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Abstract
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Contents

April 2nd, 2014: Right Derived Functors, Examples from Groups, and Spectral Sequence Motivation 2

April 4th, 2014: Filtered Complexes, Associated Graded Objects, and Spectral Sequences Defined 4

April 7th, 2014: Edge Homomorphisms; Filtration of Hn(C∗) and its Spectral Sequence for r = 0, 1, 2
Defined . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

April 9th, 2014: Formal Construction of Spectral Sequence for Hn(C∗); Double Complexes . . . . 10

April 11th, 2014: Row and Column Filtrations of Double Complexes; the Snake Lemma . . . . . . 12

April 14th, 2014: The Five Lemma; Maps of Spectral Sequences . . . . . . . . . . . . . . . . . . . 15

April 16th, 2014: The Universal Coefficient Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 16

April 18th, 2014: Cartan-Eilenberg Resolutions; Projects . . . . . . . . . . . . . . . . . . . . . . . 19

April 21st, 2014: Left Hyper-derived Functors and their Spectral Sequences; Injective Cartan-
Eilenberg Resolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

April 23rd, 2014: Right Hyper-Derived Functors; Hypertor . . . . . . . . . . . . . . . . . . . . . . 23

April 25th, 2014: Derived Functors; Grothendieck Spectral Sequence . . . . . . . . . . . . . . . . . 25

April 28th, 2014: Lyndon-Hochschild-Serre Spectral Sequence . . . . . . . . . . . . . . . . . . . . . 27

April 30th, 2014: Cross Products, Cup Products, and Group Cohomology Ring Structure . . . . . 29

May 2nd, 2014: The Yoneda Product; Multiplicative Spectral Sequences . . . . . . . . . . . . . . . 31

May 5th, 2014: Group Functors—Restriction, Induction, and Coinduction . . . . . . . . . . . . . . 33

May 7th, 2014: Frobenius Reciprocity; Coinduction and Induction Identities . . . . . . . . . . . . . 34

May 9th, 2014: Corestriction, the Transfer Map, and CorGH ResGH = [G : H] . . . . . . . . . . . . . 36

May 12th, 2014: Sylow Subgroups; the Double Coset Formula; Commuting Res, Ind,Cor . . . . . . 37

May 14th, 2014: Dimension Shifting and Syzygies; ResGGp
surjects onto G-invariants of Hn(Gp,M) 39

1



May 16th, 2014: Conjugation of G on H∗(G,M) is Trivial; Center Kills Argument; Algebraic Groups 41

May 28th, 2014: Fibrations and the Leray-Serre Spectral Sequence . . . . . . . . . . . . . . . . . . 43

May 30th, 2014: Using the Serre Spectral Sequence: H∗(CP∞;R) ∼= R[x] and the Gysin Sequence 45

June 2nd, 2014: H∗(CPn;R) ∼= R[x]/(xn+1); Cohomology of Homogeneous Spaces: The Flag
Manifold and Grassmannians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

June 3rd, 2014: K(π, n)’s; Principal and Universal G-Bundles . . . . . . . . . . . . . . . . . . . . . 52

June 4th, 2014—G-Equivariant Cohomology and Finite Generation . . . . . . . . . . . . . . . . . . 55

June 6th, 2014—Finite Group Cohomology is Finitely Generated . . . . . . . . . . . . . . . . . . . 56
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April 2nd, 2014: Right Derived Functors, Examples from Groups,
and Spectral Sequence Motivation

1 Remark
We’ll assume some things, like the standard homological algebra course. Can reference Weibel. We’ll
start with spectral sequences.

Definition 2. Recall the following definitions/results. Let F : A → B be a functor between abelian categories.
(Default assumption: functors are covariant.) Also assume these categories have “enough injectives”
(or projectives): this means given any object in A, we can find an injective object the given object
embeds into.

If F is left exact, we can consider the ith right derived functor RiF of F . (Left exact means it takes
a short exact sequence 0→ A→ B → C → 0 to the exact sequence 0→ F(A)→ F(B)→ F(C).)

These functors form a “cohomological functor’ in the sense of Weibel, meaning they fit into long
exact sequences. How to compute/define RiF? Injective resolutions.

Suppose we have A ∈ A. Let
A→ I0 → I1 → I2 → · · ·

be an injective resolution; this exists since A has enough injectives (construct inductively by repeatedly
embedding cokernels into injectives). (To be clear, the resolution starts at I0.) Apply F to the
resolution to get

0→ F(I0)→ F(I1)→ F(I2)→ · · · ,

a cochain complex. Now just take homology at each term. Then (RiF)(A) = Hi(F(I∗)).

F is exact if and only if each (RiF)(A) = 0 for i ≥ 1.

3 Example
Let G be a group. Let A be the category of kG modules (i.e. G-representations), where k is a field;
this is a classical example of an abelian category. Consider the functor F(M) = HomkG(k,M) from A
to Ab, the category of abelian groups.

What can we say about this functor? HomG(k,−) is not exact, though it is left exact, so the right
derived functors are interesting. (Minor note: we’ll omit the kG and just write G typically.)

Definition 4.
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(i) Hn(G,M) = ExtnG(k,M) := Rn HomG(k,M).

(ii) ExtnG(N,M) := Rn HomG(N,M) for any G-module N .

Note we can think of this as functors ExtnG(N,−) := Rn HomG(N,−) or as ExtnG(−,M) :=
Rn HomG(−,M).

5 Remark
In practice, what do we do to compute Hn(G,M)? By definition, we take an injective resolution

M → I0 → I1 → I2 → · · · ,

apply the functor HomG(k,−) to get the cochain complex

HomG(k, I0)→ HomG(k, I1)→ · · ·

(no longer exact), and take homology to get H0(G,M), H1(G,M), etc.

6 Remark
We can also do the previous computation using a projective resolution of k rather than an injective
resolution of G. Take

· · · → P1 → P0 → k,

a projective resolution of k (it starts at P0), apply the HomG(−,M) functor (contravariant, this time)
to get

HomG(P0,M)→ HomG(P1,M)→ · · ·
(another cochain complex). Again apply homology to get H0(G,M), H1(G,M), etc.

The bar resolution uses the projective module kG to give a very explicit version, though it gets big
quickly.

7 Remark
The “minimal resolution” is something you try to construct if you really want to compute something;
more on this later. Can ask software packages to compute this much of the time.

8 Remark
This gets complicated for groups with more structure. For instance, consider GLn(k); the representa-
tions form an abelian category, have enough injectives, etc. It has more structure: it’s a Lie group, it’s
an algebraic group (meaning it’s a variety with compatible multiplication). As an algebraic group,
there’s a different category of representations, but it doesn’t have projective objects, though it does
have injective objects. (As a general observation, injective objects tend to be more ubiquitous, i.e. you
have them available more often).

9 Remark
It often happens that when you construct your resolution, it doesn’t stop. If the group is finite, either
you get no non-trivial right derived functors (occurs with semisimplicity assumptions); or infinitely
many right derived functors are non-trivial.

The reason this happens for finite groups is that injective modules are the same as projective
modules. No finite length resolutions over kG.

10 Proposition
HomG(k,−) can be described as the functor of fixed points (−)G. Hence Hi(G,−) = Ri(−)G.

Proof Indeed,

HomG(M,N) = {f : M → N | f(g ·m) = g · f(m)}

so HomG(k,M) = {f : k →M | f(g ·λ) = g ·f(λ)}. (Here we’re viewing k with trivial kG-module
action.) Hence f(g · λ) = f(λ) = λ · f(1). Likewise g · f(λ) = λg · f(1). Cancelling λ and letting
f(1) = m, we see HomG(k,M) is identified with {m ∈ M : g · m = m}, precisely the fixed
points.
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11 Remark (Motivating spectral sequences)
Let 1→ K → G→ G/K → 1, let M be a kG-module. Can check MG = (MK)G/K . We have three
functors:

(−)G : kG-Mod→ Ab

(−)K : kK-Mod→ Ab

(−)G/K : k(G/K)-Mod→ Ab .

We can think of the second functor as taking kG-modules to k(G/K)-modules. We have

kG-mod
(−)K→ k(G/K)-mod

(−)G/K

→ Ab

whose composite is (−)G. More generally consider functors between abelian categories

A F→ B G→ C

with composite G ◦F = I, where F ,G, I are left exact. What can we say about RiG ◦RjF? Specifically,
Hi(G/K,Hj(K,M)) is what? Answer, roughly: there is a spectral sequence that computes this, the
Lyndon-Hochschild-Serre spectral sequence. In general, RiG ◦RjF ⇒ Ri+j(G ◦F). This will be defined
later; it’s the Grothendieck spectral sequence.

April 4th, 2014: Filtered Complexes, Associated Graded Objects,
and Spectral Sequences Defined

12 Remark
Today’s topic: defining the spectral sequence of a filtered complex. There are two standard approaches
to spectral sequences. One comes from filtered complexes, perhaps favored by algebraists, and the
other comes from exact pairs. We’ll take the first approach. This is more or less covered in Weibel.

Definition 13. Let (C∗, d) be a chain complex (as usual, assume we’re over some nice abelian category). A

filtered chain complex {FpC∗}p∈Z is a collection of subcomplexes compatible with the differental d.

Explicitly,
· · · ⊂ Fp−1C∗ ⊂ FpC∗ ⊂ Fp+1C∗ ⊂ · · · ⊂ C∗

and

· · · FpCn · · · Cn

· · · FpCn−1 · · · Cn−1

d d d d

Definition 14. To each filtered chain complex we can define the associated graded object

gr∗ Cn := ⊕p∈Z
FpCn
Fp−1Cn

.

15 Example
PBW basis for U(g), the universal enveloping algebra of a Lie algebra g. This basis gives a filtration
for the (infinite dimensional) algebra U(g). The associated graded algebra is a symmetric algebra, and
is very nice. Sometimes the associated graded algebra will have easy cohomology, and you want to
compute the cohomology of the original object; this is where spectral sequences come in to play.
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Definition 16. A (homological) spectral sequence in some abelian category A is the following data:

1) Erpq ∈ A for r ≥ 0, p, q ∈ Z. For fixed r, Erpq is called the rth page of the spectral sequence

2) Fixed maps drpq : Erpq → Erp−r,q+r−1.

3) Fixed isomorphisms

Er+1
pq
∼=

ker drpq
im drp+r,q−r+1

.

This is written {Erpq}r≥0, with the rest of the maps left implicit. We say the total degree of Erpq is
p+ q.

Remark: (3) implicitly requires the maps in (2) to form families of chain complexes along diagonals
parallel to (−r, r − 1).

17 Remark
Pictures for spectral sequences. The 0th page: d0 : E0

pq → E0
p,q−1 looks like

· · ·

· · ·

· · ·

· · ·

d0

d0

d0

The first page: d1 : E1
pq → E1

p−1,q gives

· · · ·

· · · ·

· · · ·

d1 d1 d1

The second page: d2 : E2
pq → E1

p−2,q+1 gives

· · · · ·

· · · · ·

· · · · ·

· · · · ·

d2

d2

d2
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General pattern:

· · · ·

· · · ·

· · · ·

· · · ·
d0

d1

d2

d3

The total degree always decreases by 1 when we apply dr.

Definition 18. A cohomological spectral sequence is like the above, but dpqr : Epqr → Ep+r,q−r+1
r , and

Epqr+1
∼=

ker dpqr

im dp−r,q+r−1
r

The general picture is

· · · ·

· · · ·

· · · ·

· · · ·

d0
d1

d2

d3

Remark: this time the total degree increases by 1 after applying dr, and we get families of cochain
complexes along diagonals parallel to (r, 1− r).

Definition 19. Say a page Er∗∗ is bounded if it has finitely many non-zero terms on each diagonal (“diagonal”

being page-specific). {Erpq} is bounded if it is bounded for some r.

20 Remark
If Er∗∗ is bounded, then for all p, q, {Espq}s≥r has a “stable” value, i.e. for some s large enough, all

higher terms are isomorphic. We denote this value by E∞pq ; this notation implies existence of a stable

value (though not necessarily that a page is bounded).

Proof Sketch: if you draw the picture, eventually kernels are everything and images are nothing since
they map to/from 0. Apply the isomorphism assumption (3).

21 Example
A first quadrant spectral sequence is one with Erpq 6= 0 only if p, q ≥ 0. This is bounded, hence has

the property above.

Definition 22. Let {Hn}n∈Z be a sequence of filtered objects in A. Assume the filtrations are finite, so

0 = FtHn ⊂ · · · ⊂ FsHn ⊂ · · · ⊂ Hn,

t ≤ s. Let {Erpq} be a homological spectral sequence. Then Erpq converges to Hp+q, written

Erpq ⇒ Hp+q,
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if E∞pq “gives the associated graded object of H∗”. That is,

E∞pq
∼= FpHp+q/Fp−1Hp+q

Equivalently,
Totn(E∞∗∗)

∼= gr∗Hn,

where
Totn(E∞∗∗) := ⊕p+q=nE∞pq .

The definition for cohomological spectral sequences is similar: Epqr ⇒ Hp+q means Epq∞
∼=

FpHp+q/Fp+1Hp+q.

23 Remark
What does this mean?

(1) Look at the “r = ∞ page”, with E∞pq at each lattice point; note that p + q is constant on
antidiagonals.

(2) For a particular antidiagonal with p+ q = n, write the pieces of the associated graded object to the
filtration of Hn on each lattice point. Specifically, place grpHn := FpHn/Fp−1Hn at (p, n− p).

Now Erpq ⇒ Hp+q means precisely that the objects from (1) and (2) are isomorphic for all p, q. We’re
likely interested in computing Hn exactly, but we can in general only recover the associated graded
object; frequently this is enough.

The statement Erpq ⇒ Hp+q implies we’ve chosen some fixed isomorphisms, i.e. that E∞pq and grpHn

are not merely isomorphic, but isomorphic via some fixed (often implicit) map.

24 Example
Consider a first quadrant spectral sequence. For Erpq ⇒ Hp+q, the filtration we have on Hn will be

0 ⊂ F0Hn ⊂ · · · ⊂ FnHn = Hn.

Here the nth diagonal connecting (0, n) and (n, 0) with endpoints E∞0n and E∞n0 has n+ 1 objects. Have
E∞0n
∼= F0Hn and E∞n0 = Hn/Fn−1Hn. More next time.

April 7th, 2014: Edge Homomorphisms; Filtration of Hn(C∗) and
its Spectral Sequence for r = 0, 1, 2 Defined

25 Notation
“E2

pq ⇒ Hp+q” is a minor abuse of notation meaning the spectral sequence {Erpq} converges to Hp+q

and E2
pq is a page of particular interest. Sometimes spectral sequences don’t start at 0, but that’s

alright.

26 Example
(Continued from last lecture.) Consider a first quadrant spectral sequence

E0
pq ⇒ Hp+q.

Call Hn the abutment of the spectral sequence. The abutment is just the sequence of objects
{Hn}n∈Z; it does not know about any filtrations on those objects. Still, Hn comes with a filtration

0 ⊂ F0Hn ⊂ · · · ⊂ FpHn ⊂ · · · ⊂ Fn−1Hn ⊂ FnHn = Hn.
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By definition, FpHn/Fp−1Hn
∼= E∞pq ; imagine writing these groups at lattice points in the first quadrant

with diagonals where p+ q = n is constant. Connecting the diagonal (n, 0) to (0, n) connects objects

E∞n0
∼=

FnHn

Fn−1Hn
, E∞0n

∼= F0Hn,

with intermediate terms FpHn/Fp−1Hn
∼= E∞pq . We can map F0Hn into Hn injectively, and we can map

Hn to FnHn/Fn−1Hn via the quotient map; these maps are sometimes called “edge homomorphisms”.
More precisely, we have the top row of

Er0n = E∞0n = F0Hn Hn Hn/Fn−1Hn = E∞n0 = Ern0

Er−1
0n Er−1

n0

...
...

E1
0n E2

n0

for some large enough r; take r ≥ 1. What about the rest of the diagram?

• We get Er+1
0n by taking homology at Er0n. But for r ≥ 1, dr0n’s target is outside of the first

quadrant, so Er+1
0n is a quotient of Er0n.

• Similarly Er+1
n0 is given by homology at Ern0, so Er+1

n0 is the kernel of drn0, which has domain Ern0.

The diagonal maps are sometimes (also) called edge homomorphisms .

Definition 27 (Constructing the spectral sequence of a filtered complex). Let C∗ be a filtered
complex

0 = FtC∗ ⊂ · · · ⊂ FpC∗ ⊂ · · · ⊂ Fs−1C∗ ⊂ FsC∗ ⊂ C∗.

Assume the filtration is finite. (It is enough to assume finite for any fixed n, i.e. the number of non-zero
terms may or may not depend on “∗”.) Our goal is to construct a spectral sequence

Erpq ⇒ Hp+q(C∗).

(Here H∗ denotes homology.) We proceed in stages.

Definition 28. We first note the filtration on C∗ induces a filtration of Hn(C∗) for each n, as follows. The

filtration on C∗ is compatible with differentials, so in particular

FpCn+1 Cn+1

FpCn Cn

FpCn−1 Cn−1
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From this diagram, we read off Zn(FpC∗) ⊂ Zn(C∗) and Bn(FpC∗) ⊂ Bn(C∗). Hence we have an
induced map

Hn(FpC∗) :=
Zn(FpC∗)

Bn(FpC∗)
→ Zn(C∗)

Bn(C∗)
:= Hn(C∗).

