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March 31st, 2014: Diagram Algebras and Hopf Algebras Intro

1 Remark
Students will present something this quarter; see web site for topics. Will roughly focus on “diagram
algebras” and Hopf algebras bumping in to representation theory and topology. Homework for the
course will essentially be studying and presenting papers, possibly in small groups. Sara will give
background for the first few weeks.

2 Remark
The rough idea is that objects from enumerative combinatorics index bases for algebras, and conversely
important algebraic bases are indexed by combinatorial objects. The Möbius function will play a
surprisingly large role.

Definition 3. A diagram algebra (not necessarily standard terminology) is as follows.

(i) The quitessential example is the group algebra C[Sn], with basis given by permutations. Multi-
plication can be thought of by concatenating string diagrams. The generators are the adjacent
transpositions (i, i + 1), whose string diagrams have a single crossing. Their relations are
sisi+1si = si+1sisi+1, with sisj = sjsi if |i− j| > 1, and s2

i = 1.

(ii) For another example, consider the 0-Hecke algebra . The basis again will be indexed by per-

mutations. Use generators T1, T2, . . . , Tn−1 with relations as with the si except for T 2
i = Ti. A

real-life example of this algebra comes from sorting a list by putting adjacent pairs in order.
Diagram multiplication can be done similarly, but a crossing concatenated with itself is somehow
just itself.
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(iii) A generalization of the previous examples, roughly: the Hecke algebra is given by T 2
i =

qTid + (1− q)Ti. Setting q = 0 gives the 0-Hecke algebra; q = 1 gives the symmetric group.

(iv) The Temperly-Lieb algebra TLn(C). The basis is given by non-crossing matchings on 2n vertices

arranged in two columns. (That means we connect each vertex to precisely one vertex by a string.)
Multiplication is given by concatenation. One fiddle is you can get “islands” when concatenating
sometimes; in that case, formally multiply the diagram by δ for each island and erase the islands.
What are the generators? Ui is the diagram going straight across except we connect i and i+ 1;
i+ n and i+ n+ 1. One checks

UiUi+1Ui = Ui, UiUi−1Ui = Ui, U2
i = δUi, UiUj = UjUi

for |i− j| > 1. This comes up in topological quantum field theory.

How large is the basis? Match 1 with i and separate the vertexes into two “halves”; this gives
the Catalan number recurrence Cn+1 =

∑n
i=0 CiCn−i.

(v) The Brauer algebra Bn: same as the Temperly-Lieb algebra, but allow non-crossing matchings.

Ignore loops, i.e. set δ = 1. Multiplication remains by concatenation. This algebra comes up in
the representation theory of On. (There is a q-deformation where we don’t require δ = 1.)

Definition 4. Vauge first definition: a Hopf algebra is an algebra, so it has addition and multiplication,

and it has a coalgebra structure, so it has a coproduct and a counit, and it has an antipode. Some
motivation: given an algebra A, multiplication is a map A⊗A→ A. The coproduct is ∆: A→ A⊗A
going the other way. A good pair of motivating examples is the following.

(i) Hopf algebra on words in some alphabet, say {a, b, c}. (Maybe infinite, maybe not.) The basis is
given by words in the alphabet (with an empty word), multiplication given by concatenation, eg.
“base × ball = baseball”, so m(y1 · · · yk ⊗ zi · · · zj) = y1 · · · ykz1 · · · zj . A good comultiplication

is ∆(y1 · · · yk) =
∑k
j=0 y1 · · · yj ⊗ yj+1 · · · yk. Doing this to “baseball” gives 1 ⊗ baseball + b ⊗

aseball + · · ·+ baseball⊗ 1. (1 is the empty word.) Note: This comultiplication was incorrect;
see the remark at the start of the next lecture.

In this case the counit is given by setting ε(y1 · · · yk) to 1 on the empty word and 0 elsewhere (i.e.
it sets y1 = · · · = yk = 0). In our example, this gives

(1⊗ ε)∆(baseball) = baseball⊗ 1.

An antipode will be s(y1 · · · yk) = (−1)ky1 · · · yk, which is an involution A→ A.

(ii) The symmetric functions SYM. This is an algebra sitting inside C[[x1, x2, . . .]]. Take all permu-
tations and take their direct limit S∞ (gives permutations P → P fixing all but finitely many
naturals). Define an S∞ action by

si · f(. . . , xi, xi+1, . . .) := f(. . . , xi+1, xi, . . .).

(Variables in . . . fixed.) Let SYM be the set of power series with bounded degree in these variables
which are fixed by all si.

An easy source of elements of SYM are the elementary symmetric functions

ek :=
∑

xj1 · · ·xjk ,

where the sum is over k-subsets of the positive integers P with ji strictly increasing.

5 Theorem
SYM is C[e1, e2, . . .].
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(Similarly we define the complete homogeneous symmetric functions

hk :=
∑

xj1 · · ·xjk ,

where the sum is over k-multisubsets of the positive integers P with weakly increasing ji.)

Generalize the elementary symmetric functions to integer partition indexes as follows. Given a
partition λ = (λ1, · · · , λk), set

eλ := eλ1
· · · eλk .

SYM is a Hopf algebra.

• Multiplication: formal power series multiplication.

• Coproduct: ∆(ek) :=
∑
i+j=k ei ⊗ ej (with ∆(e0) = 1). Alternatively, ∆(hk) =

∑
hi ⊗ hj .

There are other bases, which give ∆(Pk) = 1⊗ Pk + Pk ⊗ 1, or ∆(sλ) =
∑
µ≤λ sµ ⊗ sλ/µ;

maybe more on these later.

• Antipode: S(ek) = (−1)khk, S(hk) = (−1)kek.

6 Remark
We have a “grand vision” associating diagram algebras, Hopf algebras, and topology:

Diagram Algebra Hopf Algebra Topology
C[Sn] SYM cohomology of Gr(k, n) “in the

limit as n→∞, k →∞”
0-Hecke algebra QSYM / NCSYM unknown
Temperly-Lieb algebra unknown unknown
Brauer algebra unknown unknown
unknown combinatorial Hopf alge-

bras; graphs, posets, poly-
topes

unknown

April 2nd, 2014: Group Representations Summary;
Sn-Representations Intro

7 Remark
Correction: the coproduct for the Hopf algebra on words example was missing terms. Say we have
some alphabet {x, y, . . .}; we require ∆(x) = 1 ⊗ x + x ⊗ 1 (called “primitive”), extended to be a
homomorphism. For instance,

∆(xy) = [(1⊗ x) + (x⊗ 1)][(1⊗ y) + (y ⊗ 1)]

= 1⊗ (xy) + y ⊗ x+ x⊗ y + (xy)⊗ 1,

which gives a term y ⊗ x not seen in the previous formula. When we were doing the coproduct of
“baseball” last time, we get more terms than we wrote; in general there would be 8 terms for a word of
length 3.

8 Remark
Outline of the course:
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1. Sn-representation theory

2. SYM

3. Hopf algebra

4. QSYM

5. James Zhang’s view

6. Student lectures

7. Monty McGovern lectures

8. Edward Witten lecture on Jones polynomials,
connection with topological quantum field
theory.

9 Remark
Today: Sn representation theory in a nutshell. There’s a very nice book by Bruce Sagan, “The
Symmetric Group”. (Unfortunately, there doesn’t seem to be a free version. SpringerLink doesn’t give
us access either.)

10 Theorem
Let V be a finite dimensional vector space over C, let G be a finite group, with C[G] the group
algebra of G, which is a vector space itself. V is a G-module if g(v) ∈ V is linear in v and if it
respects composition, which is the same as saying there’s a group homomorphism χ : G → GL(V ).
Equivalently, V is a C[G]-module: given χ, let (

∑
cigi) · v =

∑
ci(χ(gi))(v); given V as a C[G]-module,

let χ(gi)(v) = gi · v.

Here’s a summary of basic non-modular representation theory of finite groups.

(A) Every G-module V can be decomposed into irreducible G-modules. G has finitely many distinct
irreducible representations (up to isomorphism), say V (1), V (2), . . . , V (n), and

V ∼= c1V
(1) ⊕ · · · ⊕ cnV (n).

Hence χ(g) is block diagonal, with c1 blocks of size dimV (1), etc. Note that ci ∈ N.

(B) The trivial representation χ : G→ (1) is always among the irreducibles.

Characters of G-modules: χV : G → C is defined by χV (g) := trχ(g). Note trace is invariant
under conjugation, so the characters are class functions, i.e. constant on conjugacy classes.

The dimension of the space of (linear) class functions is the number of conjugacy classes. (Obvious
basis.)

(C) There is a G-invariant inner product on the characters

〈χ, ψ〉 =
1

|G|
∑
g∈G

χ(g)ψ(g−1).

Great property: if χ(i), χ(j) are characters of irreducible representations V (i), V (j), then
〈χ(i), χ(j)〉 = δij .

