Proof (Sketch.) The proof is again essentially the same as our proof of the lower bound theorem. The
base case is the restated homework problem above. One uses a version of Whiteley’s theorem
for generic rigidity together with the above generic versions of the cone lemma and the gluing
lemma. One difficulty is that if ∆ is (d − 1)-dimensional, all vertex links of ∆ are only homology
(d − 2)-spheres. By the cone lemma, graphs of vertex links are generically (d − 1)-rigid, and
graphs of vertex starts are generically d-rigid. Indeed, Kalai showed equality holds precisely for
boundaries of stacked polytopes.

Gromov independently proved this result using his own notion of combinatorial rigidity, also
in 1987.

310 Conjecture (Kalai, 1987)
Let ∆ be a (d − 1)-dimensional simplicial (connected) manifold, d ≥ 4. Then

h2(∆) − h1(∆) ≥ (d + 1

2
)β1(∆)

where β1 is the dimension of the first homology of δ (computed with coefficients in some field; part of
the conjecture is that the bound holds for all fields).

311 Example
For the torus S1 × S1, β1 = 2, which is independent of the field used. For the two-sphere S2,
β1 = 0 for all fields. However,

β1(RP 2;k) =
⎧⎪⎪⎨⎪⎪⎩

0 if chark ≠ 2

1 if chark = 2.

312 Conjecture
We have

h2 − h1 ≥ (d + 1

2
)m(∆)

where m(∆) is the minimum number of generators of π1(∆).

313 Example
We have m(S1 ×S1) = 2 since π1(S1 ×S1) ≅ Z×Z. Also, π1(S2) = 0 so m(S2) = 0. Furthermore,
m(RP 2) = 1. It is a standard fact that m(∆) ≥ β1(∆), so the second conjecture is stronger than
the first. Indeed, m(∆) ≥ β1(∆) can be arbitrarily poor. Poincaré spheres are getting at this
issue; all homology agrees with spheres, but the fundamental group is non-zero. Suspending the
Poincaré sphere twice gives a 5-dimensional manifold.

314 Theorem (Novik-Swartz, 2009; Murai, 2015)
The first conjecture holds.

315 Theorem (Novik-Murai, two weeks ago)
The second conjecture holds (very likely; very new).
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316 Definition
A simplicial complex is “flag” roughly if it is defined by its graph. More precisely, a simplicial complex

∆ is flag if it is a clique complex of its graph.

317 Example
Barycentric subdivisions are always flag. For instance, take the boundary of a triangle, which is
not flag. However, subdividing it adds vertices at the three midpoints and divides each edge in
two, and the result is flag. The boundary complex of the three-dimensional cross polytope is
also flag.

318 Conjecture (Gal)
If ∆ is a flag complex such that ∣∣∆∣∣ is a (d−1)-dimensional sphere, d ≥ 4, then f1−(2d−3)f0+2d(d−2) ≥ 0.

319 Remark
By comparison, the lower bound theorem says

f1 − df0 + (d + 1

2
) ≥ 0.

The bound is known to hold for 3- and 4-spheres, though it is wide open for 5-spheres. One
could also be ambitious and replace “sphere” with “manifold.”
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