Define Fp(HnC∗) as the image of Hn(FpC∗) under this map. Indeed, the above diagram actually

gives Zn(FpC∗) = Zn(C∗)∩FpCn and Bn(FpC∗) ⊂ Bn(C∗)∩FpCn. Moreover, the kernel of the above
map is precisely

Bn(C∗) ∩ FpCn
Bn(C∗)

,

and it follows that

Fp(HnC∗) ∼=
Zn(C∗) ∩ FpCn
Bn(C∗) ∩ FpCn

.

For simplicity, write Zn := Zn(C∗), Bn := Bn(C∗), and FpHn := Fp(HnC∗). One can check this

gives a triangle

Zn∩FpCn

Bn∩FpCn

Zn

Bn

Zn∩Fp−1Cn

Bn∩Fp−1Cn

which forces the vertical arrow injective, i.e. we have Fp−1Hn ↪→ FpHn . It turns out the associated

graded object is

grpHn =
FpHn

Fp−1Hn

∼=
Zn ∩ FpCn
Bn ∩ FpCn

/
Zn ∩ Fp−1Cn
Bn ∩ Fp−1Cn

∼=
Zn ∩ FpCn

Bn ∩ FpCn + Zn ∩ Fp−1Cn
(∗)

Definition 29 (“Informal construction”). Next we construct the first few pages of a spectral sequence
converging to Hp+qC∗ with the above induced filtration. Let n = p+ q throughout. Set

E0
pq := FpCn/Fp−1Cn

Since d is compatible with the filtration, it induces d0 : E0
pq → E0

p,q−1 by

d0 :
FpCn
Fp−1Cn

→ FpCn−1

Fp−1Cn−1
.

(One must check this is a chain map.) Hence the 0th page looks like this:
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Fp−1Cn+1

Fp−2Cn+1

...

Fp−1Cn

Fp−2Cn

FpCn+1

Fp−1Cn+1

Fp−1Cn−1

Fp−2Cn−1

FpCn

Fp−1Cn

...
FpCn−1

Fp−1Cn−1

d0 d0

d0 d0

d0

To get the next page’s objects, we’re forced to use

E1
pq :=

ker d0
pq

im d0
p,q+1

Now we need E1
p−1,q ← E1

pq : d1. Let z ∈ E1
pq, so z ∈ FpCn and d0(z) = 0. That is, d(z) ∈ Fp−1Cn−1;

that is, z is a cycle modulo Fp−1Cn−1. Define

d1
pq(z) := d(z)

There are many checks one has to do, but they all work out. For the second page, define

E2
pq :=

ker d1
pq

im d1
p+1,q

Exercise: track down d2.

April 9th, 2014: Formal Construction of Spectral Sequence for
Hn(C∗); Double Complexes

Definition 30 (Formal construction). Goal: given a filtered chain complex (C∗, d), construct a spectral
sequence converging to the sequence of filtered objects {HnC∗} defined last time. While this won’t in
general recover the homology of C∗, it will recover the associated graded objects.

Throughout, n = p+ q. Assume the filtration is finite as before. Define

Zrpq := {z ∈ FpCn : d(z) ∈ Fp−rCn−1}.

Then for r � 0,

Zn ∩ FpCn = Z∞pq = · · · = Zr+1
pq = Zrpq ⊂ Zr−1

pq ⊂ · · · ⊂ Z0
pq = FpCn,

where Zn = ker(d : Cn → Cn−1) as before. Recall that

Fp(HnC∗) ∼=
Zn ∩ FpCn
Bn ∩ FpCn

,
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so “in the limit” these Zrpq give us honest cycles, which is a good sign. Similarly define

Brpq := {z ∈ FpCn : z = d(x), x ∈ Fp+r−1Cn+1}.

Note Brpq = d(Zr−1
p+r−1,q−r+2). Indeed, for r � 0,

d(Fp−1Cn+1) = B1
pq ⊂ · · · ⊂ Brpq = · · · = B∞pq = Bn ∩ FpCn.

Now set

Erpq :=
Zrpq

Brpq + (Zrpq ∩ Fp−1Cn)
.

Note

• d(Zrpq) ⊂ Zrp−r,q+r−1 ⊂ Fp−rCn−1.

• d(Brpq) = 0

• Zrpq ∩ Fp−1Cn = {z ∈ Fp−1Cn : d(z) ∈ Fp−rCn−1} = Zr−1
p−1,q+1. Hence d(Zrpq ∩ Fp−1Cn) =

d(Zr−1
p−1,q+1) = Brp−r,q+r−1.

From these observations, it follows that we can define differentials drpq : Erpq → Erp−r,q+r−1 by

drpq :
Zrpq

Brpq + (Zrpq ∩ Fp−1Cn)
→

Zrp−r,q+r−1

Bp−r,q+r−1 + (Zrp−r,q+r−1 ∩ Fp−r−1Cn−1)
.

Exercise (“for strong-willed people”): show

Er+1
pq
∼=

ker drpq
im drp+r,q−r+1

.

(Why does any of this work, and what is going on here? Very roughly, we’re trying to make successive
approximations of Fp(HnC∗) where the next approximation is given by taking homology of the previous
approximation. This must have been motivated by some particular objects of interest originally, but
this particular construction is very general, hence abstract. “In the limit” the approximations converge
to the quantities we were after, which is shown formally in the next remark.)

31 Remark
What happens at ∞? For r large compared to p, Zrpq is just cycles since Fp−rCn−1 = 0. We have

E∞pq =
Z∞pq

B∞pq + (Z∞pq ∩ Fp−1Cn)
=

Zn ∩ FpCn
Bn ∩ FpCn + Zn ∩ Fp−1Cn

∼= grpHn(C∗),

where the last equality comes from formula (∗) from last time. Typically this construction is not useful
for actually computing things, but its existence is very useful for proving general properties.

Definition 32. A double complex C∗∗ is a collection of objects {Cpq}p,q∈Z in some abelian category

together with differentials
dvpq : Cpq → Cp,q−1

and
dhpq : Cpq → Cp−1,q

where dhdh = 0, dvdv = 0, and dhdv + dvdh = 0. (Note: we can get an equivalent definition by toggling
the sign on every other row, which gives commutativity of each square rather than anticommutativity.)
We think of the complex as
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· · ·

· · ·

· · ·

dv

dh

dv

dh

dv

dv

dh

dv

dh

dv

dh dh

Call p+ q the total degree of Cpq. Total degree is constant along antidiagonals.

Definition 33. The total complex associated to a double complex C∗∗ is

Totn(C∗∗) :=
⊕
p+q=n

Cpq

with
d : Totn(C∗∗)→ Totn−1(C∗∗)

given by dh + dv in each summand. Pictorially, we imagine an antidiagonal with total degree p+ q = n
as the nth graded piece, and the differential maps from this antidiagonal to one immediately below it
“both horizontally and vertically”. Note that indeed d2 = (dh + dv)2 = 0, which partially justifies the
anticommutativity in the definition of a double complex.

34 Remark
Preview of next time: there exist two filtrations on Tot∗(C∗∗) that leads to two spectral sequences
converging to the same abutment Hn(Tot∗(C∗∗)). In practice, one way tends to be easy and the other
way is what you’re actually interested in.

April 11th, 2014: Row and Column Filtrations of Double
Complexes; the Snake Lemma

35 Remark
Math Olympiad on first Sunday of June. If you’re able to help out, let Julia know. Time committment:
9-1pm on Sunday, June 1st; 3-5pm Friday, May 30th; get problems Monday, May 26th.

Today, we’ll get two filtrations on Tot(C∗∗). They’ll come from two filtrations on C∗∗ itself. As
application, we’ll use them to prove the Snake lemma.

Definition 36 (Column Filtration). I. Given a double complex C∗∗, consider the truncated complex
which is visually given by putting 0’s to the right of column p. Formally, let

τ≤pC∗∗ :=

{
Cp′,q p′ ≤ p

0 p′ > p

Define a filtration on the chain complex Totn(τ≤pC∗∗) by

Fp Totn(C∗∗) := Totn(τ≤pC∗∗) =
⊕

p′+q=n,p′≤p

Cp′,q.

(Pictorially, we just add up the p′ + q = n antidiagonal with 0’s to the right of column p.) This is the

column filtration of C∗∗ .

12



37 Proposition
Let IErpq be the spectral sequence associated to the column filtration of C∗∗. We’ll compute the first

three pages explicitly, IErpq for r = 0, 1, 2.

• We see
IE0

pq =
Fp Totn(C∗∗)

Fp−1 Totn(C∗∗)
= Cpq,

and indeed d0 = dv from the double complex. So, IE0
pq reconstructs (the vertical portion of) the

double complex.

• To get the next page, take “vertical homology”, IE1
pq = Hq(Cp∗,dv). For convenience, abuse

notation and say IE1
pq = Hv(C∗∗). It’s not hard to check that d1

pq is induced by dh in C∗∗, giving

d1
pq : IE1

pq → IE1
p−1,q.

• To get the next page, take “horizontal homology”, IE2
pq = Hh(IE1

pq) = Hh(Hv(C∗∗)).

We know that IE2
pq ⇒ Hp+q(Tot(C∗∗)). In summary, we start with the double complex with the

vertical arrows, take vertical homology to get the horizontal arrows, and take horizontal homology of
that.

Definition 38 (Row Filtration). II. Let CTpq := Cqp, i.e. flip the double complex through the main

diagonal. Note that the total complex is unchanged and that horizontal differentials become vetical
differentials and vice-versa. We can do the same to a spectral sequence, where we also flip the
differentials through the main diagonal.

The row filtration of C∗∗ is the column filtration of CT∗∗. Intuitively, we imagine putting 0’s in all
rows above row q to obtain this filtration.

Let IIErpq be the spectral sequence associated with the column filtration on CT∗∗.

39 Proposition
We have

IIE2
pq = (HvHh(C∗∗))

T ⇒ Hp+q(Tot(C∗∗)).

40 Remark
A (homological) spectral sequence’s differentials go downward and then left, while we’re taking

homology in the other order: horizontal, then vertical. This explains the T : we must transpose
our spectral sequence to interpret the second page in this way. Since the notation is already so
verbose, the T will typically be dropped, though be careful. For instance, IIE0

pq = Cqp, while

(IIE0
pq)

T = Cpq.

41 Remark
The bottom line is that we get two different spectral sequences IErpq and IIErpq converging to the same
abutment Hp+q(Tot(C∗∗)), where the first two pages are computed by taking horizontal or vertical
homology starting with the original double complex.

Warning: While the abutments are the same, the induced filtrations on that abutment are in
general different, so for instance it is not generally the case that IE∞pq = IIE∞pq .

42 Lemma (Snake Lemma)
We start with

0 A B C 0

0 A′ B′ C ′ 0

α β γ

13



We consider this as part of a double complex (pq written as a superscript)

C(01) B(11) A(21)

C ′(00) B′(10) A′(20)

γ β α

(Technically, we’ve replaced β with −β to get commutativity. Kernels and cokernels are unaffected.)
We have two spectral sequences associated to this complex, IE2

pq = Hh(Hv(C∗∗)) and IIE2
pq =

Hv(Hh(C∗∗)). The horizonal-first sequence is very nice, since our rows are exact, giving Hh = 0:

IIE2
pq = Hv(Hh(C∗∗)) = 0.

Hence E∞pq = 0, so the abutment is zero, whence H∗(Tot(C∗∗)) = 0. Therefore

IE2
pq = Hh(Hv(C∗∗))⇒ 0.

What does this tell us about the IE2
pq page?

• IE1
pq = Hv(C∗∗); this is a very small complex, so we can do it explicitly. We get

ker γ kerβ kerα

coker γ cokerβ cokerα

d1 d1

d1 d1

where the horizontal differentials are induced by the original horizontal differentials.

• Next, IE2
pq is obtained by taking homology of the previous page. Consider the upper right corner,

kerα at (21). We know from the other sequence that E∞21 = 0, but it’s easy to see that E21

stabilizes at the page r = 2. Likewise IE2
pq = 0 for pq = 00, 10, 11, leaving

IE2
01 0 0

0 0 IE2
20

d2

Hence, in the IE1
pq page, the top row is left exact (i.e. exact at kerα and kerβ), and the bottom

row is right exact (i.e. exact at coker γ, cokerβ), so we have

0→ kerα→ kerβ → ker γ cokerα→ cokerβ → coker γ → 0

exact. Moreover, there are no nontrivial differentials in the r = 3 or higher page, so taking
homology of the r = 2 page gives zero in the two remaining places. Hence the kernel of d2 is
trivial and the image of d2 is everything, so d2 : IE2

20 → IE2
01 is an isomorphism. More explicitly,

d2 : ker(cokerα→ cokerβ)
∼=→ coker(kerβ → ker γ).

Taking the inverse gives a surjective map

ker γ → ker(cokerα→ cokerβ)

with kernel im(kerβ → ker γ), which gives us the last (middle) map in the Snake lemma’s long
exact sequence. (Lingering question: what about naturality?)

14



April 14th, 2014: The Five Lemma; Maps of Spectral Sequences

43 Lemma
The Five Lemma states the following. Suppose we a commutative diagram where the two rows are
exact sequences:

E D C B A

E′ D′ C ′ B′ A′

γ

Assume all vertical maps except the middle are isomorphisms. Then the middle is also an isomorphism.

Proof Consider the diagram as a double complex. (To get anticommutativity, toggle the signs of the
second and fourth vertical arrows without loss of generality.) As before, there are two spectral
sequences associated with it, depending on the order in which we take horizontal and vertical
homology.

For IIE2
pq = Hv(Hh(C∗∗)), the r = 1 page is

· 0 0 0 ·

· 0 0 0 ·

where · represents the kernel or cokernel of the appropriate map. Here the down arrows are
induced by the original down arrows. The remaining pages do not change the n = 2 and n = 3
antidiagonals, hence they preserve these pieces of the total complex, which are trivial. (Minor
note: we’ve transposed our diagram, which is why the arrows are down at this step rather than
left.)

Now compute IE1
pq: we get kernels in the top row and cokernels in the bottom row. Since

all maps except γ are isomorphisms, these are almost all zero:

0 0 ker γ 0 0

0 0 coker γ 0 0

There are no non-trivial differentials left, so we’ve stabilized in every place. Hence the n = 2
and n = 3 antidiagonals give the abutment, which we saw from the other sequence are both
zero. Hence ker γ = coker γ = 0, and γ is an isomorphism. Check!

44 Remark
What are the weaker versions of the five lemma? Tweak the above proof to get them.

Definition 45. Let Erpq and E′
r
pq be two spectral sequences. A map of spectral sequences is a map of each

object of each page frpq : Erpq → E′
r
pq such that

1. We can apply fr followed by a differential, or a differential followed by fr; i.e. the obvious
parallelograms commute for each page.
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2. fr+1 is given by

Er+1
pq

ker dr

im dr

E′
r+1
pq

ker d′r

im d′r

fr+1

∼=

∼=

where the vertical arrow on the right is induced by fr. (This says a map of spectral sequences is
determined on the first page.)

46 Proposition
Let f : C∗ → C∗ be a map of filtered complexes (that is, f |FpC∗ → FpC

′
∗). Then f induces a map of

the associated spectral sequences
fr : Erpq(C∗)→ Erpq(C

′
∗)

47 Theorem (Mapping Lemma)
Let E∗pq ⇒ Hp+q, E

′∗
pq ⇒ H ′p+q, and suppose we have maps

h : H → H ′, f∗ : E∗pq → E′
∗
pq.

Suppose they are “compatible” in the sense that the map between E∞pq and E′
∞
pq induces the same map

between graded pieces as h does.

If fr is an isomorphism for some r > 0, then h : H
∼=→ H ′ is an isomorphism.

Proof Exercise; use induction; assume the filtrations are finite as before. We implicitly used an easy
version of this in the proof of the snake lemma.

48 Corollary (Eilenberg-Moore Comparison Theorem)
Let f : B → C be a map of filtered complexes (assume filtrations are finite; “locally finite” may be a
good term, meaning for each n it’s finite, but the lengths could vary with n). Suppose for some r > 0,
fr : Erpq(B)→ Erpq(C) is an isomorphism. Then f : B → C is an isomorphism.

Note: This is incorrect; see next lecture’s opening remark.

April 16th, 2014: The Universal Coefficient Theorem

49 Remark
The comparison theorem from the end of class last time was “way too strong”. The actual conclusion

is just that H∗(f) : H∗(B)
∼=→ H∗(C).

For a counterexample of the original statement that f : B
∼=→ C, take C and add an exact complex;

it will die right away, so essentially the spectral sequence doesn’t see it.

50 Example
Motivation for the universal coefficient theorem: consider singular homology of a topological space
X. Recall this is defined by looking at the free Z-modules of maps from simplices to the space,
turned into a chain complex using certain boundary maps (“boundary” map is literal in this case).

Singular homology with Z-coefficients is the homology of this chain complex.

More generally, suppose M is an abelian group. We can do the same construction except using
coefficients in M rather than Z, denoted H∗(X,M). (Explicitly, apply the − ⊗Z M functor to the
previous chain complex and take homology.) If we’ve computed H∗(X) := H∗(X,Z), how can we use
that information to compute H∗(X,M)?

16



51 Theorem ( Universal Coefficient Theorem for R-modules over a PID)
Let R be a PID, let C∗ be a chain complex of free R-modules, and let M an R-module. We have a
short exact sequence

0→ Hn(C∗)⊗M → Hn(C∗ ⊗M)→ TorR1 (Hn−1(C∗),M)→ 0.

There is a version for cohomology,

0→ Ext1
R(Hn−1(C),M)→ Hn(HomR(C∗,M))→ HomR(Hn(C),M)→ 0.

The general (homology) conclusion for an arbitrary ring R is that we have a spectral sequence

TorRq (Hp(C∗),M)⇒ Hp+q(C∗ ⊗M).