(D) The characters corresponding to the irreducibles {χ(1), · · · , χ(n)} are a basis for the class functions.
In particular, the number of distinct irreducibles for the group is always equal to the number of
conjugacy classes, which is a nice ennumerative fact.

(E) V = c1V
(1) ⊕ · · · ⊕ cnV (n) iff χV = c1χ

(1) + · · ·+ cnχ
(n).

(F) If we can decompose C[G], then we get all irreducible representations period.

11 Example
C[G] is a G-module (the regular representation ). How does it decompose into irreducibles? What’s

the multiplicity of the irreducibles, in terms of the characters? Say this representation has character χ,
and say the irreducibles have characters χ(i). From the inner product formula,

〈χ, χ(i)〉 =
1

|G|
∑
g∈G

χ(g)χ(i)(g−1)
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Note that χ(g) is a permutation matrix (in the obvious basis), and that gh = h iff g = id, so its matrix
is either the identity or a derangement. In particular, χ(g) = |G| if g is the identity, and is 0 otherwise.
The inner product then ends up being

〈χ, χ(i)〉 = χ(i)(id) = dimV (i).

It follows that the multiplicity of V (i) in the decomposition of C[G] is dimV (i).

Definition 12. Given a subgroup H of G, a representation χ : G→ GL(V ), we trivially get a representation

χ↓GH : H → GL(V ) by restriction. Indeed, we can also lift representations in the following way.

Suppose we have Y : H → GL(V ); we construct the induced representation Y ↑GH : G→ GL(V ) .

Consider cosets of G/H. Say t1, . . . , t` is a complete set of representatives, i.e.

G = t1H ∪ t2H ∪ · · · ∪ t`H,

where these cosets are pairwise disjoint. Hence G acts on the vector space spanned by cosets tiH, with
g(tiH) = tjH if gti ∈ tjH. Thus g permutes cosets. Now define

Y ↑GH (g) := [Y (t−1
i gtj)],

where we set a block to 0 if t−1
i gtj 6∈ H. This isY (t−1

1 gt1) Y (t−1
1 gt2) · · · Y (t−1

1 gt`)

Y (t−1
2 gt1) · · ·

. . .
...

· · · · · · · · · · · ·


There is exactly one nonzero block in each row or column, and each such block is invertible, hence the
whole thing is indeed invertible.

Note: X↓GH or Y ↑GH to irred. rep. does not mean that X,Y are necessarily irreducible. (? Probably
means if we start with an irreducible representation, we don’t necessarily end up with one.)

13 Example
Fix G = Sn. We know the number of conjugacy classes of Sn is p(n), the number of partitions of
the number n. (Cycle types determine the conjugacy classes.) Let Sλ = Sλ1 × · · · × Sλk denote the
permutations which permute [1, . . . , λ1], [λ1 + 1, · · · , λ1 + λ2], etc. in blocks. What is 1↑SnSλ?

To apply the previous construction, we need to pick representatives of cosets Sn/Sλ. Note that for
a particular coset, every element’s first 1 through λ1 entries are the same, and similarly with the other
blocks. So, a nice representative is to pick a permutation whose “constant blocks” are ordered to be
strictly increasing. (They may have descents between blocks.)

We can write permutations as tabloids which are rows of numbers with each row corresponding
to a block. For instance, with λ = (4, 2, 2) for n = 8, a tabloid might be

1234

56

78

We can rearrange the rows however we want without changing cosets/tabloids.

Definition 14. We can make a vector space Mλ spanned by the tabloids of shape λ. Sn acts on Mλ by
just permuting the numbers in the rows,

σ(T ) = σ(t11)σ(t12) · · ·
σ(t21)σ(t22) · · ·
· · ·
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You can check that Mλ is the Sn-module that goes with 1↑SnSλ . (In general, for a subgroup H of G,

1GH is the representation for the action of G on the left cosets of H, as we can see that the i, j entry will
be 1 if t−1

i gtj ∈ H and 0 otherwise. From the construction above, we can then see that Mλ = 1↑SnSλ ).

15 Proposition
Let χ be the character of Mλ. For every σ ∈ Sn, χ(σ) is the number of tabloids of shape λ fixed by σ
(immediate from definitions).

For a tabloid to be fixed by σ, we require each row to be a union of cycles in the cycle decomposition
of σ. Let σ have cycle type µ = 1m12m2 · · ·nmn . Suppose a tabloid fixed by σ has r(p, q) cycles of
length q in row p—how many other fixed tabloids have the same r(p, q)’s? For fixed q, we can permute
the cycles of length q however we wish, giving mq! choices, except permuting them in the same row
does nothing, so this overcounts by r(1, q)! for the first row, etc. These choices are independent for
each q, and it follows that

χ(σ) =
∑ n∏

q=1

mq!

r(1, q)!r(2, q)! · · · r(n, q)!

where the sum is over solutions to r(p, 1)+2r(p, 2)+· · ·+nr(p, n) = λp, r(1, q)+r(2, q)+· · ·+r(n, q) = mq.
(The first constraint says the number of entries in row p is λp; the second says the number of cycles of
length q overall is mq.)

April 4th, 2014: Mλ Decomposition and Specht Modules

Summary Last time: did background on finite group representation theory. C[Sn] = m1V
(1)⊕· · ·⊕mkV

(k).
Now

n! =

k∑
i=1

(dimV (i))2.

We defined Mλ as the C vector space spanned by λ-tabloids, which is 1SnSλ1×···×Sλk
.

Today: we’ll decompose Mλ and talk about Sprecht modules.

16 Example
n = 3; 3! = 6 = a2 + b2 + c2; have three representations, a = 1 gives trivial, c = 1 is sign representation.

M (1,1,1) = C[S3], and more generally λ given by singleton rows gives Mλ = C[Sn]. M (3) is one
dimensional, indeed the trivial representation. M (2,1) has three tabloids 12/3, 13/2, 23/1—the bottom
row is all that matters. Calling these b3, b2, b1, then σ(

∑
cibi) =

∑
cibσ(i). The Mλ’s are not in general

irreducible. How do we decompose this one?

We have an obvious invariant subspace V = Span{b1 +b2 +b3}. What’s the orthogonal complement?
W = {

∑
cibi :

∑
ci = 0}. Hence M (2,1) = V ⊕W .

Take basis for W given by b3 − b1, b2 − b1. Note that [2, 1, 3](b3 − b1) = (b3 − b1)− (b2 − b1), and
similarly we can compute the diagonal elements of the matrix representations of elements of S3 in this
basis. This gives the character: χW ([1, 2, 3]) = 2, on the transpositions it’s 0, on the three-cycles it’s
−1.

We know the characters of the irreducibles form an orthonormal basis:

〈χw, χw〉 =
1

|G|
∑
σ∈Sn

χw(σ)χw(σ−1)
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which in this case simplifies to just taking the dot product (since inverses stay in the same conjugacy
class). Doing this computation here gives

1

6
(2,−1,−1, 0, 0, 0) · (2,−1,−1, 0, 0, 0) = (4 + 1 + 1)/6 = 1.

This shows W is actually irreducible! Hence M (1,1,1) = V (1) ⊕ V (2) ⊕ 2V (3) (letting W be the third
summand). Indeed, M (n−1,1) = V (1) ⊕ V (2) in general.

17 Remark
Let χλ be the character of Mλ and let σ ∈ Sn be of cycle type µ = 1m12m2 · · ·nmn . Recall χλ(σ) is
the number of tabloids of shape λ fixed by σ. See the proposition at the end of the previous lecture for
the computation, notation, and formula.

What’s a generating function for these numbers? Note the innermost fraction is a multinomial
coefficients, suggesting

(xq1 + · · ·+ xqn)mq

which has the correct multinomial coefficient on x
qr(1,q)
1 x

qr(2,q)
2 · · ·xqr(n,q)n .

Hence we have

18 Proposition
The generating function for χλ(σ) where σ has cycle type µ is given by

ξλµ :=

n∏
q=1

(xq1 + · · ·+ xqn)mq |xλ .

Definition 19. Let pi = (xi1 +xi2 + · · ·+xin), pµ = pµ1
· · · pµk for a partition µ. The first is a power sum ,

the second is a power symmetric function . Hence

ξλµ = pµ|xλ .

Definition 20. Let λ = (λ1 ≥ · · · ≥ λk > 0). Define the monomial symmetric functions

mλ :=
∑

(i1,i2,...,ik)

xλ1
i1
· · ·xλkik ,

where the sum is over sequences of distinct values in [1, . . . , n]. Informally, this is xλ symmetrized.

21 Theorem
pµ(x) =

∑
λ ξ

λ
µmλ.

Proof This is immediate from the fact that ξλµ is the coefficient of xλ and that pµ(x) is symmetric.

Definition 22. Preliminaries for Specht modules: they’ll be irreducible submodules of Mλ, λ a partition of
n; first we need the following.

Start with a bijective filling T of a Ferrers diagram of λ (Sagan calls this a Young tableau); eg.

T = 154/23 is a bijective filling of the shape (2, 3). Call these λ-tableaux . As a reality check, the
number of λ-tableaux is n!. Define

• {T} is the tabloid given by T . Recall this is the equivalence class of λ-tableaux containing T ,

where two tableau are equivalent if they can be obtained from one another by permuting the
rows.

• R(T ) is the row stabilizer of T , meaning the rows as sets are preserved
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• C(T ) is the column stabilizer of T , meaning the columns as sets are preserved

• aT :=
∑
π∈R(T ) π

• bT :=
∑
π∈C(T ) sgn(π)π

For example, C(154/23) = S{12} × S{35} × S{4}. Note C[Sn] · {T} = Mλ roughly by definition, if T is
a λ-tableau. bT will be a very important element in our construction of the Specht modules.

Definition 23. Given a Young tableau T of shape λ, define

eT := bT · {T} =
∑

π∈C(T )

sgn(π)π{T}.

Check:
σ · eT = eσ(T ).

Proof Set wσ = σπσ−1 and observe

σ · eT =
∑

π∈C(T )

sgn(π) · σπ{T}

=
∑

wσ∈σ−1C(T )σ

sgn(π)wσ{σT}

Note σC(T )σ−1 = C(σT ). Hence the right-hand side is precisely eσ(T ).

Definition 24. Define the Specht module

Sλ := Span{eT : T is a λ-tableau} = C[Sn] · eT .

(The second equality follows from the observation in the previous definition.)

25 Example
Let λ = (1n), T = 1/2/3/ · · · /n. Hence C(T ) = Sn. Now

σ · eT = eσ(T ) =
∑
π∈Sn

sgn(π)πσ{T}

=
∑
w

sgn(w) sgn(σ)w{T}

= sgn(σ)eT .

Hence we recovered the sign representation!

Note: the π{T} appearing above are distinct as π ∈ C(T ) varies, so the coefficients really are ±1.

Definition 26. We define a poset on {λ a partition of n} called dominance order . Set

λ ≤D µ⇔ λ1 + · · ·+ λi ≤ µ1 + · · ·+ µi

for all i. Note we get some non-comparable things, eg. (2, 2, 2) and (3, 1, 1, 1). Maximal element: the
horizontal stick (n).

27 Lemma
Lexicographic order is a linear extension of dominance order.
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Proof By contrapositive: if λ <L µ (in Lexicographic order), then there exists λj < µj and λi = µi
for all i < j. Then we can’t have µ < λ in dominance, since it just went over at the jth spot.

28 Lemma
Say T, T ′ are Young tableaux with shapes λ, λ′, respectively. Then bT {T ′} is as follows:

• bT {T ′} = ±eT if λ = λ′ and no tij ∈ R(T ′) ∩ C(T ) (i.e. no two numbers simultaneously appear
in the same row of T ′ and the same column of T ).

• bT {T ′} = 0 if λ <L λ
′ or λ = λ′, tij ∈ R(T ′) ∩ C(T ).

Note bT {T ′} 6= 0 implies λ ≥D λ′.

Proof If i < j appear in the same row of T ′ and the same column of T , consider bT · tij . This is −bT
since it just permutes the sum (and flips the signs). We’ll finish this next time.

April 7th, 2014: Fundamental Specht Module Properties and
Branching Rules

Summary Recall: last time, we defined Specht modules

Sλ := Span{eT : T bijective filling of λ} ⊂Mλ.

Today’s goals:

A) Sλ is irreducible

B) Sλ ∼= Sµ implies λ = µ

C) Induction and restriction work on Sλ

Definition 29. Recall dominance order on partitions of size n, where

λ ≤D µ⇔ λ1 + · · ·+ λi ≤ µ1 + · · ·+ µi, ∀i.

Last time we said lexicographic extends dominance order.

30 Lemma
(See last lemma from previous lecture.) Say T, T ′ are Young tableau of shapes λ, λ′ ` n. Then
bT · {T ′} = 0 if there exists tij ∈ R(T ′) ∩C(T ), i.e. if there are two numbers which are simultaneously
in the same row of T ′ and the same column of T .

Proof tij ∈ C(T ) implies bT tij = −bT ; tij ∈ R(T ) implies tij · {T ′} = {T ′}. Hence bT · {T ′} =
bT · tij{T ′} = −bT {T ′}, so bT {T ′} = 0.

31 Corollary
If λ, λ′ ` n, T is a λ-tableau, T ′ is a λ′-tableau, then bT · {T ′} 6= 0 implies λ ≥D λ′.

Proof For each box in T , imagine annotating that box with the index of the row in which that box’s
entry appears in T ′ using red ink. We can permute T by some σ ∈ C(T ) at the cost of changing
bT by at most a sign, so we can assume the red annotations appear in weakly increasing order
in each column. From the lemma, there is no i, j appearing in the same row of T ′ and the same
column of T , so the red annotations actually increase strictly. By the pigeonhole principle, the
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first k rows of T contain all red annotations numbered 1, . . . , k, i.e. there is an injection from
the first k rows of T ′ to the first k rows of T . But this just says

λ1 + · · ·+ λk ≥ λ′1 + · · ·λ′k,

so λ ≥D λ′.

Note: this proof holds for the weaker hypothesis that 6 ∃ tij ∈ R(T ′) ∩ C(T ).

32 Lemma
If T, T ′ are Young tableau of the same shape λ and no tij ∈ R(T ′)∩C(T ) exists, then bT · {T ′} = ±eT .

Proof By hypothesis, every value in row 1 of T ′ is in a distinct column of T . So, there exists
a permutation π(1) ∈ C(T ) such that π(1)T and T ′ have the same first row. Induct on the
remaining rows to get some permutation π ∈ C(T ) such that πT = T ′. Then bT · {T ′} =
bT · {πT} = sgn(π)eT .

33 Corollary
For T a Young tableau of shape λ,

bTM
λ′ = bTS

λ′ = 0 if λ <L λ
′

and
bTM

λ = bTS
λ = Span{eT } 6= 0.

34 Theorem
Sλ is irreducible for each partition λ of n. (Note: it’s important that we’re working over C.)

Proof Suppose Sλ = V ⊕W , T a Young tableau of shape λ. By the corollary above,

Span eT = bTS
λ = bTV ⊕ bTW.

Since bTV, bTW, Span et are all vector spaces over C and SpanT is one dimensional, eT must be
in bTV ⊂ V or bTW ⊂W , with the other 0. Hence eT ∈ V or eT ∈W , so C[Sn] · eT = Sλ ⊂ V
or W , giving the result.

35 Theorem
Sλ ∼= Sµ ⇒ λ = µ.

Proof Sλ ∼= Sµ implies there is a non-zero homomorphism Θ: Sλ →Mµ. Extend Θ: Mλ →Mµ by

w ∈ (Sλ)⊥ ⇒ Θ(w) = 0.

Now Θ non-zero implies there is some eT ∈ Sλ such that Θ(eT ) 6= 0, so

0 6= Θ(eT ) = Θ(bT · {T}) = bTΘ({T}) = bT · (
∑
i

ci{Si}),

where Si are distinct tabloids of shape µ. At least one ci is non-zero, so bT · {Si} 6= 0, so λ ≥D µ
by the corollary above. By symmetry of this argument, λ = µ.

36 Example
Let T be a Young tableau of shape λ. Note that we can write bT · {T} =

∑
{S} where the sum is over

some S which are column-increasing. For instance, let T = 462/35/1, S = 152/36/4. These S don’t
form a basis, unfortunately; too much redundancy.

Definition 37. T is a standard Young tableau , SYT(λ), if T is a bijective filling of λ with rows and

columns increasing. Set fλ := |SY T (λ)|. Recall the hook length formula,

fλ =
n!∏
c∈λ hc

.
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38 Theorem
{Sλ : λ ` n} is the full set of distinct irreducible representations of Sn.

Proof Recall the RSK correspondence, mapping w ∈ Sn to (P,Q) ∈ SYT(λ) × SYT(λ) for some
λ ` n bijectively. Then

n! =
∑
λ`n

(fλ)2 ≥
∑
λ`n

(dimSλ)2,

where the inequality comes from the previous two theorems, since each Sλ is a distinct irreducible
representation of Sn. Below we show dimSλ ≤ fλ, so equality holds, and the result follows.

Definition 39. We next define a partial order on tabloids of shape λ ` n. First we associate to {T} a

nested sequence αT (1) ⊂ αT (2) ⊂ · · · ⊂ αT (n), where αT (k) is a composition of k (i.e. a partition of
k without the weakly decreasing condition). Construct αT (k) by removing all boxes with label > k
from T and interpreting the result as a composition. Equivalently, αT (k) = (a1, . . . an), where ai is the
number of cells in T in row i that are ≤ k.

40 Example
{45/32/1} goes to (001) ⊂ (011) ⊂ (021) ⊂ (121) ⊂ (221).

Define {S} ≤ {T} if αS(k) ≤D αT (k) for all 1 ≤ k ≤ n. (Extend the dominance order to
compositions in the obvious way.)