52 Remark
This is a special case of the Künneth formula. The universal coefficient theorem (for homology
or cohomology) typically says there is a non-canonical (right-)splitting. Julia thinks this can be
shown with spectral sequences as well, but she didn’t want to open that can of worms.

The reason we get a short exact sequence is that, for a PID, a projective (really, free) resolution
has two terms, the first corresponding to a generating set and the second corresponding to
relations between those generators, which forms a submodule of a free module, which is thus
free. This is why ToriR = 0 for i > 1.

We’ll also assume we’re in the category of finitely generated R-modules for today, though
there are more general statements. (Probably completely unnecessary: see opening remark of
next lecture.)

Proof Let P∗ →M be a projective resolution of M . Let C∗ ⊗ P∗ be the double complex obtained by
tensoring these two complexes, as follows. (For this construction we consider P∗ as · · · → P1 →
P0 → 0, so that taking homology at P0 gives us M .)

Definition 53. The tensor product of chain complexes C∗, P∗ is the double complex C∗⊗P∗
with objects

(C∗ ⊗ P∗)pq = Cp ⊗ Pq,

and differentials

Cp−1 ⊗ Pq Cp ⊗ Pq

Cp−1 ⊗ Pq−1 Cp ⊗ Pq−1

1⊗dPq 1⊗dPq

dCp ⊗1

dCp ⊗1

As usual, this actually commutes, so toggle the sign of the vertical differentials on every
other column. (Note: most sources seem to define the tensor product of chain complexes
as the total complex of this double complex.)

Taking vertical homology of C∗⊗P∗ gives Hq(Cp⊗P∗) ∼= Cp⊗Hq(P∗) since the Cp⊗− functor
is exact (Cp being free, hence projective, hence flat) and exact functors commute with homology.
Likewise, taking horizontal homology givesHp(C∗)⊗Pq. Thus IE1

pq = Hv(C∗⊗P∗) = Cp⊗Hq(P∗)

and IIE1
pq = Hh(C∗ ⊗ P∗) = Hp(C∗)⊗ Pq.

P∗ is exact except at q = 0, so Hq(P∗) = 0 except for H0(P∗) ∼= M . That is, IE1
pq is just

C∗ ⊗M on the x-axis with zeros elsewhere. After taking homology, IE2
pq collapses , meaning

17



all differentials are zero at and after this page, so IE∞pq is just Hp(C∗ ⊗M) for q = 0 and

0 otherwise. Hence we can just say IErpq ⇒ Hp+q(C∗ ⊗M). In this case we can determine
the filtration on the right-hand side exactly: there is precisely one non-zero element on each
antidiagonal p+ q = n, namely for q = 0, forcing the filtration to have just one non-zero term,
namely FpHp(C∗ ⊗M) = Hp(C∗ ⊗M), as you’d expect.

On the other hand, the columns of IIE1
pq look like

Hp(C∗)⊗ Pq

Hp(C∗)⊗ Pq−1

...

Hp(C∗)⊗ P0

1⊗dPq

1⊗dPq−1

Recall how TorqR(A,M) was defined: take a projective resolution P∗ →M and set TorqR(A,M) :=
Hq(A⊗R P∗). This is precisely what we’re doing here, i.e.

IIE2
pq = TorqR(Hp(C∗),M).

Since this must converge to Hp+q(C∗ ⊗M), the statement for general R follows.

Now suppose R is a PID, so TorqR(Hp(C∗),M) has only the q = 0 term Hp(C∗) ⊗M and
the q = 1 term Tor1

R(Hp(C∗),M). Hence IIE2
pq is (after transposing)

0 Hp+1(C∗)⊗M Tor1
R(Hp+1(C∗),M) 0

0 Hp(C∗)⊗M Tor1
R(Hp(C∗),M) 0

0 Hp−1(C∗)⊗M Tor1
R(Hp−1(C∗),M) 0

The sequence thus collapses at this page. There are precisely two nonzero elements on each
antidiagonal p+ q = n, and this spectral sequence converges to Hp+q(C∗ ⊗M) as before. Since
there are only two columns, we can again determine the filtration exactly:

0 F0Hp+1(C∗ ⊗M)
F1Hp+2(C∗⊗M)
F0Hp+2(C∗⊗M) 0

0 F0Hp(C∗ ⊗M)
F1Hp+1(C∗⊗M)
F0Hp+1(C∗⊗M) 0

0 F0Hp−1(C∗ ⊗M)
F1Hp(C∗⊗M)
F0Hp(C∗⊗M) 0
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(Dotted lines indicate antidiagonals.) Hence F1Hp(C∗⊗M) = Hp(C∗⊗M) and F0Hp(C∗⊗M) =
Hp(C∗)⊗M , where crucially

Tor1
R(Hp−1(C∗),M) =

Hp(C∗ ⊗M)

Hp(C∗)⊗M
.

It follows that we have a short exact sequence

0→ Hp(C∗)⊗M → Hp(C∗ ⊗M)→ Tor1
R(Hp−1(C∗),M)→ 0.

Questions: (1) Is it enough to assume what we assumed to pull the modules out of the tensor
products/homologies? (2) Is there a non-canonical splitting in the general version of UCT? What do
you need to assume to get that?

April 18th, 2014: Cartan-Eilenberg Resolutions; Projects

54 Remark
Some comments about last lecture:

1) We used that a submodule of a free module is free over a PID ; this is always true (even in the
infinitely generated case and is proved in eg. Rotman’s Advanced Modern Algebra. It uses the axiom
of choice.

2) UCT for homology holds for any coefficients.

3) One can formulate UCT more generally assuming that C∗ is flat and d(C∗) = B∗ is flat. (The cycles
will then also be flat since we’ll have short exact sequences with the correct two of the three terms
flat, forcing the third flat using the induced long exact sequence. This generalizes to cohomological
functors.)

4) The second question at the end of last lecture doesn’t really make sense unless you look at the
r =∞ term, but then it’s probably hopeless to answer.

55 Motivation
Informally, we want a simultaneous projective resolution of a chain complex C∗

Pp−1,1 Pp,1 Pp+1,1

Pp−1,0 Pp,0 Pp+1,0

Cp−1 Cp Cp+1

ε ε ε

where P∗∗ is a double chain complex. This isn’t quite strong enough, but it’s close. The statement

P∗∗ → C∗ should be interpreted as meaning the above diagram holds.

Definition 56 (Cartan-Eilenberg Resolutions). Let A be an abelian category with enough projectives.
Let C∗ be a complex in Ch(A), the category of chain complexes over A with obvious morphisms. A
double complex (not a priori projective resolutions in any sense)

P∗∗
ε→ C∗

is a Cartan-Eilenberg Resolution if
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(1) Pp,∗ = 0 if Cp = 0, and

(2) Hp(P∗∗, d
h)

Hp(ε)→ Hp(C∗), Bp(P∗∗, d
h)

Bp(ε)→ Bp(C∗) are projective resolutions.

(Hp(P∗∗, d
h) refers to horizontal homology, Bp(P∗∗, d

h) refers to taking horizontal boundaries, and
Zp(P∗∗, d

h) below refers to taking horizontal cycles.)

57 Proposition
Let P∗∗ → C∗ be a Cartan-Eilenberg resolution. Then Zp(P∗∗, d

h) → Zp(C∗) and Pp∗ → Cp are
projective resolutions for all p. (Part of the conclusion is that the first resolution is well-defined.)

Proof Consider
0→ Bp(P∗q)→ Zp(P∗q)→ Hp(P∗q)→ 0.

This splits since Hp(P∗q) = Hp(P∗q, d
h) is projective. Hence Zpq = Hpq⊕Bpq is projective. Now

consider

0→ Zpq → Ppq
dh→ Bp−1,q → 0,

which splits again, so Pp∗ is projective. As for exactness, consider

Bp(P∗q) Zp(P∗q) Hp(P∗q)

...
...

...

Bp(C∗) Zp(C∗) Hp(C∗)

Use the following fact: if A∗ → B∗ → C∗ is a short exact sequence of complexes, then it induces
a long exact sequence on homology. (This will be a homework problem.) The “correct” two
(here, outside) sequences are exact here, so this argument forces the middle sequence exact, so
Zp(P∗∗)→ Zp(C∗) is exact. Use a similar argument for Pp∗ → C∗

58 Lemma (Horseshoe Lemma)
(This is Weibel, 2.2.8.) Suppose we have a short exact sequence with projective resolutions on the left
and right terms. Then there is a projective resolution of the middle term commuting with everything
in sight:

P ′∗ ∃P∗ P ′′∗

0 C ′ C C ′′ 0

∃

∃

∃

59 Theorem
Let C∗ be a complex in Ch(A), where A is an abelian category with enough projectives. Then there
exists a Cartan-Eilenberg resolution P∗∗ → C∗.

Proof We have enough projectives to create projective resolutions of the left and right terms of the
diagram below, so from the Horseshoe Lemma, we have in all

PBp∗ PZp∗ PHp∗

0 Bp(C∗) Zp(C∗) Hp(C∗) 0
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Doing the same thing again,

PZp∗ Pp∗ PBp−1,∗

0 Zp(C∗) Cp Bp−1(C∗) 0

This gives us a double complex P∗∗ → C∗; we just need it to satisfy the Cartan-Elienberg
properties. (Minor note: toggle signs on every other column to get anticommutativity.) Note
that

dhpq : Ppq � PBp−1,q ↪→ PZp−1,q ↪→ Pp−1,q.

Exercise: convince yourself everything works from here.

60 Remark
Good thing to think about: what are the projective objects in the category of chain complexes? Is a
Cartan-Eilenberg resolution just a projective object in the category? Is it more, less, or none of the
above? What about Ch≥0(A) (chain complexes bounded below, i.e. Cp = 0 for p� 0)?

61 Fact
Assume C∗ is bounded below. Then Pp∗ = 0 for p� 0 in the above construction. Hence we can form

Tot(P∗∗), with a quasi-isomorphism Tot(P∗∗)
∼→ C∗, meaning it induces an isomorphism on homology.

[If you don’t put a boundedness condition, there are a couple of choices for what you mean by
Tot(P∗∗). You can take the infinite direct sum, but it may not exist, eg. over the category of finitely
generated R-modules. Weibel discusses this at length.]

This says the category of chain complexes is somewhat different from the category of, say, R-modules,
since if we pass to the derived category, where we replace the isomorphisms with quasi-isomorphisms,
we can still use projective chain complexes, so we “don’t leave” the category.

62 Remark
Projects for the end of the quarter:

I Applications of spectral sequences to Algebraic Topology; Leray-Serre spectral sequence.

(1) (Serre) Fibrations

(2) Construction of Leray-Serre spectral sequence H∗

(3) Multiplicative structure

(4) Applications: H∗(CPn, R)

(5) Cohomology with local coefficients

(6) H∗(SU(n), R) and H∗(SO(n), F2).

The first four are in the simply-connected case. References: Weibul; McCleary.

II Finite generation of H∗(G, k); Venkov, 1959; Benson, II.3.30.

III Lie algebra cohomology, Koszul complex, Chevalley-Eilenberg ex. Reference: Weibel §7.7.

April 21st, 2014: Left Hyper-derived Functors and their Spectral
Sequences; Injective Cartan-Eilenberg Resolutions
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63 Remark
Given two complexes C∗, D∗ (in some abelian category), we can take the tensor product C∗ ⊗D∗ as
before. A potential abuse of notation is Hn(C∗ ⊗D∗) := Hn(Tot(C∗ ⊗D∗)).

Definition 64 (Left Hyper-derived Functors). Let F : A → B be a right exact functor, A,B abelian,

C∗ ∈ Ch(A). The ith left hyper-derived functor of F is

LiF (C∗) := Hi Tot(F (P∗∗))

where P∗∗ → C∗ is a Cartan-Eilenberg resolution of C∗. LiF : Ch(A)→ B is a functor when it exists.

Why might it not exist? The total complex may not exist since it might require infinite direct sums.
By contrast, LiF : Ch≥0(A)→ B does exist; left hyper-derived functors exist more generally when B
is cocomplete. We don’t really need to assume B is abelian; weaker assumptions suffice.

Definition 65 (Injective Cartan-Eilenberg Resolutions). If A is an abelian category with enough
injectives, then we can construct injective Cartan-Eilenberg resolutions, meaning the following. Let

C∗ ∈ Ch·(A) be a cochain complex. C∗ → I∗∗ is an injective Cartan-Eilenberg resolution if

(1) Ipq is injective for all p, q;

(2) C∗ → I∗∗ is a double complex, Ipq = 0 for q < 0

(3) Ipq = 0 if Cp = 0

(4) Bp(C∗)→ Bp(I∗q, dh) and Hp(C∗)→ Hp(I∗q, dh) are injective resolutions.

66 Remark
This is slightly different from the projective version, in particular we didn’t require (1), though
(1) was a consequence of the analog of (3) and (4); probably still the case.

Injective Cartan-Eilenberg resolutions exist. If C∗ → I∗∗ is an injective Cartan-Eilenberg
resolution, then C∗ is quasiisomorphic to Tot(I∗∗) (for instance this works nicely in Ch≥0(A)).

67 Remark
Left (and right) hyper-derived functors are well-defined. The “hyper” fundamental theorem of
homological algebra says that any two Cartan-Eilenberg resolutions of the same complex are chain
homotopic. See Weibel for a careful statement.

Indeed, if P∗∗ → C∗ and Q∗∗ → C∗ are two Cartan-Eilenberg resolutions, then

Tot(F (P∗∗)),Tot(F (Q∗∗))

are chain homotopic, so LiF is independent of the choice of resolution.

Also, we didn’t actually use right (or left) exactness in the definition of hyper-derived functors.
(We may need additivity, which is weaker.)

68 Remark
Let C∗ be concentrated in degree 0,

· · · → 0→ C0 → 0→ · · · ,

and let F be right exact. Then LiF (C∗) ∼= LiF (C0). What if it was concentrated in degree n?

Definition 69. Define dimension shifting of a chain complex by

C∗[n]
i

:= Ci+n.

Hence
(LiF )(C∗[n]) = Li+nF (C∗).
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70 Theorem (Spectral sequences for left hyper-derived functors)
Let C∗ be a complex in A, F : A → B a right exact functor. There exist two spectral sequences
converging to the same thing,

IE2
pq = Hp(LqF (C∗))⇒ Lp+qF (C∗)

and
IIE2

pq = (LqF )(Hp(C∗))⇒ Lp+qF (C∗).

(Actually, the first one converges under the assumption C∗ is bounded.)

Proof Recall Lp+qF (C∗) is the homology of the total complex of the double complex F (P∗∗), so we
can employ our previous machinery exactly. Let P∗∗ → C∗ be a Cartan-Eilenberg resolution.
We have

FPp2

FPp1

FPp0

FCp

so IE1
pq = Hv

q (F (Pp∗)) = LqF (Cp). Hence

IE2
pq = Hp(LqF (C∗)).

In the other direction, IIE1
pq = Hh

p (F (P∗q)), which we claim (to be proved next lecture) is

F (Hh
p (P∗q)); let’s call Hpq := Hh

p (P∗q). Given the claim,

IIE2
pq = Hv

q (F (Hh
p (P∗q))) = (LqF )(Hp(C∗))

since Hh
p (P∗q)→ Hp(C∗) is a projective resolution.

Notes on convergence: a priori (I) is an upper half plane spectral sequence so convergence is
not guaranteed, but if C∗ is bounded below, the double complex is in a (correct) quarter plane,
so (I) converges. Exercise: why does IIE2

pq converge even without a boundedness assumption?
(This is also discussed in the next lecture.)

April 23rd, 2014: Right Hyper-Derived Functors; Hypertor

71 Remark
Unproved claim from last time: Hh

p (F (P∗q)) = F (Hh
p (P∗q)) where F is a right exact functor and

P∗∗ → C∗ is a Cartan-Eilenberg resolution.

For context, recall we were showing

IIE2
pq = (LpF )(Hq(C∗))⇒ (Lp+qF )(C∗),

and had completed the proof assuming the claim.
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Proof Consider

Zpq Ppq Pp−1,q

dh(Ppq) = Bp−1,q

dh

This sequence splits as Ppq ∼= Zpq ⊕ P ′pq with P ′pq
∼= dh(Ppq). Similarly

dh(Pp+1,q) = Bpq Zpq Hpq = Hp(P∗q, d
h)

splits with Zpq ∼= Bpq ⊕Hpq. Back to our original sequence, we have

· · · Pp−1,q Pp,q Pp+1,q · · ·

Bpq ⊕Hpq ⊕Bp−1,q

dh dh

=

dh

Apply F to get

· · · F (Pp−1,q) F (Pp,q) · · ·

F (Bp−1,q)⊕ F (Hp−1,q)⊕ F (Bp,q) F (Bpq)⊕ F (Hpq)⊕ F (Bp+1,q)

=

F (dh)

=

Here we’ve used the additivity of F to distribute over sums. The induced map is

F (Bpq)⊕ F (Hpq)⊕ F (Bp+1,q)→ F (Bp−1,q)⊕ F (Hp−1, q)⊕ F (Bpq)

with F (Bpq)→ F (Bpq) the identity, and it follows that

Hp(F (P∗q), F (dh)) ∼= F (Hpq) = F (Hp(P∗q), d
h),

as desired.

72 Remark
On convergence of the spectral sequences from last time: they were

IE2
pq = Hp(LqF (C∗))⇒ LF (C∗)

and
IIE2

pq = LpF (Hq(C∗))⇒ LF (C∗).

Weibel says the following. In IIE2
pq, the row filtration used to construct it is (1) bounded below and

(2) “exhaustive”. Hence he can apply the “classical convergence theorem” 5.5.1 to conclude that IIE2
pq

converges. Read about it in Weibel if you’re interested in a rigorous discussion; what follows is a
summary.