41 Lemma
Say T ∈ SYT(λ) and write eT =

∑
cS{S} for distinct tabloids {S} of shape λ. Then cS 6= 0 implies

{S} ≤ {T}. Hence {eT : T ∈ SYT(λ)} are independent, and using the ennumerative RSK formula and
theorem above, they span Sλ.

Proof Suppose tij ∈ C(T ), i < j, and {S} = {πT} for some π ∈ C(T ) has cS 6= 0. First, if S has no
column inversions, we are done. Otherwise, there exists i < j in the same column of S with i
the row just below j in S, so the reverse is true in tijS. Since i appears in an earlier row than
j in tijS, but only i and j are moved, αS(k) < αtijS(k) for all k. Furthermore, this operation
reduces the number of column inversions by 1. Hence, {S} ≤ {tijS} ≤ {T} by induction on the
number of inversions.

Next, we use this to show that {eT | T ∈ SYT(λ)} is linearly independent. The partial order
above restricts to a partial order on the Standard Young Tabeaux, so we can list the standard
Young Tableaux as

T1, T2, . . . , Tm−1, Tm

in such a way that Tk is maximal among T1, . . . , Tk. Now, suppose that

0 =

m∑
i=1

cieTi =

m∑
i=1

ci
∑

{S}≤{Ti}

diS{S}.

But by maximality of Tm among T1, . . . , Tm, {Tm} only appears in eTm , which forces cm = 0.
Thus

0 =

m−1∑
i=1

cieTi .

So, inductively, ci = 0 for all i, and {eT | T ∈ SYT(λ)} is linearly independent.

This means that
n! =

∑
λ`n

dim(Sλ)2 ≥
∑
λ`n

(fλ)2 = n!,

which forces fλ = dim(Sλ), and thus {eT | T ∈ SY T (λ)} is a basis for Sλ.
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42 Corollary
If S is any Young tableau of shape λ, then

eS =
∑

T∈SYT(λ)

cT eT

for some constants cT .

43 Remark
The algorithm to compute the coefficients in the previous corollary is called Rota straightening. It’s
complicated, so we’ll just vaguely touch on it. Assume S is column increasing. As you scan down a pair
of adjacent columns, there is a first place where a1 > bn, say; put b1 < b2 < · · · < bn as the elements
above bn in its column, and a1 < a2 < · · · < am below a1 in its column. Set A := {a1, . . . , am},
B := {b1, . . . , bn}.

Definition 44. Set
gA,B :=

∑
π∈S(A∪B)

sgn(π)π.

These are called Garnir elements .

Claim: gA,BeS = 0. Assuming this,

eS = −
∑
π 6=id

sgn(π)πeS .

The πeS = eπS are “closer” to standard. The full argument is in Bruce Sagan’s book.

45 Theorem (Branching Rules)
Let λ ` n.

Sλ↓SnSn−1

∼=
⊕

µ⊂λ,|µ|=|λ|−1

Sµ

and
Sλ↑Sn+1

Sn
∼=

⊕
µ⊃λ,|µ|=|λ|+1

Sµ.

Proof First, use Frobenius reciprocity, which states the following. Suppose H ⊂ G, ψ is an H-
character, χ is a G-character. Then

〈ψ↑GH , χ〉 = 〈ψ, χ↓GH〉.

It follows that if we’ve proved one of the above statements, we’ve proved the other. So, we’ll
prove the restriction statement. Let c1, . . . , ck be the “outside corners” of the partition λ, ordered
with increasing row indexes. These have the property that µi := λ− {ci} is still a partition.

Our strategy is to define an Sn−1-module filtration of Sλ whose successive quotients are Sµi .
Since W ∼= V ⊕W/V for G-modules in general, the filtration gives the desired isomorphism.

For the filtration, let V (i) be the span of eT where T ∈ SYT(λ) and n in T is in row ≤ row(ci).
Since n is fixed by Sn−1, V (i) is an Sn−1-module. This gives a filtration

{0} = V (0) ⊂ V (1) ⊂ V (2) ⊂ · · · ⊂ V (k) = Sλ.

To see V (i)/V (i−1) ∼= Sµi as Sn−1-modules, define an Sn−1-module homomorphism

θi : M
λ →Mµi

13



as follows. If n is in row(ci) of T , by tabloid equivalence say {T} has n in ci and set θi({T}) =
{T − n}. Otherwise, set θi({T}) = 0.

V (i−1) is spanned by eT which are by definition annihilated by θi, so ker θi ⊃ V (i−1). For
T SYT(λ) with n in row ci, we find θi(eT ) = eT−n as follows. n must be in box ci, so π ∈ C(T )
either (i) leaves it fixed or (ii) moves it up. Hence

θi(eT ) = θi

 ∑
π∈C(T )−C(T−n)

sgn(π){πT}

+ θi

 ∑
π∈C(T−n)

sgn(π){πT}

 = 0 + eT−n,

whence θi(V
(i)) = Sµi .

Indeed, the map V (i) θi→ Sµi gives the isomorphism V (i)/(V (i) ∩ ker θi) ∼= Sµi , which is of
dimension fµi . We’d like V (i) ∩ ker θi = V (i−1), which is true as follows. We can extend our
previous filtration to

{0} ⊂ V (0) ⊆ V (1) ∩ ker θ1 ⊂ V (1) ⊆ V (2) ∩ ker θ2 ⊂ V (2) ⊂ · · · ⊂ V (k) = Sλ.

But then the successive quotients V (i)/(V (i) ∩ ker θi) account for
∑
fµi = fλ dimensions, i.e.

all of them. So, the inclusions V (i−1) ⊆ V (i) ∩ ker θi must be equalities, giving the result.

46 Exercise
Let c be a corner of λ ` n. Is the map Sλ → Sλ−c defined by sendng eT to 0 if T ∈ SYT(λ) does not
have n in c, and by sending eT to eT−n otherwise an Sn−1-module morphism? Similarly, is the map
Sλ−c → Sλ defined by eT−c 7→ eT an Sn−1-module morphism?

April 9th, 2014: Representation Ring for Sn and its Pieri Formula

Summary Last time: showed the Specht modules {Sλ : λ ` n} form a complete set of irreducible represen-
tations for Sn. Showed Sλ has basis {eT : T ∈ SYT(λ)}. Note σeT = eσT . Homework: determine the

matrices for S(2,2) for si in this basis. We also noted the branching rules, where Sλ↑Sn+1

Sn
is given by

the sum of Sµ where µ covers λ in Young’s lattice, and similarly with the restriction (see last time).
Important point: these decompositions are multiplicity free.

47 Example
S(2,2)↑S5

S4
= S(3,2) ⊕ S(2,2,1). What about S(2,2)↑S6

S4
? Apply the rule to each of the pieces from the S4 to

S5 case, which gives

S(2,2)↑S6

S4
= S(4,2) ⊕ S(3,3) ⊕ S(3,2,1) ⊕ S(2,2,2) ⊕ S(2,2,1,1).

48 Theorem
What’s the general rule? Let λ ` n. Then

Sλ↑Sn+m

Sn
=

⊕
µ⊃λ,|µ|=n+m

(Sµ)aλ,µ .

Here aλ,µ = fµ/λ is the number of standard skew tableau µ/λ. That is, µ ⊃ λ, and µ − λ is filled
bijectively starting at 1 with strictly increasing rows and columns.

Definition 49. Bijectively label any D ⊂ Z× Z with |D| = n using [n]. Let

aD :=
∑

π∈R(D)

π, bD :=
∑

π∈C(D)

sgn(π)π, cD := bD · aD ∈ C[Sn].
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Define a generalized Specht module

SD := SpanC{σcD : σ ∈ Sn}.

50 Example
Let D = ∗1/2 (the ∗ means we don’t pick that box). Then SD is spanned by cD for ∗1/2 and ∗2/1,
which decomposes as the sum of the trivial representation (∗1/2 + ∗2/1) and the sign representation
(∗1/2−∗2/1). Homework: Where in the proof of Sλ irreducible did we use the fact that λ is a partition?
(Hint: pidgeonhole argument.) Open problem: decompose SD as a sum of Sµ with some coefficients.
References: Pawlowski thesis; Reiner-Shimozono.

Definition 51. Let U, V be vector spaces over some field k. Let

U ⊗ V :=
Span

k
{(u, v) : u ∈ U, v ∈ V }

(a+ b, c) = (a, c) + (b, c), (a, b+ c) = (a, b) + (a, c), (λa, b) = (a, λb) = λ(a, b)
.

The image of (u, v) in the quotient is denoted u⊗ v and is called a simple tensor . Note that if {bi}i∈I
is a basis for U and {cj}j∈J is a basis for V , then {bi ⊗ cj : i ∈ I, j ∈ J} is a basis for U ⊗ V . Hence
dimension is multiplicative (in general, in the sense of cardinal arithmetic).

52 Example
Consider R2 ⊗ C3 viewed as vector spaces over Q. Then

(5, 0)⊗ (17 + i, 0, e42πi) + (0, 17)⊗ (i, i, i)

can’t be turned into a single (simple) tensor. Note dimR(R2 ⊗ C3) = 12, dimR(R2 × C3) = 8 6= 12.

Definition 53. If U, V are rings, define U ⊗ V likewise. Define multiplication as (a⊗ b)(c⊗ d) = (ac)⊗ (bd).

54 Remark
If U is a G-module, V is an H-module, then U ⊗ V is a G×H-module via

(g, h)(a⊗ b) := (ga)⊗ (hb).

(Here the tensor product is over the underlying, common field.)

55 Remark
If G = Sn, H = Sm, then what are the irreducible representations of G⊗H? Answer:

{Sλ ⊗ Sµ : λ ` n, µ ` m}.

Note the number of conjugacy classes is correct! (In general, a complete set of distinct irreducible
representations of a product of arbitrary finite groups is the tensor products of their distinct irreducible
representations in the same way. However, it gets very complicated for infinite groups.)

56 Notation
If V is an Sn-representation, denote its isomorphism class via [V ]. Say

[W ] := [U ] + [V ] if W = U ⊕ V.

Definition 57. Let Rn := SpanC{[V ] : V is an Sn-rep}. This is spanned by {[Sλ] : λ ` n}. This is called

the Grothendieck group of Sn representations. (R0 seems to be spanned by the trivial representation,

with S0 the trivial group.)

58 Example
−42[S(3,2)] + 12[S(5)] ∈ R5.
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Define R as ⊕n≥0Rn as the ring of representations . Addition is formal addition. Multiplication

is given by Rn ×Rm → Rn+m where

[V ] · [W ] = [(V ⊗W )↑Sn+m

Sn×Sm ].

Homework: show

(V ⊗W )↑Sn+m

Sn×Sm= C[Sn+m]⊗C[Sn×Sm] (V ⊗W ).

59 Proposition
• R is commutative: quick from commutativity of tensor product.

• R is associative: uses associativity of tensor product, that induction is transitive, etc.

• R has a unit, 1 ∈ C corresponding to the trivial representation in R0.

60 Theorem

(Sλ ⊗ S(m))↑Sn+m

Sn×Sm=
⊕

Sµ,

where the sum is over µ ⊃ λ such that |µ| = |λ| + m = n + m and where µ − λ is a collection of

horizontal strips (i.e. no two boxes appear in the same column). We’ll call this the Pieri formula .

Proof (Thanks to Brendan.) By Frobenius reciprocity,

(Sλ ⊗ S(m))↑Sn+m

Sn×Sm=
⊕

µ`n+m

(Sµ)aλ,m,µ

and
Sµ↓Sn+m

Sn×Sm=
⊕

λ′`n,ν`m

(Sλ
′
⊗ Sν)cλ′ ,ν,µ

have the same coefficients aλ,m,µ = cλ,(m),µ. So let V = Sµ↓Sn+m

Sn×Sm for µ ` n + m. That is,

Sn × Sm acts on V = SpanC{eT : T ∈ SYT(µ)}. Now V may include Sλ
′ ⊗ Sν for ν 6= (m) or

λ′ 6= λ, but we can “filter out” these extra representations by looking at the subspace V 1×Sm

fixed by 1n × Sn, which gives us precisely

V 1×Sm = ⊕(Sλ ⊗ S(m))cλ,(m),µ.

Hence we need only decompose V 1×Sn and show that the non-zero multiplicites are precisely one
for exactly λ with the conditions in the theorem statement. We’ll decompose V 1×Sn by setting
z :=

∑
π∈1n×Sm π, noting V 1×Sn = zV = Span{zeT : T ∈ SYT(λ)}. When does zeT = zeS?

Well, certainly when S, T agree on [1, n]. Moreover, if i, j ∈ [n+ 1,m] are in the same column of
T , then z = ztij and zeT = ztijeT = −zeT , so zeT = 0. This motivates...

61 Theorem
V 1×Sm is the span of zeT for T ∈ SYT(µ) where µ/λ is a horizontal strip and the values
in µ/λ increase from left to right; indeed this is a basis.

We end up with
V 1×Sm = ⊕(Sλ ⊗ S(m))

with the sum over λ ⊂ µ, µ/λ a horizontal strip, |µ| = |λ|+m. The multiplicity is 1 using the
basis for the tensor product, giving the result.
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62 Remark
This suggests a basis for symmetric polynomials, since none of our given bases obviously mimic the

Pieri rule. The Schur functions are the answer. Recall

sλ :=
∑

T∈SSYT(λ)

xT .

Next time: we’ll show sλs(m) satisfies the Pieri formula. (Recall we also used a non-intersecting lattice
path definition/proof from Autumn quarter—see beginning of next lecture.)

April 11th, 2014: Pieri for Schurs; Kostka Numbers; Dual Bases;
Cauchy Identity

Summary Last time, we defined the representation ring of symmetric groups, R = ⊕Rn, where Rn is
spanned by equivalence classes [Sλ] is irreducible representations of Sn, λ ` n, with multiplication
given by tensor product followed by induction, addition splitting over direct sums.

Hence
[Sµ][Sν ] = [(Sµ ⊗ Sν)↑Sn+m

Sn×Sm ] =
∑

λ`n+m

cλµ,ν [Sλ],

µ ` n, ν ` m for some cλµ,ν ∈ N. Eventual goal: show the representation ring is isomorphic to the ring
of symmetric functions.

Today: Pieri formula for Schur functions and Cauchy’s identity involving Schur functions.

Definition 63. Let SSYT(λ) be the set of semistandard Young tableaux of shape λ, meaning fillings of a

partition λ with P such that rows weakly increase and columns strictly increase. Associate a monomial
to each such object in the obvious way:

64 Example
T = 133/25 of shape λ = (3, 2). The associated monomial is xT = x1

1x
1
2x

2
3x

1
5.

Definition 65. We recalled the definition of the Schur functions at the end of last time. (To get comfortable
with them, Sara recommends computing any 10 by hand.) Recall also the Jacobi-Trudi formula,

sλ(x) = det(hλi−i+j(x))1≤i,j≤k,

which we proved last quarter. (Here λ has k parts.) Note: there’s also a notion of Schur polynomials
where we restrict the alphabet filling the SSYT’s to eg. [n]. We’re using the infinite alphabet P. Sara’s
exercise may be easier with a restricted alphabet.

66 Proposition
The sλ are symmetric. This is immediate from the Jacobi-Trudi formula, but it’s not obvious from the
SSYT definition. Homework: prove symmetry from the SSYT definition; find appropriate bijections.

67 Example
• s(m) = hm

• s1m = em

using the definitions from the first day of class.
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68 Theorem (Pieri Formula)

sλs(m) =
∑

sµ,

where the sum is over µ/λ which is a horizontal strip with m boxes as in the previous Pieri formula.

Proof We’ll define a bijection

SSYT(λ)× SSYT((m))→ ∪SSYT(µ),

where the union is over λ from the theorem statement; the result follows from the definition
of the Schur functions. We do so by successively inserting elements into rows and “bumping”
elements down. Suppose we have a row a1 ≤ a2 ≤ · · · ≤ ak and we want to insert b. If b ≥ ak
then add b to the end of the row. Otherwise, replace aj by b for the smallest j such that aj > b
and insert aj into the next row.

69 Example
Starting with T = 123/45, let’s insert 225. 2 replaces the 3 in the first row, and the 3 is
then inserted in the row below, which bumps the 4, and 4 is inserted on the last line, so
we have 122/33/4 after these “bumps”. Inserting 25 results in 12225/33/4. Note that we
added the horizontal strip ∗ ∗ ∗25/ ∗ ∗/4.

Claim: suppose inserting a row i1 ≤ · · · ≤ im into an SSYT T gives S; it’s straightforward to
check that S is an SSYT of shape sh(S) containing the shape of T . One can check that indeed
sh(S)/ sh(T ) is a sequence of m horizontal strips. (Rough outline: the “bumping path” for i2 is
always strictly to the right of the bumping path for i1. Draw some pictures to convince yourself;
better than a formal proof.)

Hence indeed we have a weight-preserving map

RSK: SSYT(λ)× SSYT((m))→ ∪SSYT(µ).

Why is it reversible? The cells of sh(S)/ sh(T ) must have been created from left to right, so we
can “unbump” them to undo the operation.

70 Corollary
Recall hµ = hµ1hµ2 · · ·hµk by definition. What are the coefficients hµ :=

∑
Kλ,µsλ?

Kλ,µ = #{T ∈ SSYT(λ) : xT = xµ.}

In particular, Kλ,λ = 1 and Kλ,µ = 0 unless λ ≥D µ. These are called the Kostka numbers .

Proof Imagine repeatedly applying the Pieri rule, starting with hµk · 1 = s(µk); label the new cells in
the first application 1, in the second application 2, etc. We get horizontal strips of µ1 1’s, µ2 2’s,
etc. In this way we get an SSYT of weight µ, and indeed all such SSYT arise in this way.

For Kλ,λ, there’s just one way to fill λ with λ1 1’s: all in the first row; etc.