How are IE and IIE for the hyperderived functor spectral sequences different? We start with a
complex and then we resolve it. A priori we get a double complex in the upper half plane, which
remains in the upper half plane after applying the functor. The column filtration used in (I) is hence
not bounded below in general.
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The row filtration for (II) is much nicer: we start at 0, take the first row, take the second row,
etc. It’s bounded below since we started in the upper half plane. Now after transposing the spectral
sequence lives in the right half-plane. It follows that at each point the cycles stabilize (since the
differentials starting there will eventually land in the left half-plane). Hence eventually the objects
give a sequence of quotients. According to Weibel, this is enough.

Definition 73. Let F : A → B be a left-exact functor between abelian categories with enough injectives.

The ith right hyper-derived functor of F is

RiF (C∗) = Hi(Tot(F (I∗∗)))

where C∗ → I∗∗ is an injective Cartan-Eilenberg resolution. As before this is a functor RiF : Ch(A)→
B when it exists.

Again, this is perfectly well-defined in general if C∗ is bounded below. Otherwise consult Weibel.
It is independent of the choice of resolution.

74 Proposition
Let C ∈ Ch≥0(A), F : A → B a left-exact functor between abelian categories with enough injectives.
Then we have two convergent (cohomological) spectral sequences,

IEpq2 = Hp(RqF (C∗))⇒ Rp+qF (C∗)

and
IIEpq2 = RpF (Hq(C∗))⇒ Rp+qF (C∗).

75 Example
Let C∗, D∗ be complexes of R-modules. (If R is non-commutative, we have to consider C∗ as consisting
of right R-modules, D∗ as consisting of left R-modules. Assume R is commutative so we don’t have to

worry.) Form a functor Tot(−⊗R D∗) : Ch≥0(A)→ Ch≥0(A). We define hypertor as

TorRi (C∗, D∗) := Li(Tor(C∗ ⊗R D∗)) = Hi(Tot(P·∗ ⊗R D∗)).

This makes sense: it’s just the left hyper-derived functor of the above tensor product functor.

April 25th, 2014: Derived Functors; Grothendieck Spectral
Sequence

76 Remark
Given an abelian category A, there is a derived category D(A) . We won’t take the time to define

this properly, but it is roughly the category Ch(A) of chain complexes over A where quasiisomorphisms
(meaning maps between chain complexes which induce isomorphisms in homology) are turned into
isomorphisms. Recall that we had asserted the total complex of an injective Cartan-Eilenberg resolution
of a chain complex is quasiisomorphic to that chain complex, so in the derived category, these things
are isomorphic.

There is a similar notion, the derived category bounded below, D+(A) , using chain complexes

which are bounded below.

Sadly (or happily?), the derived category is not in general abelian.
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Definition 77. Let F : A → A be a functor, and take A abelian. We define a functor R∗F : Ch+(A)→
Ch+(A) or R∗F : D+(A)→ D+(A) as follows.

Let Ch+(F ) : Ch+(A)→ Ch+(A) be the induced functor on chain complexes. Let R∗F : Ch+(A)→
Ch+(A) be the (0th) right derived functor of Ch+(F ). Suppose Ch+(F ) descends to the derived
category, so also R∗F : D+(A)→ D+(A).

Let C∗ → I∗∗ be an injective Cartan-Eilenberg resolution of C∗. Letting I∗ = Tot(I∗∗), as noted
above, C∗

∼→ I∗ in D+(A). Hence we have a (one term) injective resolution of C∗ ∈ D+(A), so that

R∗F (C∗) = F (I∗).

Moreover, we recover our earlier hyper-derived functors as

Hi(R∗F (C∗)) = RiF (C∗).

Definition 78. Let C∗, D∗ ∈ Ch+(A); say A = R-mod, OX -mod, QCoh(X), . . . . We define the

derived tensor product

C∗ ⊗L
R D∗ := L∗(C∗ ⊗R D∗) := Tot(P∗ ⊗D∗) ∼= Tot(C∗ ⊗R Q∗) ∼= Tot(P∗ ⊗R Q∗)

where P∗
∼→ C∗ is a quasiisomorphism, say P∗ = Tot(P∗∗) for a Cartan-Eilenberg resolution P∗∗ → C∗,

and similarly with D∗
∼→ Q∗. One defines RHom: D+(A)→ D+(A) similarly.

Definition 79. Let A,B be abelian categories where A has enough injectives. Suppose F : A → B is a left

exact functor. We’ll say that X ∈ A is F-acyclic if RiF(X) = 0 for i > 0.

80 Example
Working entirely in the category of R-modules, let F = − ⊗R Y . Certainly flat (or free, or

projective) X are acyclic. By definition, X is F -acyclic iff TorRi (X,Y ) = 0 for i > 0. Note Y is
fixed here, so flatness is much stronger than necessary, eg. take Y = 0.

Note: an injective object is always F-acyclic, since it has an injective resolution of length 1.

81 Theorem ( Grothendieck spectral sequence )

Let A,B, C be abelian categories. Suppose

A G→ B F→ C

are left exact functors. Suppose (1) A has enough injectives, and (2) G takes injective objects in A to
F-acyclic objects in B. (If G takes injectives to injectives, (2) is trivially satisfied.) Then there is a
first quadrant spectral sequence

RpF ◦RqG(X)⇒ Rp+q(F ◦ G)(X)

for any X ∈ A. There is a similar sequence for left derived functors.

Proof Let X → I∗ be an injective resolution in A. Consider

G(X)→ G(I∗) ∈ Ch+(B)

Recall the spectral sequences for right-derived functors of F . In particular, for C∗ ∈ Ch+(B),
we have

IEpq2 = Hp(RqF(C∗)), IIEpq2 = RpF(Hq(C∗)) ⇒ Rp+qF(C∗).
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(Julia described this as using two “hyper-cohomology spectral sequences” associated to the
complex G(I∗) and the functor F .) Since G takes injectives to F -acyclics, the first one collapses:

IEpq2 = Hp(RqF(G(I∗))) =

{
Hp(F(G(I∗))) q = 0

0 q > 0

Note that Hp(F(G(I∗))) = Hp((F ◦ G)(I∗)) = Rp(F ◦ G)(X). Since the IEpq2 spectral sequence
collapses to one non-zero row, we recover the abutment exactly, i.e. the filtration must be trivial,
so Rp(F ◦ G)(X) ∼= RpF(G(I∗)).

For IIEpq2 , we have

IIEpq2 = RpF(Hq(G(I∗))) = RpF(RqG(X)) = RpF ◦RqG(X).

And (amazingly) that’s it.

82 Remark
If

A G→ B F→ C

induce

D+(A)
R∗G→ D+(B)

R∗F→ D+(C),

then the Grothendieck spectral sequence tells us precisely that there is an isomorphism of functors

R∗F ◦ R∗G ∼→ R∗(F ◦ G).

Exercise: explain this.

April 28th, 2014: Lyndon-Hochschild-Serre Spectral Sequence

83 Remark
Today, we’ll construct the Lyndon-Hochschild-Serre spectral sequence. Other names: Lyndon spectral
sequence; Hochschild-Serre spectral sequence.

84 Theorem
Suppose G is a group with normal subgroup H. Let M be a representation of G (i.e. a kG-module).
Then there is a first quadrant spectral sequence

Hp(G/H,Hq(H,M))⇒ Hp+q(G,M).

(k = Z also works.)

85 Remark
(1) There is a “dual” spectral sequence for group homology H∗.

(2) Epq2 is a “multiplicative” spectral sequence. More on this later.

(3) Exists in other contexts such as

I. Hopf algebras (much weaker structure works: augmented algebras, i.e. have k → A→ k)

II. Lie algebras

III. Algebraic/Lie groups. (We don’t think of them as discrete groups, so we work in a
different category when taking cohomology. Hence this will be similar to but not the
same as the version in the theorem.)
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Proof This is a Grothendieck spectral sequence. RecallHn(G,M) = ExtnG(k,M) = Rn HomG(k,M) =
Rn(M)G, or in other words, group cohomology is just computing right-derived functors of the
G-invariants functor (−)G. Letting G = (−)H and F = (−)G/H , we have

G –mod
G→ G/H –mod

F→ k –mod

For the Grothendieck spectral sequence, we need to check

(1) F ◦ G = (−)G

(2) G –mod and H –mod have enough injectives. (Cohomological version needs injectives.)

(3) G = (−)H takes injective G-modules to (F = (−)G/H)-acyclic G/H-modules.

(1) is clear; see first lecture. (2): recall how to construct enough injective modules. Over Z,
we can create injective Z-modules by considering HomZ(Z[G], A) where A is a divisible group.
Over a field k, we can create an injective G-module by considering Homk(kG, V ) for any vector
space V over k viewed as a trivial G-module.

How does one show an object is injective? Can use the definition showing certain things lift;
can show Ext1 vanishes; can show Hom into that module is an exact functor. We’ll take the
last approach. In this case, we want to show HomG(−,Homk(kG, V )) is an exact functor of
G-modules. By ajointness in the first isomorphism and “cancelling” the kG in the second, we
have

HomG(M,Homk(kG, V ))
∼→ HomG(M ⊗k kG, V ) ∼= Homk(M,V ),

which is exact since Hom functors over k are exact. The same proof goes through for Z, except
V needs to be an injective Z-module, i.e. needs to be divisible.

Claim: this construction gives us enough injectives. For any G-module V , we have an
embedding V ↪→ Homk(kG, V ) where v 7→ φv with φv(g) = gv. This is an injection. Hence anyG-
module embeds into an injective G-module. Technical note: we need to check V ↪→ Homk(kG, V )
is a G-map. (This is an analogue of the “tensor identity”: given a G-module M , we can construct
theG-module kG⊗kM using the diagonal action; there is an isomorphism kG⊗kM

∼→ kG⊗kMtriv

where in the second case M has trivial G-action. This will go into the next homework set.)

For (3), we claim it suffices to show that for any G-module V , Homk(kG, V )H is injective
as a G/H-module. One option is to weaken the assumptions on the Grothendieck spectral
sequence slightly and not require everything to be F -acyclic. In this case, however, the original
assumptions actually follow: given an arbitrary injective V , embed it into Homk(kG, V ) and
exhibit this as a direct sum. To finish it off, distribute over sums.

We have Homk(kG, V )H ∼= Homk(k(G/H), V ) since we take the trivial action on V ; since
this is an injective G/H-module, (−)H takes injective G-modules to injective G/H-modules, as
required.

The Grothendieck spectral sequence in this situation is thus

Rp(−)G/H ◦Rq(M)H ⇒ Rp+q(M)G

Rp HomG/H(k,Rq HomH(k,M))⇒ Rp+q(HomG(k,M))

Hp(G/H,Hq(H,M))⇒ Hp+q(G,M)

Exercise: a projective kG-module is projective as a kH-module. Equivalently, show kG is
free as a kH-module. (Hint: break it up using cosets G/H.)
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April 30th, 2014: Cross Products, Cup Products, and Group
Cohomology Ring Structure

86 Remark
Today we’ll review product structures in group cohomology. We’ll work over a field k, though things
also work over Z.

Definition 87. Let G,H be groups. The cross product (or external product ) of H and G is a map

× : Hp(G, k)×Hq(H, k)→ Hp+q(G×H, k).

Recall Hp(G, k) := ExtpkG(k, k); here G acts trivially on k. Let P∗ → k be a projective resolution
over G and Q∗ → k a projective resolution over H, so Hp(G, k) := Hp(HomG(P∗, k)), Hq(H, k) :=
Hq(HomG(Q∗, k)). Form P∗ ⊗ Q∗: since the modules are in different categories, we’re tensoring
over k and taking the total complex. We then give a G × H-module structure using a diagonal
action. This gives a projective resolution P∗ ⊗ Q∗ → k in the category of G × H-modules. Hence
Hp+q(G×H, k) := Hp+q(HomG(P∗ ⊗Q∗, k)). We define a family of maps

HomG(Pp, k)×HomH(Qq, k)→ HomG×H((P∗ ⊗Q∗)p+q, k)

(µ, ν) 7→ µ̃× ν : (P∗ ⊗Q∗)p+q → k

where
µ̃× ν(x⊗ y) = µ(x)ν(y)

if x ∈ Pp, y ∈ Qq, and which is zero otherwise. We would hope this map descends to homology, and
indeed it does, giving ×. (This is independent of the choice of resolutions.) Moreover, this induces a
map Hp(G, k)⊗Hq(H, k)→ Hp+q(G×H, k), which gives the map from the Künneth formula⊕

p+q=n

Hp(G, k)⊗Hq(H, k)
∼→ Hn(G×H, k).

(The usual Tor term disappears here giving an isomorphism, since our coefficients are in k.)

88 Remark
In the above,

Hp(G, k) := Hp(HomG(P∗, k)) ∼= Hp(Homk(P∗, k)G).

The isomorphism comes from the fact that

HomG(M,N) ∼= Homk(M,N)G,

where G acts on Homk(M,N) as follows: if f : M → N is k-linear, let

g · f = (m 7→ gf(g−1m)).

Definition 89. Given groups G,H, a G-module M , and an H-module N (both over a field k), define the

external tensor product M �N as the vector space M ⊗k N with a diagonal G×H-module action

(g, h) · (m⊗ n) = gm⊗ hn := gm� hn.

For instance, k � k ∼= k, using trivial G, H, and G×H actions.

Definition 90. The cross product above can given with general coefficients as follows. Let M be a G-module
and N an H-module. Define

× : Hp(G,M)⊗Hq(H,N)→ Hp+q(G×H,M �N)

by using

µ̃× ν(x⊗ y) = µ(x) � ν(y)

in the above construction. (We can freely pass from × to ⊗ in the domain.)
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Definition 91. We next define the cup product or internal product . Let ∆: G→ G×G be the diagonal

map g 7→ (g, g), which induces a map on cohomology in the other direction. The cup product is defined
to be the composite of the cross product and this induced map:

^ : Hp(G, k)⊗Hq(G, k)
×→ Hp+q(G×G, k)

∆∗→ Hp+q(G, k).

92 Remark
∆: G→ G×G corresponds to ∆: kG→ kG⊗kG, the standard coproduct on the group algebra,
which is part of the standard Hopf algebra struture on kG. More generally, we can construct the
cup product in cohomology for any Hopf algebra with coproduct ∆: A→ A⊗A, since it induces

H∗(A, k)⊗H∗(A, k)→ H∗(A⊗A, k)
∆∗→ H∗(A, k).

Here the cohomology of a Hopf algebra is defined by Hn(A, k) := ExtnA(k, k) = Rn HomA(k, k).

Indeed, we can do it for “augmented algebras”.

Definition 93. SupposeG
f→ G′ is a map of groups andM is aG′-module. We claim H∗(G′,M)

f∗→ H∗(G,M)

is a contravariant functor. (I was unable to make sense of this as a functor: we seem to need G′ before
we can fix M . . . .) Here Hn(G,M) is computed by considering M as a G-module via pullback through
f .

Let PG′,∗ → k be a projective resolution over G′, and let PG,∗ → k be a projective resolution over
G. Consider the PG′,∗ as G-modules via pullback, so PG′,∗ → k is an exact sequence of G-modules
(though they’re almost certainly not projective). By standard homological algebra, since the PG,∗’s are
indeed projective, we can lift to get a map F of chain complexes (of G-modules):

PG,∗ k

PG′,∗ k

F =

This gives the F ∗ arrow in the following diagram:

HomG′(PG′,∗,M) HomG(PG,∗,M)

HomG(PG′,∗,M)

∃

F∗

Given G→ G′, NG′ ↪→ NG, which gives us the left arrow: the HomG′ are the G′ invariants, whereas
the HomG are the G-invariants; apply the remark following the definition of the cross product. The
dashed arrow is simply the composite. Take homology to get

Hn(G′,M)
f∗→ Hn(G,M).

This also shows us that in some sense cohomology is not the same as homology. For homology, you can
think of it as a bifunctor, complete with induced maps. Cohomology is strange in that it’s covariant in
one variable and contravariant in the other variable.

Definition 94. We define a graded k-algebra structure on H∗(G, k) . The grading is given by H∗(G, k) =

⊕n≥0H
n(G, k). The cup product induces

^ : H∗(G, k)⊗H∗(G, k)→ H∗(G, k)
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since this is

^ :
⊕
n≥0

( ⊕
p+q=n

Hp(G, k)⊗Hq(G, k)

)
→
⊕
n≥0

Hn(G, k).

95 Theorem
The cup product ^ makes H∗(G, k) a graded-commutative associative unital k-algebra. It is natural
with respect to the maps of groups defined above.

96 Remark
The same is true with G replaced by any Hopf algebra A.

Here “graded-commutative” mean “commutative in the graded sense,” so commutative up
to a particular sign. Indeed, the 0th graded piece will be k, which gives the k-algebra structure.
See next lecture.

May 2nd, 2014: The Yoneda Product; Multiplicative Spectral
Sequences

Definition 97. Let A = ⊕n≥0An be a graded algebra, so we have multiplication maps Am ⊗An
×→ An+m.

A is graded-commutative if

xy = (−1)deg x deg yyx.

In particular, for H∗(G, k) defined last time has this property. Indeed, Heven(G, k) (with the obvious
definition) is commutative. Of course, if char k = 2, graded-commutative and commutative are the
same.