71 Corollary
Let λ ` n. Then

sλ =
∑

T∈SSYT(λ)

xT =
∑
α�n

Kλ,αx
α

=
∑
µ`n

Kλ,µmµ

(Recall mµ were the monomial symmetric functions, and α � n means α is a composition of n, which
is a partition without the weakly decreasing requirement.)
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Definition 72. The Hall inner product is by definition 〈sλsµ〉 = δλ,µ, extended sesquilinearly (i.e. linearly

in the first argument, conjugate-linearly in the second).

73 Proposition
From the corollary,

〈hµ, sλ〉 = Kλ,µ

and
〈mµ, sλ〉 = K−1

µ,λ

(inverse matrix). Hence

〈hµ,mγ〉 =
∑
λ

Kλ,µ〈sλ,mγ〉 =
∑

Kλ,µK
−1
γ,λ = δµ,γ .

Thus {hµ} and {mλ} are dual bases.

74 Theorem
The Cauchy identity says

∏
i≥1

∏
j≥1

1

1− xiyj
(A)
=
∑
λ

sλ(x)sλ(y)

(B)
=
∑
λ

hλ(x)mλ(y)

(C)
=
∑
λ

pλ(x)pλ(y)

zλ
,

where x = (x1, x2, . . .), y = (y1, y2, . . .) and zλ = (1m12m2 · · · )(m1!m2! · · · ) for λ = (1m1 , 2m2 , · · · ) (i.e.
m1 one’s, m2 two’s, etc.). The sums are over λ ` n for n ≥ 0.

Proof Today we’ll prove equality A. Note∏
i

∏
j

1

1− xiyj
=
∏
ij

(1 + xiyj + (xiyj)
2 + · · · ) =

∑
(xi1yj1)k1(xi2yj2)k2 · · · ,

where the sum is over all “biwords” in the alphabet of “biletters” {
(
i
j

)
: i ≥ 1, j ≥ 1} written in

weakly increasing lexicographic order, where the k` are multiplicities. (Not to be confused with
“bywords”!)

75 Example(
1
2

)(
1
2

)(
1
2

)(
1
4

)(
2
3

)(
3
7

)(
3
7

)
corresponds to the monomial (x1y2)3(x1y4)(x2y3)(x3y7)2.

To prove A, we’ll exhibit a “bi”weight-preserving bijection between finite biwords in lexico-
graphic order to pairs (P,Q) of semistandard Young tableaux of the same shape. Under this
bijection, label i of P corresponds to xi, and label j of Q corresponds to xj . Start with(

i1
j1

)(
i2
j2

)
· · ·
(
ik
jk

)
.

In particular, i1 ≤ i2 ≤ · · · ≤ ik. To get P , insert the letters of j1j2 · · · jk successively into the
empty tableau using our earlier RSK insertion algorithm. Let Q′ be the recording tableaux for
this process, i.e. its labels indicate when the corresponding element of P was inserted. Get Q by
replacing ` in Q′ with i`.

76 Example
With the previous word, P becomes 222377/4. The recording tableau Q′ was 123467/5
(denotes order of insertion). Hence Q = 111133/2.
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P is a semistandard tableau as before. Q is certainly weakly increasing along rows. What
about columns? Recall the bumping path for inserting j1 ≤ · · · ≤ jk to T ; they give a horizontal
strip. It follows that Q is column strict and has the same shape as P . (But we don’t have
j1 ≤ · · · ≤ jk?) This algorithm is invertible.

April 14th, 2014: Finishing Cauchy; R ∼= SYM;
Littlewood-Richardson Rule; Frobenius Characteristic Map

Summary Last time: concluded with the Cauchy identity, in particular proving∏
i,j≥1

1

1− xiyj
=
∑
λ

sλ(x)sλ(y).

We’ll prove equalities (B) and (C) today.

Proof of Cauchy identity (continued). We’ll start with proving (B) while making a few detours. An
important generating function in general is

H(t) :=
∏
i≥1

1

1− xit
= 1 + h1(x)t+ h2(x)t2 + · · · .

Note ∏
i,j≥1

1

1− xiyj
=
∏
j≥1

H(yj) =
∏
j≥1

(1 + h1(x)yj + h2(x)y2
j + · · · )

=
∑
n≥0

∑
α�n

yα(hα1(x)hα2(x) · · · ) =
∑
n≥0

∑
α�n

hα(x)yα

=
∑
n≥0

∑
λ`n

hλ(x)mλ(y),

where as before α � n refers to a composition of n; this proves (B).

77 Aside
Similarly, another important generating function is

E(t) :=
∏
i≥1

(1 + xit) = 1 + e1(x)t+ e2(x)t2 + · · · .

Since H(t)E(−t) = 1, we find hn(((x) =
∑n
i=1(−1)nhi(x)en−i(x).

Next we’ll prove (C). First note a cute trick:

logH(t) = log
∏
i≥1

1

1− xit
=
∑
i≥1

− log(1− xit) =
∑
i≥1

∑
m≥1

(xit)
m

m

=
∑
m≥1

pm(x)tm

m
.

78 Aside
Another important generating function is

P (t) :=
∑
m≥0

pm+1(x)tm =
d

dt
log(H(t))
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79 Corollary
SYM = Q[e1, . . .] = Q[h1, . . .] = Q[p1, . . .].

For the proof of (C),

log
∏
i≥1

∏
j≥1

1

1− xiyj
= log

∏
j≥1

H(yj) =
∑
j≥1

logH(yj)

=
∑
j≥1

∑
m≥1

pm(x)ymj
m

=
∑
m≥1

pm(x)pm(y)

m
,

so (this really isn’t as horrendous as it looks)

∏
i≥1

∏
j≥1

1

1− xiyj
= exp

∑
m≥1

pm(x)pm(y)

m

 =
∑
k≥0

1

k!

∑
m≥1

pm(x)pm(y)

m

k

=
∑
k≥0

1

k!

∑
m1+m2+···=k,md∈N

(
k

m1,m2, . . .

)(
p1(x)p1(y)

1

)m1
(
p2(x)p2(y)

2

)m2

· · ·

=
∑

m1+m2+···=k,md∈N

[p1(x)p1(y)]m1

1m1m1!

[p2(x)p2(y)]m2

2m2m2!
· · · =

∑
λ

pλ(x)pλ(y)

zλ
,

where λ ` n for n ≥ 0 and zλ = (1m12m2 · · · )(m1!m2! · · · ) is the number of ways to write a fixed
permutation w with cycle type λ = 1m12m2 · · · (i.e. m1 one’s, m2 two’s, etc.) in cycle notation so that
the cycles are listed in increasing length. This is precisely (C), completing the proof.

80 Proposition
Say {uλ}, {vλ} are two bases for SYM such that

∑
λ sλ(x)sλ(y) =

∑
λ uλ(x)vλ(y). Then

〈uλ, vµ〉 = δλ,µ

(using the Hall inner product), i.e. they are dual bases.

Proof Say uλ =
∑
aνλsν , vλ =

∑
bνλsν . Let A be the transition matrix A = (aνλ), similarly with

B = (bνλ). Therefore

〈uλ, vµ〉 =
∑
ν

aνλbλµ = (ATB)λµ.

But also ∑
λ

sλ(x)sλ(y) =
∑
λ

uλ(x)vλ(y)

=
∑
λ

(∑
ν

aνλsν(x)

)(∑
ρ

bρλsρ(y)

)
so ∑

λ

aνλbρλ = δνρ

which says ABT = I, so BTA = I, so ATB = I, so (ATB)λµ = δλµ. Indeed this works in
reverse.

81 Corollary
{pλ}, {pλ/zλ} are dual bases. {pλ/

√
zλ} is self-dual (over C, say).

82 Remark
We earlier noted {hµ} and {mλ} are dual; we just found the dual of {pλ}; so what’s the dual of {eλ}?
The forgotten basis {fλ} . Apparently it’s not used much.
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83 Remark
Back to big picture: showing R is (graded-)ring isomorphic to the symmetric functions. We’ve got a
vector space isomorphism so far:

Φ: R = ⊕Rn → SYM = ⊕SYMn

given by [Sλ] 7→ sλ. What does [Mλ] map to?

84 Proposition
We have

Mλ = 1↑SnSλ1×···×Sλk= S(λ1) ⊗ S(λ2) ⊗ · · ·S(λk)↑SnSλ1×···×Sλk ,

so
[Mλ] = [S(λ1)] · · · [S(λk)].

Proof Induction is transitive, so

Mλ = 1↑SnSλ1×···×Sλk= S(λ1) ⊗ S(λ2) ⊗ · · ·S(λk)↑SnSλ1×···×Sλk
=
(((

S(λ1) ⊗ S(λ2)
)
↑Sλ1+λ2

Sλ1×Sλ2
⊗S(λ3)

)
↑Sλ1+λ2+λ3

Sλ1+λ2
×Sλ3

· · · ⊗ S(λk)

)
↑SnSn−λk×Sλk .