98 Remark
What is involved in showing the associativity of the cup product? Recall that G

∆→ G×G induces

a map P∗
∆̃→ P∗ ⊗ P∗, called a diagonal approximation ; here P∗ → G and P∗ ⊗ P∗ → G × G are

projective resolutions, as above. Associativity boils down to the commutativity of the following diagram

P∗ P∗ ⊗ P∗

P∗ ⊗ P∗ P∗ ⊗ P∗ ⊗ P∗

∆̃

∆̃ ∆̃⊗1

1⊗∆̃

Indeed, we only need it to commute “up to homotopy”, that is, the two maps P∗ → P∗⊗P∗⊗P∗ are homo-

topic. It’s possible to write down a particular diagonal approximation called the Alexander-Whitney

diagonal approximation which makes this diagram commute on the nose; this comes from the bar
resolution.

(Question: can we just say the two ways of going around that diagram are lifts of the map
G→ G×G×G, which then must be homotopic by some standard uniqueness result?)

99 Remark
What is involved in showing the graded-commutativity of the cup product? It does not come from the
level of cochains. Here’s a sketch of one proof. H∗(G, k) has another way to multiply things:

Definition 100 (Ext via Extensions). Recall we defined Hn(G, k) := ExtnG(k, k). We can define
ExtnG(M,N) in a different way than the usual projective resolution method by looking at
equivalence classes of length n extensions from N to M ,
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0 N X1 · · · Xn M 0

modulo some equivalence relation. The Baer sum gives an abelian group structure.

There is a book by D. Benson, “Representations and Cohomology”. Great reference book,
not a textbook. There’s also a book by L. Evens, “Cohomology of Groups”. Kenneth Brown’s
“Cohomology of Groups” is probably the standard reference.

Definition 101 ( Yoneda Product ). The Yoneda product is a map

ExtnG(M,N)× ExtmG (L,M)→ Extn+m
G (L,N)

defined using the extension interpretation above. We literally “splice” two long exact sequences:

0→ N →· · ·1 →M → 0 × 0→M → · · ·2 → L→ 0

= 0→ N → · · ·1 → · · ·2 →M → 0

There are a number of checks to make, particularly that this is well-defined under the equivalence
relation, and that it respects the group structure. Associativity is clear. Graded-commutativity
in the case of M = N = k is not at all clear.

102 Proposition ( Eckmann-Hilton argument )

Let X be a set with two operations ∗ : X ×X → X and · : X ×X → X such that (1) they share
a two-sided unit, and (2) they are compatible in the sense that

(a ∗ b) · (c ∗ d) = (a · c) ∗ (b · d).

Then the operations are the same and are commutative.

Proof Have fun.

Apply a slightly modified version of the Eckmann-Hilton argument to the cup product and the
Yoneda product on H∗(G, k) to get that they are the same, and are both graded-commutative.

Definition 103 (Multiplicative Structure of Spectral Sequences). Suppose Epqr is a cohomological

spectral sequence. It is multiplicative if we have a map

· : Epqr × Ep
′,q′

r → Ep+p
′,q+q′

r

such that dr(x · y) = dr(x) · y + (−1)px · dr(y). (Here we consider deg x = p for x ∈ Ep,qr .)

104 Remark
If we have such a multiplication on a single page, it induces multiplications on subsequence
pages. Frequently the multiplicativity starts at the r = 2 page, for whatever reason.

105 Proposition
Suppse H is a normal subgroup of G. The Lyndon-Hochschild-Serre spectral sequence is multiplicative.

Proof Recall this sequence is

Epq2 = Hp(G/H,Hq(H, k))⇒ Hp+q(G, k).

The multiplicative structure on the r = 2 page is given by

Hp(G/H,Hq(H, k))⊗Hp′(G/H,Hq′(H, k))

Hp+p′(G/H,Hq(H, k) �Hq′(H, k))

Hp+p′(G/H,Hq+q′(H,K))

^G/H

“^′′H
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With tedious work, one can check the differential condition.

(Whenever we have a “multiplication on k”, say replacing k by a k-algebra, we have a similar
statement.)

May 5th, 2014: Group Functors—Restriction, Induction, and
Coinduction

106 Remark
Friday will be a short lecture, from 12:30 to 1pm. Today: induction, coinduction, restriction, and other
functors on G-modules. G will be a discrete group.

Definition 107. Let H be a subgroup of G (or more generally i : H ↪→ G an embedding). There is an

obvious restriction functor

ResGH : G –mod→ H –mod,

which is really the pullback functor associated to i : H ↪→ G. If M is a G-module, this is written

M↓H := ResGHM . This functor is covariant and exact. Wonderfully, it has a left and right adjoint.

(For instance, it is thus exact.)

Definition 108. Let M be an H-module with H a subgroup of G. We can extend an H-module M to a
G-module via extension of scalars,

IndGHM := kG⊗kH M.

This process is called induction . In detail, kG is a kG-kH bimodule, so we indeed get a kG-module

structure on the tensor product. Sometimes this is called tensor induction ; this is left adjoint to the
restriction functor, as detailed below.

Similarly, we can define coinduction by

CoindGHM := HomkH(kG,M).

We give the right-hand side a G-module structure as follows: if f ∈ HomkH(kG,M), then (g · f)(–) :=
f(−g). Note that

g1 · (g2 · f)(−) = (g2 · f)(−g1) = f(−g1g2) = (g1g2) · f(−),

which explains the use of right multiplication. Moreover, this gives an H-module morphism:

(g · f)(h−) = f(h–g) = h(f(−g)) = h((g · f)(−)).

This operation is sometimes called hom induction ; it is right adjoint to the restriction functor, as
detailed below.

Warning: “induction” and “coinduction” mean different things to different people in different
contexts (they frequently flip), so be careful! The “tensor”/“hom” alternatives are unambiguous.

109 Proposition (Adjunction in general)
Let R,S be rings, X an R,S-bimodule, M an R-module, N an S-module. Consider the functor
HomR(X,−) : R –mod→ S –mod. Here the S-module structure is defined as for coinduction, which
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uses the action of S on X. Also consider the functor X ⊗S − : S –mod → R –mod. These functors
form an adjunction (i.e. an adjoint pair):

HomR(X ⊗S N,M) ∼= HomS(N,HomR(X,M)),

where the bijection is functorial.

110 Proposition
There exist natural isomorphisms of k-vector spaces such that for any G-module N ,

HomG(kG⊗kH M,N) ∼= HomH(M,N↓H).

and similarly
HomH(N↓H ,M) ∼= HomG(N,HomH(kG,M)).

Proof For the first, use S = kH,R = kG, and X = kG in the notation of the previous proposition.
Then we have

HomkG(kG⊗kH N,M) ∼= HomkH(N,HomkG(kG,M)).

However, HomkG(kG,M) ∼= M ↓H through the H-module map f 7→ f(1). (Note h · f 7→
(h · f)(1) = f(1) = hf(1).) For the second, let S = kG, R = kH, and X = kG. We have

HomkH(kG⊗kG N,M) ∼= HomkG(N,HomkH(kG,M)),

but kG⊗kG N ∼= N↓H as an H-module.

Let’s write down the maps explicitly. We’ll do the bijection

HomkG(kG⊗kH M,N)
∼→ HomkH(M,N↓H).

Given a G-module morphism f : kG⊗kHM → N , construct an H-module morphism f ◦ i : M →
N ↓H where i : M → kG ⊗kH M is the natural map m 7→ 1 ⊗ m. To go the other way,
suppose F : M → N ↓H is an H-module morphism. Construct F̃ : kG ⊗kH M → N ↓H via
F̃ (g⊗m) = gf(m). (Of course, one must check these maps are well-defined, are mutual inverses,
are functorial, etc., but it all works out and is really embedded in the proof of the previous
proposition.)

May 7th, 2014: Frobenius Reciprocity; Coinduction and Induction
Identities

111 Theorem ( Frobenius Reciprocity / Shapiro’s Lemma / Eckmann-Shapiro Lemma )

Let H be a subgroup of G, M an H-module, N a G-module. Then

Ext∗G(N,CoindGHM)
∼→ Ext∗H(N↓H ,M)

Ext∗G(IndGHM,N)
∼→ Ext∗H(M,N↓H)

(These are isomorphisms of k-vector spaces. Formally we view HomG(−,−) as mapping into k-vector
spaces.)

Proof IndGH(−) = kG ⊗kH −, and kG is a free kH-module, hence is flat, so IndGH(−) is exact.
(Indeed, kG = ⊕t kH where the sum is over a set of coset representatives t ∈ G/H.) Similarly
CoindGH(−) = HomkH(kG,−) is exact since kG is free, hence projective.
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Indeed, CoindGH takes injective kH-modules to injective kG-modules, which is a general
property of right adjoint functors whose left adjoint is exact. (It’s a good “two-line exercise”.)
Likewise, IndGH takes projectives to projectives, which is a general property of left adjoint
functors whose right adjoint is exact. We can apply the Grothendieck spectral sequence to the
composition of functors HomG(N,CoindGH(M)) ∼= HomH(N↓H ,M), which gives

ExtiG(N,Rj CoindGH(M))⇒ Exti+jH (N↓H ,M).

Since CoindGH(−) is exact, its right-derived functors are trivial for j > 0, so we have only one
line and the spectral sequence collapses to give

ExtiG(N,CoindGH(M)) ∼= ExtiH(N↓H ,M).

The proof for IndGH(−) is almost the same:

HomG(IndGHM,N)
∼→ HomH(M,N↓H).

However, IndGH(−) would naturally use left derived functors, whereas HomG(−, N) would
naturally use right derived functors, so you have to be careful. Since IndGH(−) is exact, you can
also just use right derived functors.

112 Corollary
H∗(G,CoindGHM)

∼→ H∗(H,M).

113 Theorem
If [G : H] <∞, then CoindGHM

∼→ IndGHM , and these isomorphisms are functorial.

114 Remark
Let T be a fixed set of coset representatives for G/H. We find

IndGHM = kG⊗kH M = ⊕T tkH ⊗kH M = ⊕T t⊗kM
CoindGHM = HomkH(⊕t kH,M) = ⊕T Homk(kt,M) ∼= ⊕T tM.

(These isomorphisms are non-canonical, and we used the fact that finite products are finite sums.
This isomorphism explain why we probably haven’t heard of coinduction before—it gives no
new content in this case.)

Proof Define φ : kG⊗kHM → HomkH(kG,M) as follows. For m̃ ∈ kG⊗kHM , write m̃ =
∑
T t⊗mt.

Define fm̃ : G → M via fm(g) = gt−1mt. Set φ(m̃) = fm̃. Define a map ψ in the opposite
direction by sending f : kG→M to

∑
T t⊗ f(t−1). We also need to check (1) these maps are

independent of coset representatives; (2) fm̃ is H-equivariant; (3) ψ, φ are G-equivariant; (4)
ψ, φ are mutual inverses. (Note: Julia didn’t check these maps carefully; it’s a straightforward if
tedious exercise to do so and correct any mistakes.)

115 Remark
kG# := Homk(kG, k) is a G-module. A special case of the previous isomorphism is that

kG# ∼→ kG as G-modules when G is a finite group. This implies kG is a self-injective algebra

(i.e. kG is an injective kG-module; contrast with e.g. Z). Hence projective and injective modules
are the same in G –mod (even infinite dimensional ones!). A category for which this holds is

sometimes called a quasi-Frobenius category , which is related to Frobenius algebras .

116 Remark
Cohomology is only interesting in the modular case for finite G, since otherwise kG is semisimple, so

k is projective, and cohomology is quite trivial. It does get interesting for k = Z/(p) or k = Fp, for
instance.

35



117 Theorem (⊗-identity)
Let H be a subgroup of G. Then

CoindGH(M ⊗k ResGH N) ∼= CoindGH(M)⊗k N.

Proof This will be on the next homework assignment.

118 Corollary
Let N be a G-module. Then CoindGH(N) ∼= k(G/H)⊗k N , where k(G/H) = CoindGH(k). (We
can give a G-module structure to k(G/H) even when H is not normal in an obvious way.)

119 Lemma
We have canonical maps

CoindGHM
e→M M

f→ CoindGHM

(h : G→M) 7→ h(1) m 7→ (fm : g 7→ gm)

Similarly we have IndGHM →M via g ⊗m→ gm. The following diagram commutes:

H∗(G,M) H∗(H,M)

H∗(G,CoindMH M)

Res∗

f∗
∼Frob.

Proof This will be on the next homework assignment.

May 9th, 2014: Corestriction, the Transfer Map, and
CorGH ResGH = [G : H]

120 Remark
This lecture uses some notation Weibel does not use and which may not be terribly standard for
corestriction.

Definition 121. Let H be a subgroup of G, M a G-module. Corestriction is a map

Cori : H
i(H,M)→ Hi(G,M);

contrast this with the map induced by restriction, which goes the other way.

More precisely, suppose [G : H] <∞. Consider

Hi(H,M) Hi(G,CoindM)

Hi(G,M) Hi(G, IndM)

∼
Frob.

Cori S[G:H]<∞

IndM→M

(where recall IndM →M is given by g ⊗m 7→ gm).
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Definition 122. Let H be a subgroup of G, M a G-module. Suppose [G : H] <∞. The transfer map

Tr∗ : H∗(H,M)→ H∗(G,M)

is the map induced by Tr: MH →MG where m 7→
∑
tm with the sum over a set of coset representatives

of G/H.

123 Lemma
Cor∗ and Tr∗ from H∗(H,M)→ H∗(G,M) are the same maps.

124 Proposition
The composite

CorGH ResGH : H∗(G,M)→ H∗(H,M)→ H∗(G,M)

is the multiply-by-[G : H]-map.

Proof Write the composite as

H∗(G,M) H∗(H,M) H∗(G,M)

H∗(G,CoindM)

H∗(G, IndM)

Res

M→CoindM
∼

Cor

∼
IndM→M

We wish to compute M → CoindM
∼→ IndM → M (and then apply the H∗(G,−) functor).

Say T is a fixed set of coset representatives of G/H. This composite is then

m 7→ (fm : g 7→ gm) 7→
∑
T

t⊗ fm(t−1) 7→
∑
T

tfm(t−1) =
∑
T

tt−1m = [G : H]m.

(If the map before taking cohomology is multiplication by an integer, the same is true after
taking cohomology.)

125 Corollary
Let G be a finite group of order n. Then n ·Hi(G,M) = 0 for any G-module M , i.e. cohomology is
always |G|-torsion, for i > 0.

Proof Consider {e} ≤ G and consider the composite

Hi(G,M)
Res→ Hi(e,M)

Cor→ Hi(G,M)

which from the above proposition is multiplication by n. However, Hi(e,M) = 0, so multiplica-
tion by n factors through 0, hence is 0.

126 Corollary
Let G be finite of order n, Char k = p ≥ 0. If (n, p) = 1 or p = 0, then Hi(G,M) = 0 for i > 0.

Proof By the previous corollary, multiplication by n kills Hi(G, k). If they’re relatively prime or
p = 0, n is invertible in the underlying field, so Hi(G, k) = 0.

127 Corollary
Reduction to Sylow subgroups—class cut short today, see next lecture.

May 12th, 2014: Sylow Subgroups; the Double Coset Formula;
Commuting Res, Ind,Cor
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Summary Let H be a subgroup of G of finite index. Recall we showed the composite

Hn(G,M)
Res→ Hn(H,M)

Cor=Tr→ Hn(G,M)

is multiplication by [G : H].

128 Corollary
Suppose p | |G|. Let Gp be a Sylow p-subgroup of G. Then

Res(p) : Hn(G,M)(p) ↪→ Hn(Gp,M),

where Hn(G,M)(p) means we localize the G-module Hn(G,M) at the element p ∈ kG (which may be
zero).

Proof Apply the proposition to H = Gp to get

Hn(G,M)
Res→ Hn(Gp,M)

Cor→ Hn(G,M),

where the composite is multiplication by [G : Gp]. Apply the localize-at-p functor, and the
resulting composite is an isomorphism since ([G : Gp], p) = 1, so [G : Gp] is invertible over G(p).
Note that Hn(Gp,M)(p) = Hn(Gp,M). The claim follows.

129 Corollary
If Char k = p and p | |G|, then

Res: Hn(G,M) ↪→ Hn(Gp,M).

Proof [G : Gp] is invertible in kG, so the original composite from the previous corollary is an
isomorphism.

130 Remark
What is im(Res : Hn(G,M)→ Hn(Gp,M))? We’ll first study the composite

Res ◦Cor: Hn(H,M)
Tr→ Hn(G,M)

Res→ Hn(H,M).

Definition 131 ( Double Cosets ). Let K,H be subgroups of G. The set K\G/H is {KxH : x ∈ G}.

Note that G/H consists of the sets xH for x ∈ G. Act by K on the left to split into further (double)
cosets.

132 Example
D4 = C4 o C2 = 〈r, s : r4 = s2 = 1, sr = r−1s〉.

Let K = H = C2 = 〈s〉. What is C2\D4/C2? D4 = C2

∐
rC2

∐
r2C2

∐
r3C2. Now act

by s on the left to get sC2 = C2, s(rC2) = r3sC2 = r3C2, and s(r2C2) = r2C2. Hence
D4 = C2

∐
(rC2

∐
r3C2)

∐
r2C2, or equivalently C2

∐
C2rC2

∐
C2r

2C2. Note that the sizes of
double cosets are not generally all the same.

133 Proposition (Double Coset Formula)
Let H,K be subgroups of G, and assume H,K,H ∩K are finite index in G. Then

ResGK IndGHM
∼= ⊕x∈X IndKK∩xHx−1 ResxHx

−1

K∩xHx−1 xM,

where the sum is over a fixed set X of double coset representatives of K\G/H, and the isomorphism is

as K-modules. For convenience, write xH := xHx−1. As a vector space, xM ∼= M , though we view
it as an xH-module, since xhx−1 · (xm) = x(hm).
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134 Example
Let K = H be a normal subgroup of G. The double cosets HxH are just the left (or right)
cosets since H is normal. The formula then reads

ResGH IndGH
∼= ⊕x∈G/HxM.

135 Proposition
Let M be a G-module, K,H subgroups of G of finite index, and z ∈ Hn(H,M↓H). Consider

Hn(H,M) Hn(G,M) Hn(K,M)Cor

Tr

Res

This composite is given by

ResGK ◦CorGH(z) =
∑
x∈X

CorKK∩(xH) Res
(xH)
K∩(xH) xz,

where the sum is over a fixed set of double coset representatives X for K\G/H.

136 Remark
Here

z ∈ Hn(H,M) = ExtnH(k,M) = Hn(Homk(Pn,M)H),

but what do we mean by xz ∈ Hn(xH,xM)? First pick z̃ ∈ Homk(Pn,M)H representing z;
this is of course a map Pn → M . Construct the map xz̃ ∈ Homk(P∗, xM)

xH by pointwise
multiplication by x on the left, and define xz as the homology class of xz̃.

Minor note: we need the Pn’s to be G-modules; we can take a projective resolution of
G-modules, and that is a projective resolution of H-modules, and even xH-modules, so this is
fine.

Proof See next lecture.

May 14th, 2014: Dimension Shifting and Syzygies; ResGGp surjects
onto G-invariants of Hn(Gp,M)

Proof (of proposition from the very end of last lecture). We’ll give two proofs. The first one uses the explicit
transfer map. Let P∗ → k be a projective resolution over G, which remains a projective resolution over
H and K. We have

Homk(Pn,M)H Homk(Pn,M)G Homk(Pn,M)KTr

where Tr acts by sending f to
∑
t∈τ tf with τ a fixed set of coset representatives of G/H. Roughly,

we wish to break up the sum over τ into a sum over double coset representatives KxH, but this is not
a bijection, so in addition to double cosets, there is an inner sum over cosets of K/K ∩ (xH). More
formally, we have the following:

137 Proposition
Let K,H be subgroups of G. There exist sets τ, χ such that:

(i) τ is a complete set of distinct coset representatives for G/H;

(ii) χ is a complete set of distinct double coset representatives for K\G/H;
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(iii) for each x ∈ χ, there is a set εx which is a complete set of distinct coset representatives for
K/(K ∩ xH);

(iv) there is a bijection between t ∈ τ and pairs (x ∈ χ, e ∈ εx), where t = ex and tH ⊂ KxH.

Hence ∑
t∈τ

tf =
∑
x∈χ

(∑
e∈εx

exf

)

We can think of xf ∈ Hom(Pn,M)
xH . It follows that∑

t∈T
tf =

∑
x∈X

CorKK∩(xH) Res
xH
K∩(xH) xf.

138 Remark
M is a G-module, so fix g ∈ G and consider the map M

g·→M given by m 7→ gm. The map g·
is not in general H-equivariant, but it’s close. Note that hm 7→ ghm = ghg−1gm. Hence if we
give the second M an H-action of h ·m = ghg−1m, g· is in fact H-equivariant.

The second proof uses “dimension shifting”.

Definition 139. Consider Ext∗G(N,M). Let P∗ → N be a minimal resolution (meaning every other

resolution factors through this one). Let ΩN := ker(P0 � N) be a syzygy (sometimes called

Heller shift ). More generally,

· · · P1 P0 N

Ω2N Ω1N

where ΩnN := ker(Pn−1 → Pn−2), Ω−1N := coker(N ↪→ I(N)).

140 Lemma
Aside: if we construct syzygies out of arbitrary projective resolution, they will differ only by a
projective summand.

141 Lemma
Consider ExtnG(N,M) for n ≥ 1. Then

ExtnG(N,M) ∼= HomG(ΩnN,M).

Proof Homework. There is a dual version where we use negative syzygies and replace M
rather than N .

For the proof of the double coset formula for cohomology, it suffices to consider

HomH(N,M) HomG(N,M) Homk(N,M)

HomG(N, IndM) Homk(N, IndM)

Cor

∼

Res

h⊗m7→hm
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where in the diagonal arrow we use the double coset formula for modules. This is essentially the proof.

Definition 142. Let H be a subgroup of G, M a G-module. Fix g ∈ G and define the top arrow in the
following (not necessarily commutative!) diagram as above:

Hn(H,M) Hn(gH, gM)

Hn(H ∩ (gH),M)

g·

Res Res

We say that z ∈ Hn(H,M) is G-invariant if this diagram commutes when we run z through it, for
all g ∈ G.

If H is a normal subgroup of G, then this is the “usual” invariance under the action of G on
Hn(H,M).

143 Proposition
Suppose G is a fnite group, Gp is a Sylow p-subgroup, and Char k = p. Then

ResGGp
: Hn(G,M) ↪→ Hn(Gp,M)

surjects onto G-invariants of Hn(Gp,M).

Proof Pick z ∈ Hn(Gp,M)G. We want to show z is in the image of ResGGp
. Let ζ = CorGGp

z ∈
Hn(G,M). We compute

ResGGp
ζ = ResGGp

CorGGp
z =

∑
x∈Gp\G/Gp

Cor
Gp

Gp∩xGp

[
Res

xGp

Gp∩xGp
xz
]

=
∑

x∈Gp\G/Gp

Cor
Gp

Gp∩xGp

[
Res

Gp

Gp∩xGp
z
]

=
∑

x∈Gp\G/Gp

[Gp : (Gp ∩ xGp)]z

= [G : Gp]z ∈ im ResGGp
.

But [G : Gp] is invertible since (p, [G : Gp]) = 1, so z ∈ im ResGGp
. Next time we’ll show G acts

trivially on its own cohomology, which will say that the image is no more than the G-invariants,
completing the proposition.

May 16th, 2014: Conjugation of G on H∗(G,M) is Trivial; Center
Kills Argument; Algebraic Groups

144 Remark
Last time we asserted Res : H∗(G,M) ↪→ H∗(Gp,M) surjects onto the G-invariants H∗(Gp,M)G. We
showed the image contains the G-invariants, and will give the reverse inclusion today. Indeed, it is a
corollary of the next proposition:

145 Proposition
The action (by conjugation) of G on H∗(G,M) is trivial.

146 Remark
This means the following. Let H be a subgroup of G and fix g ∈ G. Consider the map H → gH
given by αg : h 7→ ghg−1 for some g ∈ G. Let gM be just M as a set, but give it an H-action
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through αg, namely h · m = ghg−1m. Then the map fg : M → gM given by m 7→ gm is
H-equivariant:

hm 7→ ghm = (ghg−1)(gm) = h · (gm).

We get

(α∗g, fg∗) : H∗(gH,M)
fg∗→ H∗(gH, gM)

α∗g→ H∗(H,M).

For H = G, we get a map H∗(G,M) → H∗(G,M). After all this trouble, we’ll show this
map is trivial.

Proof How do we actually compute the induced map on cohomology H∗(gH,M)→ H∗(H,M)? We
can interpret this as Ext∗gH(k,M) → Ext∗H(k,M) and compute these with a fixed projective
resolution. Let P∗ → k be a projective resolution of G-modules. Before taking homology, we
want HomgH(P∗,M)→ HomH(P∗,M). Suppose f : P∗ →M as gH-modules. Construct a map
of H-modules as the composite

P∗
g·→ P∗

f→M
g−1·→ M.

For H = G, this map is − 7→ g− 7→ f(g−) = gf(−) 7→ g−1gf(−) = f(−). Hence the map is the
identity map on the level of complexes before we take homology, so the induced map is certainly
the identity.

147 Corollary
im(ResGGp

: H∗(G,M)→ H∗(Gp,M)) = H∗(Gp,M)G.

148 Remark
If Gp is normal, then this is H∗(Gp,M)G/Gp , using “honest invariants”.

149 Proposition ( “Center kills” argument )

H∗(GLn(k), kn) = 0, so long as k is any field different from F2. (Here kn is a GLn(k)-module using
the usual left multiplication by a matrix of a column vector.)

Proof The general idea is the following. Given a group G acting on M , the map g : M →M given
by m 7→ gm is not a G-map in general, though it is if g ∈ Z(G) is in the center of G. As above,
g induces an action (α∗g, fg∗) : H∗(G,M)→ H∗(G,M) which is the trivial (identity) map. Since
g is central, αg : G→ G given by x 7→ gxg−1 is the identity. So, the “conjugation” action by g

on H∗(G,M) is induced just by fg : M
g·→M :

(α∗g, fg∗) = (id, fg∗) = fg∗ : H∗(G,M)
id→ H∗(G,M).

Hence let λIn ∈ Z(GLn(k)). The induced map kn → kn is just multiplication by λ. Exercise:
the induced map on cohomology H∗(GLn(k), kn) is multiplication by the same scalar,

Hi(GLn(k), kn)
λ·→ Hi(GLn(k), kn).

Take λ 6= 1, 0 to see that Hi(GLn(k), kn) is annihilated by λ− 1, so Hi(GLn(k), kn) = 0.

150 Remark
No lecture next week or the following Monday. Student lectures for the following few sessions; we’ll see
if we want to meet the last week of classes.

Definition 151. An algebraic group is roughly a variety (of finite type) with a group structure given by

regular functions. An alternate (more general) definition is the following. Fix a field k. An algebraic
group G is a representable functor from k-algebras to groups. That is, there is a k-algebra we’ll call

k[G] such that G(R) = Homk-alg(k[G], R).

For an algebraic group, k[G] is a Hopf algebra. The group multiplication from G(R) gives the
comultiplication on k[G] and the inverse gives the antipode. A k[G]-comodule M is defined using an
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action map M → M ⊗k k[G]. The category of comodules has enough injectives (but not in general
projectives), so you can apply much of homological algebra. The tensor identity still holds (you can
tensor over k) using the comultiplication of k[G].

(Minor note: the tensor identity is in Jantzen’s “Representations of Algebraic Groups,” however
he uses a scheme-theoretic generalization and representable functors, so there is a fair amount of
translation required.)

May 28th, 2014: Fibrations and the Leray-Serre Spectral
Sequence

Summary James and Nick are going to discuss the Leray-Serre spectral sequence for computing cohomology
rings.

152 Remark
Nick is up first. He’ll briefly introduce fibrations.

153 Remark
Let f : X → Y be a continuous map. Roughly, we try to relate the cohomology of X to the cohomology
of Y . For singular cohomology, we have the Leray-Serre spectral sequence, which in particular applies
to “Serre fibrations.” For sheaf cohomology, we have the Leray spectral sequence, which applies when
f is a proper map.

Definition 154. A Serre fibration is a continuous map E → B which has the homotopy lifting property

for all closed unit balls en ∈ Rn (equivalently, all CW-complexes). See beginning of next lecture for a
rigorous definition.

155 Example
First main example: path fibrations . Let (B, b) be a pointed space. Give the set E of

continuous maps [0, 1] → Y sending 0 to b the compact-open topology, and let π : E → B be
evaluation at the end point. π is a Serre fibration.

156 Example
Second main example: fiber bundles . Let π : E → B be a surjective continuous map which
is “locally trivial”, meaning each point in B has a neighborhood N such that projection from
π−1(N) ∼= N × F to N is “equivalent” to E.

157 Example
Let G be a Lie group, H a compact subgroup. Then G→ G/H can be seen as a morphism of
smooth manifolds, and in particular a fiber bundle with fiber H.

158 Remark
James is up next. His main reference is Spanier, and he’ll discuss some high points for a proof of the
Serre spectral sequence.

Definition 159. A fibration ρ : E → B is orientable if for loops γ : [0, 1]→ B, the induced map in homology
h[γ]∗ : H∗(ρ

−1(γ(0)))→ H∗(ρ
−1(γ(1))) is the identity.

160 Example
If the base B of the fibration is simply-connected, then the fibration is orientable. In the absence
of this or a similar assumption, the following spectral sequence becomes significantly more
complicated.
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161 Theorem (Leray-Serre Spectral Sequence)
If ρ : E → B is an orientable fibration, there is a first quadrant cohomological spectral sequence
converging to H∗(E) with

Ep,q2 = Hp(B,Hq(F ))⇒ H∗(E).

(The underlying coefficient ring R is understood throughout. For instance, we can use R = Z.)

162 Proposition
Some nice properties:

1) Each page has a ring structure,

h : Ep,qr ⊗ Ep
′,q′

r → Ep+p
′,q+q′

r

2) The ring structure on the E2 page is induced by the cup product, and the same holds on the E∞
page. (Moreover, the ring structure on the (r + 1)st page is induced by the ring structure on the
rth page.)

3) Each dr is a (graded-commutative) derivation.

4) For each r, dr : E0,r−1
r → Er,0r (going from the first column to the first row) is called the

transgression . It can be constructed from the long exact sequences of the pairs (E,F ) and

(B, b0) where b0 is some fixed base point.

163 Remark
Outline of proof of theorem: let ρ : E → B be a fibration and assume B is a simply-connected CW
complex. The simply-connected assumption is so we can assume the fibration is orientable; the CW
complex assumption is theoretically harmless by CW approximation results.

• Step 1: filter E by setting Es = ρ−1(Bs), where Bs is the s-skeleton of the CW complex B. This
induces a filtration on singular cochains S∗(E): set F s(S∗(E)) = ker(S∗(E)→ S∗(Es−1)). The
filtration on cohomology is given by F s(H∗(E)) = ker(H∗(E)→ H∗(Es−1)). Note F s(S∗(E)) ⊃
F s+1(S∗(E)) since

H∗(E)

H∗(Es+1) H∗(Es)

• Step 2:

164 Proposition
There is an E1 spectral sequence converging to the cohomology H∗(E) with Es,t1 =
Hs+t(Es, Es−1) (using the relative singular cohomology here), with d1 corresponding to
the boundary map associated to the triple (Es, Es−1, Es−2).

Proof We know there is an E1 spectral sequence with Es,t1 given by

Hs+t(F s(S∗E)/F s+1(S∗E)).

The result follows since

F s(S∗E)/F s+1(S∗E) = Hom(S(Es)/S(Es−1);R).

• Step 3: relate the E1 page with the singular cochain complex of B. We hope we have isomorphisms
given by the dashed lines below:
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Hs+t(Es, Es−1) Hs(Bs, Bs−1;HtF )

Hs+t+1(Es+1, Es) Hs+1(Bs+1, Bs;HtF )

ψ

d1 δ

ψ

where δ corresponds to the boundary map of the triple (Bs+1, Bs, Bs−1). Taking cohomol-
ogy of the right-hand column is precisely how we compute the cellular cohomology of B,
Hs

cellular(B;Ht(F )), but cellular and singular cohomology agree here.

165 Lemma
Let ∆s be an s-simplex, ∂∆s its boundary. Let E → B be an orientable fibration. Given
a map σ : (∆s, ∂∆s)→ (Bs, Bs−1), we get a lifting σ̃ : (∆s, ∂∆s)× F → (Es, Es−1) such
that the induced map on cohomology

σ̃∗ : H∗(Es, Es−1)→ H∗((∆s, ∂∆s)× F )

depends only on σ.

166 Lemma
If ζ∗ is a fixed generator of Hs(∆s, ∂∆s), there is an isomorphism

Hs(F )
∼→ Hq+s(∆s, ∂∆s)× F

given by v 7→ ζ∗ × v.

The ψ above is characterized by the equation

ζ∗ × 〈ψ(u), σ〉 = σ̃∗(u),

using the Kronecker pairing.

May 30th, 2014: Using the Serre Spectral Sequence:
H∗(CP∞;R) ∼= R[x] and the Gysin Sequence

167 Remark
Josh is presenting today; his lecture notes are below; he’ll finish on Monday.

Summary The Serre spectral sequence effectively computes cohomology rings for numerous classical spaces.
As a sample application, we compute H∗(CP∞;R) ∼= R[x] where deg x = 2 and we prove the Gysin
sequence.

The main reference is McCleary’s “A User’s Guide to Spectral Sequences.”

168 Notation
R will refer to a commutative unital ring.

If X is a topological space, H∗(X;R) denotes the singular cohomology of X with coefficients in R,
which is a graded, graded-commutative R-algebra using the cup product for multiplication.

Definition 169. A map π : E → B of topological spaces has the homotopy lifting property with respect to

a space Y if, given any homotopy G : Y × I → B and an “initial lift” ` : Y → E (meaning π` : Y → B
is G(−, 0) : Y → B), there is a “full lift” G̃ : Y × I → E (meaning πG̃ = G) starting at ` (meaning
G̃(−, 0) = `).
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Definition 170. A map π : E → B with the homotopy lifting property with respect to all spaces is a

Hurewicz fibration or just a fibration . If it only has the property with respect to closed unit spheres

in Rn (equivalently, finite CW complexes) it is a Serre fibration .

E is called the total space and B is called the base space .

171 Remark
Suppose π : E → B is a fibration. Let Fb := π−1(b) for b ∈ B. If B is path-connected, each Fb
has the same homotopy type (eg. H∗(Fb;R) is constant up to isomorphism). In this case, we

write F ↪→ E
p→ B and call F the fiber , without having any particular Fb in mind.

172 Theorem (Cohomological Serre Spectral Sequence)
Suppose we have a fibration F ↪→ E

π→ B where B is path-connected and F is connected. Further
suppose B is simply-connected. Then there exists a first quadrant spectral sequence of algebras with

Ep,q2
∼= Hp(B;Hq(F ;R))⇒ H∗(E;R).

Indeed, we have a multiplicative structure on E∗,∗2 :

Ep,q2 ⊗ Ep
′,q′

2 → Ep+p
′,q+q′

2

u⊗ v 7→ u ·2 v = (−1)pq
′
u ^ v

where ^ is given as before by

Hp(B;Hq(F ;R))⊗Hp′(B;Hq′(F ;R))

Hp+p′(B;Hq(F ;R)⊗Hq′(F ;R))

Hp+p′(B;Hq+q′(F ;R)).