85 Remark
We hope

Φ([Mλ])
?
= hλ1

· · ·hλk = hλ,

though we haven’t shown Φ is a ring homomorphism yet, hence the question mark.

86 Proposition
Φ distributes over products of [S(m)]’s.

Proof Both SYM and R obey the Pieri rule, with Φ translating between the two versions, so for
instance Φ([Sλ][S(m)]) = sλs(m) = sλhm. Expand

∏
i[S

λi ] as a sum of cν [Sν ] by repeatedly
using the Pieri rule and do the same to

∏
i sλi resulting in a sum of cνsν : the coefficients must

agree. This is precisely saying Φ distributes over
∏
i[S

λi ].

87 Lemma
• Φ([Mµ]) = hµ

• Φ([Mλ][Mµ]) = Φ([Mλ])Φ([Mµ])

• Mµ = ⊕λKµ,λS
λ

• Mµ = Sµ ⊕λ<Dµ Kµ,λS
λ

Proof For the first two, use the two preceding propositions. For the third, expand hµ in the Schur
basis and apply the first one. For the fourth, recall that Kµ,µ = 1 and Kµ,λ = 0 unless µ ≥D λ.

88 Theorem
Φ is a ring isomorphism.

Proof Multiplication in SYM is determined by the Pieri rule plus the Jacobi-Trudi identity, sλ =
det[hλi−i+j ], since using these we can compute sλsµ in the Schur basis. The ring R also obeys
the Pieri rule, but we haven’t shown it obeys the Jacobi-Trudi identity, so we’ll use another
approach.

To see that Φ is a ring homomorphism, it suffices to show Φ is multiplicative on [Sλ][Sµ]’s.
By the fourth part of the lemma,

[Mλ][Mµ] = [Sλ][Sµ] + lower terms,
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where the lower terms are of the form [Sλ
′
][Sµ

′
] for λ′ ≤D λ, µ′ ≤D µ with at least one strict.

Suppose inductively Φ is multiplicative on these lower terms. From the second part of the
lemma, Φ is multiplicative on [Mλ][Mµ]. Apply Φ to the entire equation: the left-hand side
becomes hλhµ, which we may expand as products of Schur functions using the Kostka numbers.
Ignoring [Sλ][Sµ], this operation agrees with the result of applying Φ to the right-hand side
using the inductive hypothesis and the third part of the lemma. This forces Φ([Sλ][Sµ]) = sλsµ,
as desired.

89 Corollary
The representation ring R for the symmetric groups is isomorphic to SYM as rings, via [Sλ] 7→ sλ.

90 Corollary
Sµ ⊗ Sν ↑SnS|µ|×S|ν|=

⊕
λ`n c

λ
µνS

λ and sµsν =
∑
λ`n c

λ
µνsλ for some coefficients cλµν , the

Littlewood-Richardson coefficients . (Here n = |µ|+ |ν|.)

91 Theorem ( Littlewood-Richardson Rule )
cλµν is the number of fillings of λ/µ which are semistandard with content ν and reading words in
Hebrew are lattice words. That is, reading right to left, top to bottom, count the number if 1’s, 2’s,
etc. and ensure that at every point the number of 3’s is at least as large as the number of 2’s, which is
at least as large as the number of 1’s, etc.

92 Example
∗ ∗ ∗11/ ∗ 122/23 is a valid filling; here µ = (3, 1), λ = (5, 4, 2).

Proofs: Stembridge paper; Stanley EC2, around chapter 7; Remmel-Whitney; Ravi Vakil has a
geometric proof.

Definition 93 ( Frobenius Characteristic Map ). For motivation, recall

pµ =
∑
λ

ξλµmλ

where ξλµ is χMλ(σ) where σ has cycle type µ. By duality,

hλ =
∑
µ

ξλµ
pµ
zµ
.

Also recall Φ([Mλ]) = hλ.

Define the Frobenius characteristic map F : R → SYM as follows. If χ is a character for an
Sn-module V , set

F([V ]) :=
∑
µ`n

χ(µ)pµ
zµ

:= ch(χ) ,

where χ(µ) means the value of χ on the equivalence class with cycle type µ. From the above
considerations, F([Mλ]) = hλ = Φ([Mλ]).

94 Theorem
sλ =

∑
µ`n

χλ(µ)pµ
zµ

, pµ =
∑
χλ(µ)sλ.

April 16th, 2014: Algebras and Coalgebras Intro
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Summary Last time: finished Cauchy identities; showed {pµ}, {pµ/zµ} are dual bases, pµ =
∑
λ χ

λ(µ)sλ.

Also important: Murnaghan-Nakayama rule for computing entries in the character table for Sλ;
see Sagan or Macdonald for details.

95 Fact
Let G be a finite group. G acts on itself by conjugation. If ΨG is the character of this representation

and {ξλ} is the set of irreducible characters, then

〈ψG, ξλ〉 =
∑
K

ξλ(K)

where the sum is over conjugacy classes of G. (This is a good exercise.) Hence the sum on the
right-hand side is in N.

96 Open Problem
Find a combinatorial interpretation of the fact that

∑
µ`n χ

λ(µ) ∈ N, say using the Murnaghan-
Nakayama rule or using SYM.

Richard Stanley’s “Positivity Problems and Conjectures in Algebraic Combinatorics”, problem 12,
discusses this briefly.

97 Fact
Given Sn-modules U, V , then U ⊗k V is an Sn-module (different from our earlier operations) with
(“diagonal”) action

σ(u⊗ v) = σ(u)⊗ σ(v).

In particular, Sλ⊗Sµ = ⊕gλ,µ,νSν , and the same sort of thing holds for any finite group. The coefficients

gλ,µ,ν ∈ N are called the Kronecker coefficients . Problem: find an efficient, combinatorial, manifestly

positive rule for computing the Kronecker coefficients.

98 Example
χλχµ =

∑
gλ,µ,νχ

ν , so we can just throw linear algebra at it, but for instance this isn’t clearly
positive.

99 Remark
We’ll switch to algebras and coalgebras for a bit, giving some background. Sources:

• Hopf lectures by Federico Ardila.

• Darij Grinberg and Vic Reiner notes, “Hopf Algebras in Combinatorics”

• Moss Sweedler from 1969, a breakthrough book for its day making the field more accessible.

Definition 100. Let k be a field (though “hold yourself open” to other rings). A is an associative k-algebra

if it is

(1) a k-vector space

(2) a ring with k-linear multiplication A⊗k A
m→ A and two-sided multiplicative identity 1A .

(3) with a linear map u : k→ A called the unit with u(1k) = 1A. (The existence and uniqueness of
u is implied by (1) and (2).)

This is summarized by the following diagrams:
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A⊗A⊗A

A⊗A A⊗A

A

m⊗id id⊗m

m m

A⊗k k A k⊗k A

A⊗A A A⊗A

id⊗u

∼ ∼

id u⊗id

m m

For instance, if we run a ∈ A through the left square of the right diagram, we find

a 7→ a⊗ 1k 7→ a⊗ u(1k) 7→ au(1k) = a,

so that u(1k) is a (hence, the) two-sided identity of A.

101 Example
• k[x] has u(c) = c

• C[Sn]: multiplication is associative, identity is the identity permutation, so u(c) = c[1, 2, . . . , n].

• M22, two by two matrices over Qp, say, taken as a Q-vector space. Usual addition, multiplication,
Q-module action all works. Unit is the identity matrix, so u(c) is the diagonal matrix with c’s on
the diagonal.

• If A,B are k-algebras, then so is A⊗k B with multiplication defined via

mA⊗B [(a⊗ b)⊗ (a′ ⊗ b′)] = aa′ ⊗ bb′.

Hence 1A⊗B = 1A ⊗ 1B . This is indeed associative:

mA⊗B = mA ⊗mB ◦ (1⊗ T ⊗ 1)

where T = B ⊗A→ A⊗B is the “twist” operation. For practice with the above diagrams, it’s
good to check this explicitly by tracing through the above. The unit is uA⊗B(c) = uA(c)⊗uB(c) ∈
A⊗B—actually, this is incorrect; see the beginning of the next lecture.

102 Proposition
Why tensor products? They’re a nice way to encode bilinear maps. The universal property of tensor
products is the following. Let L, V,W be k-vector spaces. Let φ : V ×W → V ⊗W via (v, w) 7→ v⊗w.
If f : V ×W → L is bilinear, then it factors through a unique k-linear f̃ : V ⊗W → L:

V ×W V ⊗W

L

φ

f ∃!f̃

Hence there is a natural bijection between bilinear V ×W → L and linear V ⊗W → L.

Proof φ is bilinear by definition of the product. Given f bilinear, define F (V,W ) as the k-span of
(v, w) for v ∈ V,w ∈ W . Define f : F (V,W )→ L by (v, w) 7→ f(v, w). From the bilinearity of
f , we see f(I) = 0, where I is the submodule we quotiented by to form the tensor product,
i.e. V ⊗ W := F (V,W )/I. Hence the map descends to the quotient f̃ : V ⊗ W → L with
v⊗w 7→ f(v, w) = f(v, w). Uniqueness comes from the fact that we’ve annihilated precisely the
things given by bilinearity of f .