^B

^F

173 Remark
The convergence is as algebras, which roughly means that each page of the spectral sequence
has a differential bigraded algebra structure which induces the next pages’ structure, and the
E∞ page is isomorphic to the induced algebra of the associated graded object of H∗(E;R). See
McCleary for details.

174 Proposition
E∗,02

∼= H∗(B;R) and E0,∗
2
∼= H∗(F ;R) as algebras, using the product structure on E∗,∗2 on the

left and the cup product structures on the right.

175 Example
James will briefly compute H∗(CP∞;R) = R[x] where deg x = 2. Here CP∞ is the colimit
(union) of the natural inclusions CPn ↪→ CPn+1. He begins with a fibration

C× → C∞ − {0} → CP∞.

(It happens that CP∞ is K(Z, 2), an Eilenberg-MacLane space. Hence we can also use the
path-loop fibration

ΩK(Z, 2) ∼= S1 → PK(Z, 2)→ K(Z, 2),

which is really the same as the previous fibration, and allows us to easily see C∞ − {0} is
contractible.)
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The E2 page of the Serre spectral sequence is quite nice since H∗(S1;R) is so simple. We
have only two non-zero rows, both consisting of Hp(CP∞;R), for q = 0, 1. The sequence
collapses after the E2 page. Also, the E∞ page is empty since our total space is contractible,
except for the (0, 0) term, from which we can deduce all the differentials from q = 1 to q = 0 on
the E2 page are isomorphisms, and E1,0

2 = 0. The suggested graded structure follows. The ring
structure also agrees, using the same type of argument as in the Gysin sequence below. Back to
Josh.

176 Theorem (The Gysin Sequence)
Suppose F ↪→ E

π→ B is a fibration, where B is path-connected and simply connected. If F is a

homology n-sphere for n ≥ 1, then there is an exact sequence

· · · → Hk(B;R)
γ→ Hn+1+k(B;R)

π∗→ Hn+1+k(E;R)→ Hk+1(B;R)→ · · · ,

where indeed γ(−) = z ^ − for some z ∈ Hn+1(B;R). Moreover, if n is even, then in fact 2z = 0.

177 Remark
z in the theorem is called an Euler class . If we have a sphere bundle Sn ↪→ E

π→ B and happen
to know Hn+1(B;R) has trivial 2-torsion (for n ≥ 1 even), then z = 0 so γ = 0. This severely
restricts the possible sphere bundles of spheres over spheres; indeed, the four Hopf fibrations
corresponding to the division algebras R,C,H,O give the only possible dimensions of the various
spheres involved.

Proof By definition, a homology n-sphere is a space X where Hk(X;Z) is 0, except we get one copy
of Z for k = n and one more for k = 0. (Hence H∗(X;Z) = H∗(S

n;Z)). It follows that Hk(X;R)
is 0, except we get one copy of R for k = n and for k = 0. (Actually, this step is unclear: does it
really follow, or do we need to assume F is a “cohomology n-sphere with R coefficients”? The
theorem statement is McCleary’s.) The Serre spectral sequence associated to this fibration is
thus mostly zero, since Hk(F ;R) = 0 unless k = 0, n. Indeed, the E2 page is in part

q = n : H0(B;R) H1(B;R) H2(B;R)

...
...

...

q = 0 : H0(B;R) H1(B;R) H2(B;R)

It follows that E2
∼= · · · ∼= En+1 and H(En+1, dn+1) ∼= En+2

∼= · · · ∼= E∞. That is, the E∞ page
is

q = n :
ker dn+1

∼= Hn/F 1Hn
ker dn+1

∼= F 1Hn+1/F 2Hn+1
ker dn+1

∼= F 2Hn+2/F 3Hn+2

...
...

...

q = 0 :
H0(B;R)/ im dn+1

∼= H0
H1(B;R)/ im dn+1

∼= F 1H1
H2(B;R)/ im dn+1

∼= F 2H2
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Note that for k ≥ 0,

0→ Ek,n∞ → Ek,n2

dk,n
n+1→ En+1+k,0

2 → En+1+k,0
∞ → 0

is an exact sequence, since

0→ ker dk,nn+1 ↪→ Ek,n2 → En+1+k,0
2 � En+1+k,0

2 / im dn+1 → 0.

Moreover, looking at a fixed antidiagonal of degree n+k for k ≥ 0, there are two places where
the containments of the filtration F ∗Hn+k might be proper, namely at F kHk+n ⊃ F k+1Hk+n

and at F k+nHk+n ⊃ 0. Thus

0→ En+k,0
∞ → Hn+k → Ek,n∞ → 0

is an exact sequence, since

0→ F k+nHk+n ↪→ F kHk+n � F kHk+n/F k+1Hk+n → 0.

Splice these two sequences together via

Hn+k 0

0 Ek,n∞ Ek,n2 En+1+k,0
2 En+1+k,0

∞ 0

0 Hn+1+k

0 Ek+1,n
∞ Ek+1,n

2

0

dn+1

to get the long exact sequence

· · · → Hn+k → Ek,n2

dn+1→ En+1+k,0
2 → Hn+1+k → · · ·

which in our case is

· · · → Hn+k(E;R)→ Hk(B;R)
dn+1→ Hn+1+k(B;R)→ Hn+1+k(E;R)→ · · · .

To describe dn+1, let h ∈ Hn(F ;R) ∼= R be a generator. Identify E∗,n2 = H∗(B;R) ⊗ h and
E∗,02 = H∗(B;R)⊗1 (formally, use the Universal Coefficient Theorem to get Hn(B;Hn(F ;R)) ∼=
Hn(B;R)⊗Hn(F ;R), which works here since Hn(F ;R) ∼= R). Hence (for instance)

^ : E0,n
2 ⊗ Ek,02 → Ek,n2

(1⊗ h) ^ (x⊗ 1) = (−1)n deg x(x⊗ h).

dn+1 is a differential in the multiplicative sense, i.e. it satisfies a Leibniz rule (up to a sign) with
the multiplication · on E∗,∗2 . Since ^ is just · up to a sign, dn+1 satisfies a Leibniz rule with
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respect to ^. Letting dn+1(1⊗ h) = z ⊗ 1 for some z ∈ Hn+1(B;R) and putting it all together,
we now compute

(−1)n deg xdn+1(x⊗ h) = dn+1((1⊗ h) ^ (x⊗ 1))

= [dn+1(1⊗ h)] ^ (x⊗ 1) + (−1)n(1⊗ h) ^ [dn+1(x⊗ 1)]

= (z ⊗ 1) ^ (x⊗ 1) + 0

= (z ^ x)⊗ 1.

(Here dn+1(x⊗ 1) = 0 since it lands below the x-axis.) Let γ(x) = (−1)n deg xdn+1(x⊗ h) to get
the map in the theorem statement.

Finally, if n is even, since h ^ h ∈ H2n(F ;R) = 0, we have

0 = dn+1(1⊗ (h ^ h))

= dn+1((1⊗ h) ^ (1⊗ h))

= (z ⊗ 1) ^ (1⊗ h) + (−1)n(1⊗ h) ^ (z ⊗ 1)

= (2z)⊗ h.

Hence 2z = 0. (If 2 = 0 in R, this is trivial.)

June 2nd, 2014: H∗(CP n;R) ∼= R[x]/(xn+1); Cohomology of
Homogeneous Spaces: The Flag Manifold and Grassmannians

Summary Josh is finishing today. He’ll use the Gysin sequence from last time to compute H∗(CPn;R) ∼=
R[x]/(xn+1) (deg x = 2) explicitly. He’ll also summarize numerous related computations taken from
McCleary. He’ll finish with a discussion of cohomology of homogeneous spaces, with the flag manifold
as a running example, and will end with some remarks on the cohomology of Grassmannians.

178 Example (H∗(CPn;R))
Claim: H∗(CPn;R) ∼= R[x]/(xn+1) with deg x = 2, for n ≥ 0.

Proof The n = 0 case is trivial. Since CP 1 ∼= S2 via stereographic projection, the graded structure
of H∗(S2;R) forces the ring structure to be trivial. So, take n > 1.

The quotient Cn+1 − {0}� (Cn+1 − {0})/∼ := CPn can be interpreted as

S1 ↪→ S2n+1 → CPn,

a fibration (indeed, a fiber bundle). CPn is in general simply-connected (and path-connected),
so the Gysin sequence applies. It starts with

0→ H0(CPn;R)
γ→ H2(CPn;R)→ H2(S2n+1;R)

→ H1(CPn;R)
γ→ H3(CPn;R)→ H3(S2n+1;R)→ · · ·

Since 2n+ 1 ≥ 5, H2(S2n+1;R) = H3(S2n+1;R) = 0. Hence x := γ(1) ∈ H2(CPn;R) generates
H2(CPn;R) ∼= R, and γ(−) = z ^ − says z = x in the notation of the Gysin sequence.
Moreover, H1(CPn;R) = 0, which can be seen in a few ways; for instance, CPn has a CW
complex decomposition with no one-dimensional cells. (Minor note: McCleary suggests this
follows from CPn being simply-connected. That doesn’t seem to work: the Hurewicz theorem
would give this for homology, not cohomology.) Hence 0 = H1(CPn;R) ∼= H3(CPn;R). Now
consider

· · · → H2k+1(S2n+1;R)→ H2k(CPn;R)
γ→ H2k+2(CPn;R)→ H2k+2(S2n+1;R)→ · · · .
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If n < k, the first term is 0, and the last term is 0 generally, so γ is an isomorphism. Suppose
inductively H2k(CPn;R) ∼= R is generated by xk. γ sends a generator to a generator, so
γ(x) = x ^ xk = xk+1 generates H2k+2(CPn;R). Similarly in odd dimensions the cohomology
groups are trivial.

On the other hand, if n = k, we have

· · · → H2n−1(CPn;R)→ H2n+1(CPn;R)→ H2n+1(S2n+1;R)

→ H2n(CPn;R)
γ→ H2n+2(CPn;R)→ H2n+2(S2n+1;R)→ · · ·

which is
0→ 0→ H2n(CPn;R)→ R

γ→ 0→ 0

where we’ve used the fact that Hi(M ;R) = 0 for a manifold M if i > dimM . It follows that
γ(xk) = x ^ xk = xk+1 = 0, completing the result.

179 Theorem
Here is a summary of cohomology computations which can also be carried out with the Leray-Serre
spectral sequence, taken from McCleary:

(i) Let SU(n) ⊂ Mn(C) be the Lie group of unitary matrices of determinant 1, called the

special unitary group . Then

H∗(SU(n);R) ∼= Λ(x3, x5, . . . , x2n−1),

where deg xi = i (throughout) and Λ refers to the exterior algebra (over R). (Recall this is
given by formal linear combinations of k-fold tensors of the generators, subject to the relation
x⊗ x = 0.)

(ii) Let Sp(n) ⊂Mn(H) be the space of linear transformations which preserve the (quaternionic)

inner product, called the symplectic group . Then

H∗(Sp(n);R) ∼= Λ(x3, x7, . . . , x4n−1).

(iii) Let SU denote the infinite special unitary group , which is the direct limit (union) of special

unitary groups SU(2) ⊂ SU(3) ⊂ · · · (with the natural inclusions). Then

H∗(SU;R) ∼= Λ(x3, x5, x7, x9, . . .).

(iv) Let Vk(Cn) denote the space of orthonormal k-frames (ordered bases) in Cn, called the

Stiefel manifold . Then

H∗(Vk(Cn);R) ∼= Λ(x2(n−k)+1, x2(n−k)+3, . . . , x2n−1).

(v) Let SO(n) ⊂ Mn(R) denote the space of orthogonal matrices of determinant 1, called the

special orthogonal group . Then H∗(SO(n);F2) has a “simple system of generators” (see below)

{x1, x2, . . . , xn−1}, deg xi = i.

(vi) Let Vk(Rn) denote the space of orthonormal k-frames in Rn. Then H∗(Vk(Rn);F2) has a simple
system of generators

{xn−k, xn−k+1, . . . , xn−1}, deg xi = i.
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(vii) Let K(Z, n) denote the Eilenberg-MacLane spaces . Then

H∗(K(Z, n);Q) ∼=
{

Λ(xn) n odd
Q[xn] n even

(viii) Let B SO(n) denote the classifying space (see below) of the special orthogonal group, and likewise
with other groups we’ve encountered. Similarly, a lack of “(n)” or an (∞) denotes an “infinite”
version. Then

H∗(B SO(n);F2) ∼= F2[w2, . . . , wn]

H∗(B SO;F2) ∼= F2[w2, w3, . . .]

H∗(BO(n);F2) ∼= F2[w1, . . . , wn]

H∗(BO;F2) ∼= F2[w1, w2, . . .]

H∗(RP (∞);F2) ∼= F2[w1].

Definition 180. Let H∗ be a graded-commutative algebra, taken over R. A set {y1, y2, . . .} is called a

simple system of generators if the elements 1 and xi1xi2 · · · with i1 < i2 < · · · form a basis over R

for H∗. (Note: this does not determine the algebra structure fully. For instance, x2
i is not determined.)

181 Remark
Next we’ll discuss computing the cohomology ring of a flag manifold. This will be a rough overview
with many references and little rigor.

Definition 182. The flag manifold Flag(n) as a set consists of ordered bases of Cn, or equivalently

saturated chains of subspaces in Cn. The (complex) unitary group U(n) acts on Flag(n) in an obvious
way, and has stabilizer T (n), the diagonal (complex) matrices in U(n). Indeed, Flag(n) ∼= U(n)/T (n)

is a homogeneous space and carries a Lie group structure. Note that U(n) is compact, so Flag(n) is

as well. There is an associated fibration

T (n) ↪→ U(n)→ U(n)/T (n) ∼= Flag(n).

183 Proposition
Associated to a Lie group G is a classifying space BG. Indeed, given a closed subgroup i : H ↪→ G,

there is an associated fibration
G/H ↪→ BH

Bi→ BG.

In our case, this looks like

Flag(n) ↪→ BT (n)
Bi→ BU(n).

184 Theorem (Borel)
Let G be a connected compact Lie group, H a closed connected subgroup of maximal rank, and k a
field of characteristic p. Suppose that p = 0 or H∗(G;Z) and H∗(H;Z) have no p-torsion. Then

H∗(G/H; k) ∼= k ⊗H∗(BG;k) H
∗(BH; k).

Proof (Statement taken from Frank Neumann’s “On the cohomology of homogeneous spaces...”,
Journal of Pure and Applied Algebra, 1999.) Borel used the Leray-Serre spectral sequence in
his Paris thesis in the early 1950’s, which is still a classic reference (though it’s in French). It
can also be proved using the Eilenberg-Moore spectral sequence, which is covered extensively in
McCleary.

185 Example
For the flag manifold, this gives

H∗(Flag(n);Q) ∼= Q⊗H∗(BU(n);Q) H
∗(BT (n);Q).

51



One can argue that
H∗(BT (n);Q) ∼= Q[y1, . . . , yn].

We discuss two methods for doing so. First, one can use a variation on Theorem 6.38 in McCleary,
which in turn relies on another classic result of Borel, Theorem 3.27. The advantage of this method is
that we may relate H∗(BU(n);Q) and H∗(BT (n);Q) explicitly, which we must do to apply Borel’s
theorem. (Theorem 6.38 doesn’t quite apply without change, since for instance the field is of prime
characteristic there.)

Second, we can note that T (n) is (S1)n: each diagonal entry must have norm 1. Since BS1 = CP∞,
we computed H∗(BT (1);Q) ∼= Q[y1] (with deg y1 = 2) above. Now use the fact that B(S1)n = (BS1)n

to see
H∗(BT (n);Q) = H∗((BS1)n;Q) = H∗(BS1;Q)⊗n = Q[y1, . . . , yn],

where we have used the Künneth theorem and the fact that our coefficients are in a field to break the
product into a tensor product.

In any case, another general result (Definition 8.4) gives

H∗(BU(m);Q) ∼= Q[y1, . . . , yn]Sn ,

where here Sn is the corresponding Weyl group , with the usual action. Putting it all together,

H∗(Flag(n)) ∼= Q⊗Q[y1,...,yn]Sn Q[y1, . . . , yn]

∼=
Q[y1, . . . , yn]

(e1, . . . , en)

where y1, . . . , yn act on Q by 0 and ei is the degree i elementary symmetric polynomial on n variables.
That is, we quotient by the ideal of non-constant symmetric polynomials.

186 Example
In algebraic combinatorics, the cohomology ring of both Grassmannians and flag manifolds figure
prominently, with bases given by Schur and Schubert polynomials, respectively, both of which have

been studied extensively. For instance, for the Grassmannian Gr(k, n) of k-planes in Cn, we have

H∗(Gr(k, n);Z) ∼=
Z[x1, . . . , xk]Sk

Ik,n

where Ik,n is the ideal generated by the Schur polynomials whose diagram does not fit in a box with

k rows and n − k columns. The Schur polynomials sλ are indexed by integer partitions λ. More

precisely,

sλ :=
∑

T∈SSYT(λ)

xT ,

where SSYT(λ) is the set of all semi-standard Young tableaux of shape λ. That is, we form a

certain diagram out of λ and label boxes with numbers from 1, . . . , k so that rows weakly increase and
columns strictly increase. xT := xa11 · · ·x

ak
k where ai is the number of times the label i appears in T .

We frequently forget about the underlying topological interpretation of these polynomials, but it’s nice
to see where they come from.

June 3rd, 2014: K(π, n)’s; Principal and Universal G-Bundles
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Summary Riley and Becca are going to prove group cohomology for any finite group is finitely generated.
Riley is up first. A summary of the overall talk, which will take several lectures:

a) Discuss Eilenberg-MacLane spaces, in particular K(π, 1)-spaces.

• Prove existence of K(π, 1) for any group π.

• Show K(π, 1) is unique up to homotopy.

• Relate cellular cohomology of this to the cohomology of π.

b) Define principal G-bundles and the universal G-bundle whose base space BG is a K(G, 1)-space
which we call the classifying space. (Again, these are unique up to homotopy.)

c) Define equivariant cohomology Hi
G(X;R) and use it to achieve our goal.

Main reference: Benson’s Representations and Cohomology.

Definition 187. A space X is of type (π, n) if πi(X) = δi,nπ. (Here “0” is the terminal object of the

appropriate category, so we require πi(X) to be π if i = n, the 0 group if 0 < i 6= n, and a singleton if

i = 0). A (π, n)-space is an Eilenberg-MacLane space if it has the homotopy type of a CW complex.

188 Notation
K(π, n) refers to an Eilenberg-MacLane space of type (π, n).

189 Example
We’ll focus on K(π, 1), but our statements will usually be true for K(π, n) when π is abelian.
(Recall the higher homotopy groups are in general abelian.)

We will frequently use the following equivalent condition: being a K(π, 1) space is the same
as being homotopic to a CW complex with π1 = π and a contractible universal cover. (Proof
“by topology.”)

190 Example
RP∞ (see two lectures ago when James introduced CP∞) is a K(Z/2, 1)-space. Indeed, S∞,
which is limn S

n, is the universal covering space of RP∞. One can argue π1(RP∞) = Z/2; for
instance, S∞ → RP∞ is a double cover.

191 Example
K(Z, 1) = S1. Here Z is essentially given the discrete topology, though one can work more
generally with (non-discrete, infinite, etc.) topological groups. We will not.

192 Theorem
For any group π, there exists a K(π, 1)-space.

Proof In their lecture notes; see Becca; also very standard.

193 Theorem
K(π, 1)-spaces are unique up to homotopy equivalence.

Proof If X is a K(π, 1) space, there is a map [Y,X]→ Hom(π1(Y ), π) induced by [f : Y → X] 7→ f∗.
This is a bijection in general if X has the homotopy type of a CW complex. (Recall the notation
[Y,X] indicates the space of continuous maps Y → X up to homotopy equivalence, given the
compact-open topology.)

194 Theorem
Let π be a group, R a commutative ring with identity. Then

• Hi(π,R) ∼= Hcellular
i (K(π, 1);R)

• Hi(π,R) ∼= Hi
cellular(K(π, 1);R).
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(Here R on the left has trivial π-action.)

Proof Let X be a CW complex and also a (π, 1)-space. Let X̃ be its universal cover, which can be
taken to be a CW complex. (In particular, X̃ is contractible, as above.) π acts freely on X̃
by deck transformations, which permute the cells of X̃. Thus cellular chains C∗(X̃;R) on X
are Rπ-modules, and H̃i(X̃;R) = 0 since X̃ is contractible. Hence we have a free resolution of
Rπ-modules

· · · → C1(X̃;R)→ C0(X̃;R)
ε→ R→ 0.

Since X̃/π = X, quotienting Ci(X̃;R) by the action of π (as a set, this consists of orbits) is
Ci(X;R), i.e. Ci(X;R) ∼= Ci(X̃;R)⊗Rπ R. But then

Hi(X;R) ∼= TorRπi (R,R) = Hi(π,R).

In the same way, we get

Ci(X,R) := HomR(Ci(X;R), R) = HomRπ(Ci(X̃;R), R),

and it follows that
Hi(X;R) ∼= ExtiRπ(R,R) = Hi(π,R).

195 Remark
Becca is up next.

Definition 196. A principal G-bundle over a G-space B is a bundle ρ : E → B in the category of G-spaces

which factors uniquely through the orbit space E/B. That is, the fibers are G (in the guise of orbits in
E), and there is an open cover of B by {Ui} and isomorphisms such that the following is a commutative
diagram of G-spaces (i.e. all the arrows are G-maps):

Ui ×G ρ−1Ui

Ui B

∼=

A morphism between principal G-bundles B,B′ is just a G-map B → B′. Let PrinG(B) denote

the set of all principal G-bundles over B.

197 Remark
f : B′ → B induces f∗ : PrinG(B)→ PrinG(B′) via

B′ ×B E E

B′ B

f∗(ξ) ξ

f

Claim: if B′ is paracompact and f, g : B′ → B are homotopic, then f∗(ξ) and g∗(ξ) are
isomorphic as G-bundles. (Here “homotopy” refers to G-equivariant homotopy, meaning the
homotopy is G-equivariant, where G acts trivially on the unit interval.)

Claim: there is a map [B′, B] → PrinG(B′) given as follows. Pick ξ ∈ PrinG(B) and send
[f : B′ → B] to f∗(ξ).

Definition 198. A universal G-bundle is a principal G-bundle ξ such that for all paracompact B′, the
map

[B′, B]
∼→ PrinG(B′)

as above is a bijection. (Roughly, one can consider this as viewing [−, B] as a representable functor,
which suggests this definition has intrinsic interest.)
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199 Proposition
There is a unique universal G-bundle with paracompact base (up to homotopy equivalence).

Proof We show part of uniqueness. Given principal G-bundles ξ, ξ′, from the bijection we get f, f ′

such that f∗(ξ′) = ξ and (f ′)∗(ξ) = ξ′. But then (ff ′)∗(ξ′) = (f ′)∗(f∗(ξ′)) = ξ′ = id∗B′(ξ
′).

Since ξ′ is universal, ff ′ ∼ idB′ . Similarly f ′f ∼ idB , so B and B′ are homotopy equivalent.

Some remarks on existence: Benson uses EG := G ∗ G ∗ · · · with as many factors of G
as |G|, where ∗ denotes the join of topological spaces. Equivalently (as a set), EG consists of
sequences (t1g1, t2g2, . . .) for ti ≥ 0, gi ∈ G, with only finitely many non-zero terms and where∑
ti = 1. These sequences are taken modulo 0g = 0g′ for all g, g′ ∈ G. (This is essentially a

topological version of the space of linear interpolations between finitely many elements of G.) G

acts diagonally on the right on such sequences. Then BG := EG/G, with ξ : EG→ BG via
projection. There are certainly many details to check.

June 4th, 2014—G-Equivariant Cohomology and Finite
Generation

200 Remark
Becca is continuing from last time.

Definition 201. Let ξ = EG→ BG be “the” (see previous proposition) universal G-bundle with paracom-

pact base. Recall there is a bijection [B′, B]
∼→ PrinG(B′) where [f : B′ → B] 7→ f∗(ξ).

202 Remark
For G discrete, BG is K(G, 1). (In general, it appears EG is contractible.)

203 Remark
We now take our groups to be finite and suppose our ring R is commutative and Noetherian. We turn
back to our goal of proving the finite generation of finite group cohomology. The idea is to use
Hi(G,R) ∼= Hi(K(G, 1);R), mentioned last time.

204 Lemma
If G,G′ are finite groups, G → G′ is a group homomorphism, X is a G-space, and EG → BG and
EG′ → BG′ are universal bundles, then

EG×G X ∼ EG′ ×G X

(that is, they are homotopy equivalent).

(The notation X ×G Y means (X × Y )/(xg, y) ∼ (x, gy). Compare with tensor products. Here
EG′ is a G-space via pullback through G→ G′.)

205 Remark
H∗(EG×G X;R) is then independent of the choice of EG.

Definition 206. If X is a G-space, we define the G-equivariant cohomology with coefficients in R is

H∗G(X;R) := H∗(EG×G X;R).

207 Remark
EG×G X → EG×G ∗ = BG is a Serre fibration with fiber X (indeed, a fiber bundle).
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208 Lemma
There exists a spectral sequence

Epq2 = Hp(BG;Hq(X;R))⇒ Hp+q
G (X;R).

(This is just the Serre spectral sequence applied to the preceding fibration.)

209 Lemma
H∗(BU(n);R) ∼= R[c1, . . . , cn] where deg ci = 2i.

(This was used to compute the cohomology of the flag manifold in Josh’s second lecture above.)

210 Theorem
Let G be a finite group, R a commutative noetherian ring, and G ↪→ U(n) an embedding (of groups)
into a complex unitary group. Suppose X is a G-space with H∗(X;R) a finitely generated R-module.
Then H∗G(X;R) is a finitely generated H∗(BU(n);R)-module.

211 Corollary
H∗(G,R) is a finitely generated R-algebra.

Proof Take X = ∗, a point. Then EG×G X = BG. By the theorem, H∗(BG;R) is a finitely
generated module over R[c1, . . . , cn], so it is a finitely generated R-algebra.

Note that G ↪→ U(|G|) is always possible by representing the elements of G via
permutation matrices.

June 6th, 2014—Finite Group Cohomology is Finitely Generated

Summary Riley and Becca are finishing their proof today. See the previous two lectures for background.

212 Theorem
Suppose G is a finite group, R is a commutative Noetherian ring, and G ↪→ U(n) is an embedding
into the complex unitary group. Suppose also X is a G-space where H∗(X;R) is a finitely generated
R-module. Then H∗G(X;R) is a finitely generated module over H∗(BU(n);R).

Proof Start with the Serre fibration

X → U(n)×G X → U(n)/G.

A similar fibration was mentioned last time, EG×G X → BG = EG/G, however U(n) is not
(weakly) contractible (it has fundamental group Z, for instance), so U(n)→ U(n)/G is not a
universal G-bundle. In any case, the associated Serre spectral sequence is

Epq2 = Hp(U(n)/G;Hq(X;R))⇒ Hp+q(U(n)×G X;R).

Also, U(n)/G is a finite CW complex, so the entries of the E2 page are finitely generated
R-modules. (This step is potentially non-trivial. Need the CW complex property to “descend to
the quotient”. For one source, ask Steve Mitchell.) This property is preserved under quotients
since R is Noetherian, so the entires of the E∞ page are also finitely generated R-modules.
Hence Hp+q(U(n)×GX;R) has a filtration by finitely generated R-modules. Since H∗(X;R) is
by assumption a finitely generated R-module, Hm(X;R) = 0 for m large, so the filtration is
finite, so H∗(U(n)×G X;R) is a finitely generated R-module (roughly, it comes from a finite
rectangle).

Next we remark that EU(n)×G X ∼ EG×G X. In particular, we have projection maps
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(EU(n)× EG)×G X

EU(n)×G X EG×G X

∼ ∼

∼

which turn out to be homotopy equivalences.

213 Remark
Given a fibration F → E → B, there is a long exact sequence

· · · → π2(F )→ π2(E)→ π2(B)→ π1(F )→ · · · .

Furthermore, EU(n)×G X = EU(n)×U(n) (U(n)×G X), so that H∗U(n)(U(n)×G X;R) ∼=
H∗G(X;R); here we use the fact that EU(n) ×G X ∼ EG ×G X. Now consider the spectral
sequence from the Borel construction

Ẽpq2 = Hp(BU(n);Hq(U(n)×G X;R))⇒ Hp+q
U(n)(U(n)×G X;R) ∼= Hp+q

G (X;R).

(This is just the Serre spectral sequence coming from U(n)×G X → EU(n)×G X → BU(n).)
The constant map U(n)×G X → ∗ induces a map on cohomology

H∗(∗;R)→ H∗(U(n)×G X;R)

and thereby a morphism of spectral sequences

Hp(BU(n);Hq(∗;R)) Hp+q(BU(n);R)

Hp(BU(n);Hq(U(n)×G X;R)) Hp+q
G (X;R).

⇒

⇒

Here the top line comes from the (trivial) fibration ?→ BU(n)→ BU(n), the rightmost arrow
is induced by

EU(n)×G U(n)×G X → EU(n)×G ∗ ∼ BU(n),

and these maps are evidently compatible. Hence H∗G(X;R) has an H∗(BU(n);R)-module
structure. Since H∗(BU(n);H∗(∗;R)) is essentially just H∗(BU(n);R), we find

H∗(BU(n);H∗(U(n)×G X;R))

has an H∗(BU(n);R)-module structure. By the lemma computing H∗(BU(n);−) from last
time, we have

H∗(BU(n);Hq(U(n)×G X;R)) ∼= H∗(U(n)×G X;R)[c1, . . . , cn].

Since H∗(U(n)×GX;R) is a finitely generated R-module, we have H∗(U(n)×GX;R)[c1, . . . , cn]
is a finitely generated R[c1, . . . , cn]-module. Hence we can apply the argument from before to say
that the abutment HG(p+q(X;R) is also a finitely generated R[c1, . . . , cn]-module; note the fact
that R[c1, . . . , cn] is Noetherian is used in this step. Hence the abutment is a finitely generated
R-algebra, as required.

June 9th, 2014—Čech Cohomology and Sheaf Cohomology
Frequently Agree
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Summary Hao will define Čech cohomology and sheaf cohomology, and show they are isomorphic in nice
cases.

Definition 214. Let X be a quasicompact, separated scheme. Equivalently, X has a finite affine open cover
{Ui}ni=1 whose pairwise intersections are affine. For I ⊂ [n], let UI = ∩i∈IUi.

Let F be a sheaf of OX -modules. There is a complex called the Čech complex , denoted C∗(F) :

0→
⊕
|I|=1

F(UI)→
⊕
|I|=2

F(UI)→ · · · →
⊕
|I|=n

F(UI)→ 0,

where the differentials dI,J : F(UI)→ F(UJ) when |J | = |I|+ 1 are

dI,J =

{
0 if J 6= I ∪ {∗}
(−1)k+1 ResUJ

UI
if J = I ∪ {t} and t is the kth element in J

215 Example
Suppose n = 3. The complex is

0→ F(U1)⊕F(U2)⊕F(U3)→ F(U12)⊕F(U13)⊕F(U23)

→ F(U123)→ 0

where the first differential is

(f1, f2, f3) 7→ (f1 − f2, f1 − f3, f2 − f3)

and the second differential is

(g12, g13, g23) 7→ (g12 − g13 + g23).

Definition 216. The Čech cohomology of F is

H̃i(X,F) := Hi(C∗(F)).

217 Remark
H̃0(X,F) = F(X); this is essentially a restatement of the sheaf axiom.

218 Remark
Recall the global sections functor Γ(X,−) is left exact:

0→ F → G → H

becomes
0→ F(X)→ G(X)→ H(X).

(It is not generally right exact.)

Definition 219. Define sheaf cohomology as

Hi(X,F) := (RiΓ(X,−))(F).

220 Remark
Fact: the category of OX –mod is an abelian category with enough injectives (not obvious), so
right derived functors in fact exist.

Certainly H0(X,F) = H̃0(X,F).
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221 Theorem
If X is a quasicompact, separated scheme, and F is a quasicoherent sheaf of OX -modules, then

Hi(X,F) ∼= Ȟi(X,F) for i ≥ 0.

(That is, there is an open cover where U = specA ⊂ X open implies FU = M̃ for some M ∈
A –mod.)

222 Remark
This implies that Čech cohomology is independent of the open cover chosen: it’s always just
isomorphic to sheaf cohomology, under the above assumptions.

223 Lemma
The following are necessary for the theorem to possibly be true, and they are true:

(1) If I is an injective OX -module, then Ȟi(X, I) = 0 for all i ≥ 1. (Moreover, restricting an
injective resolution of OX -modules to an open subset gives us another injective resolution.)

(2) If X = specA is affine, then Hi(X,F) = 0 for all F quasicoherent on X and i ≥ 1.

Proof of Theorem. Let {Ui}ni=1 be an open cover of X by affines with affine pairwise intersections,
and take an injective resolution of OX -modules

0→ F → I0 → I1 → · · · .

We have a first quadrant double complex

· · · · · ·

0→ ⊕|I|=1I0(UI) ⊕|I|=2I0(UI) · · ·

0→ ⊕|I|=1F(UI) ⊕|I|=2F(UI) · · ·

0 0

Delete the bottom row and take row homology. They are almost entirely zero, except the zeroth
Čech cohomology of Ii is just the global sections. Hence the left column is just the complex
involved in computing sheaf cohomology before taking homology. Now take column homology
to get sheaf cohomology in the first column and zeros everywhere else; the sequence stabilizes.

On the other hand, delete the bottom row of the above diagram and take column cohomology.
Each factor Ii(UI) turns into RiΓ(UI ,F), which is Hi(UI ,F). Again using the lemma, the
higher derived cohomology here is zero, so the only nonzero terms in the E1 page are in the first
row. That is, we get

0→ ⊕|I|=1F(UI)→ ⊕|I|=2F(UI)→ · · · .

But this is just the Čech complex! Taking row cohomology gives Čech cohomology. The result
follows since the spectral sequence converges.
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Grothendieck spectral sequence, 26

Heller shift, 40
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map of spectral sequences, 15
multiplicative, 32

orientable, 43

path fibrations, 43
principal G-bundle, 54

quasi-Frobenius category, 35

restriction functor, 33
right hyper-derived functor, 25
row filtration of C∗∗, 13

Schur polynomials, 52
self-injective algebra, 35
semi-standard Young tableaux, 52
Serre fibration, 43, 46
Shapiro’s Lemma, 34
sheaf cohomology, 58
simple system of generators, 51
Singular homology, 16
special orthogonal group, 50
special unitary group, 50
spectral sequence, 5
Stiefel manifold, 50
symplectic group, 50
syzygy, 40

tensor induction, 33
tensor product of chain complexes, 17
total complex, 12
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total degree, 5, 12
total space, 46
transfer map, 37
transgression, 44
type (π, n), 53

universal G-bundle, 54
Universal Coefficient Theorem, 17

Weyl group, 52

Yoneda Product, 32
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