103 Remark
Weird thing: p : V ⊗W → V given by v ⊗ w 7→ v is not well-defined. However, if g : W → k is linear,
then p : V ⊗W → V given by v⊗w 7→ g(w) · v is linear. Homework: If g is an algebra homomorphism,
then p is as well.

For instance, p1 : C ⊗k k → C given by c ⊗ k 7→ k · c is the inverse of C → C ⊗k k given by
c 7→ c⊗ 1k.
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Definition 104. A coassociative coalgebra C is

(1) a k-vector space

(2) with a k-linear comultiplication ∆: C → C ⊗k C such that

(id⊗∆) ◦∆(c) = (∆⊗ id) ◦∆(c)

(3) and a k-linear map called the counit
ε : C → k

such that p1 ◦ (ε ⊗ id) ◦∆(c) = c and p2 ◦ (id⊗ε) ◦∆(c) = c. Here p1 : C ⊗ k → C is given by
c⊗ k 7→ k · c, and likewise with p2 : k⊗ C → C given by k ⊗ c 7→ k · c.

This is encoded in diagrams as before:

C ⊗ C ⊗ C

C ⊗ C C ⊗ C

C

∆⊗id id⊗∆

∆ ∆

C ⊗k k C k⊗k C

C ⊗ C C C ⊗ C

p1
∼ ∼

p2

id⊗ε id

∆ ∆

ε⊗id

For instance, if we run c ∈ C through the left square of the right diagram, we find

c 7→ ∆(c) =

k∑
i=1

ai ⊗ bi 7→
k∑
i=1

ai ⊗ ε(bi) 7→
k∑
i=1

ε(bi) · ai = c,

so ε roughly allows us to “undo” comultiplication by applying it in the first (or second) part of the
resulting tensor.

105 Example
Coalgebra examples:

• k[x] is k-vector space with basis {1, x, x2, . . .}. Define ∆(x) = 1⊗x+x⊗ 1, ∆(1) = 1⊗ 1, extend
to be a ring homomorphism. Hence ∆(xn) = (1 ⊗ x + x ⊗ 1)n =

∑n
k=0

(
n
k

)
xk ⊗ xn−k. What

ε : k[x]→ k works with this counit? Trace through the diagram to see what it must be; turns
out ε(1) = 1, ε(x) = 0.

• For k[x1, x2, . . . , xn] with ∆(xi) = 1⊗xi+xi⊗1; call an element with this type of comultiplication

primitive .

April 18th, 2014: Skew Schur Functions and Comultiplication;
Sweedler Notation; k-Coalgebra Homomorphisms

106 Remark
Correction: in A⊗B, we have uA⊗B(1) = 1A⊗B = 1A ⊗AB, so uA⊗B(c) = c(1A ⊗ 1B), which is not
equal to uA(c)⊗ uB(c) = c2(1A ⊗ 1B).

107 Example
At the end of last lecture, we started defining comultiplication on k[x1, . . . , xn] by declaring each xi
primitive. For another example, C[Sn] is a C-vector space, and we can define comultiplication by
∆(σ) = σ ⊗ σ. What’s the counit? Seems like we’re forced to have ε(σ) = 1.
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108 Example
For SYM(t) = Q[p1(t), p2(t), . . .], if pi is primitive, that means ∆(pi) = 1 ⊗ pi(t) + pi(t) ⊗ 1 =∑
j≥1 1⊗ tij +

∑
j≥1 t

i
j ⊗ 1, which you can think of as pi(y) + pi(x) where the y variables correspond to

1⊗tij (i.e. yij ↔ 1⊗tij) and the x variables correspond to tij⊗1. We have SYM(t)⊗SYM(t) ∼= SYM(x+y)
under this correspondence, where x+ y := x ∪ y, whence

SYM(t)⊗ SYM(t) ∼= Q[p1(x), p1(y), p2(x), p2(y), . . .].

Indeed, this comultiplication comes about from declaring ∆(f) = f(x + y) for f ∈ SYM, which is
well-defined since f is symmetric so the order in which we plug in variables is irrelevant. That is,

∆(f)|tα⊗tβ := f(x+ y)|xαyβ .

109 Example
What are hn(x+ y) and en(x+ y)? Let’s say x1 < x2 < · · · < y1 < y2 < · · · . Then it’s easy to see

hn(x+ y) =

n∑
i=0

hi(x)hn−i(y), en(x+ y) =

n∑
i=0

ei(x)en−i(y).

Likewise we can see

∆(hn) =

n∑
i=0

hi(t)⊗ hn−i(t), ∆(en) =

n∑
i=0

ei(t)⊗ en−i(t).

Indeed, if m : SYM(t)⊗SYM(t)→ SYM(x+y) is the above isomorphism, we’ve shown m∆(hn(t)) =
hn(x+ y), so by linearity m∆(f(t)) = f(x+ y) for all f ∈ SYM.

One can think it through to see ∆(sλ) =
∑
µ⊂λ sµ(t)⊗ sλ/µ(t) where...

Definition 110. A skew partition λ/µ means λ, µ are partitions and λ ⊃ µ. The set SSYT(λ/µ)

of skew tableau of shape λ/µ consists of fillings of λ− µ from P which weakly increase along

rows and strictly increase along columns. Then the skew Schur function associated to the skew
partition λ/µ is

sλ/µ :=
∑

T∈SSYT(λ/µ)

xT .

Homework: show sλ/µ = det(hλi−µj−i+j).

111 Theorem
∆(sλ) =

∑
µ⊂λ;ν c

λ
µνsµ ⊗ sν if and only if sλ/µ =

∑
µ⊂λ c

λ
µνsν if and only if sµsν =

∑
cλµνsλ. Hence

the Littlewood-Richardson coefficients arise extremely naturally in terms of comultiplication.

Proof Assume the third equality. Use the Cauchy identity twice to see∏
i,j≥1

1

1− xizj

∏
i,j≥1

1

1− yizj

 =

(∑
µ

sµ(x)sµ(z)

)(∑
ν

sν(y)sν(z)

)

=
∑
µ,ν

sµ(x)sν(y)sµ(z)sν(z)

=
∑
µ,ν

sµ(x)sν(y)

(∑
λ

cλµνsλ(z)

)
=
∑
µ,ν,λ

cλµνsµ(x)sν(y)sλ(z).
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On the other hand, suppose sλ/µ =
∑
dλµνsν . Then from the comment in the previous example,

∆(sλ) =
∑
µ⊂λ

sµ(t)⊗ sλ/µ(t) =
∑
µ⊂λ

sµ(t)⊗

(∑
ν

dλµνsν(t)

)
=
∑
µ⊂λ;ν

dλµνsµ(t)⊗ sν(t),

(This is essentially the first equation in the theorem statement.) But by the remark in the
previous example, m∆(sλ(t)) = sλ(x+ y), so if we apply m to the previous equation, we find

sλ(x+ y) =
∑
µ⊂λ;ν

dλµνsµ(x)sν(y).

Finally, consider the left-hand side of the first product in this proof, the product of 1/(1−`izj)
where ` = x or ` = y. Stated this way, we can apply the Cauchy identity to the alphabets x+ y
and z to get

LHS =
∑
λ

sλ(x+ y)sλ(z) =
∑
λ

(∑
µ,ν

dλµνsµ(x)sν(y)

)
sλ(z)

=
∑
λ,µ,ν

dλµνsµ(x)sν(y)sλ(z).

Now compare coefficients of sµ(x)sν(y)sλ(z) to see that cλµν = dλµν , completing the proof.

112 Homework
Figure out the “(?)” in terms of other things that we know in∏

i,j,k≥1

1

1− xiyjzk
=
∑
λ,µ,ν

(?)sλ(x)sµ(y)sν(z).

113 Example
What’s the counit for the above comultiplication? ε(pi) = 0.

114 Homework
What if we defined the ei’s to be primitive, i.e. ∆(ei) = 1⊗ei+ei⊗1? Is the coalgebra structure
really different?

115 Example
Let P be a poset. Recall Int(P ) is the set of intervals in P , i.e. the set of [x, y] = {c : x ≤ c ≤ y}.
Define C as the k-span of Int(P ). For instance, 12[a, a] + 6[a, b] + 17[a, e] ∈ C for the poset with
a < b < c, a < d < e, b < e.

Define the coproduct structure by “breaking chains” or “rock breaking”:

∆([x, z]) :=
∑

x≤y≤z

[x, y]⊗ [y, z].

Coassociativity works perfectly well, eg.

(id ◦∆) ◦∆([w, z]) =
∑

w≤x≤y≤z

[w, x]⊗ [x, y]⊗ [y, z].

What’s the counit? We must have

(id⊗ε) ◦ (∆([x, z])) = [x, z]⊗ 1.

Since
∆([x, z]) = [x, x]⊗ [x, z] + [x, y]⊗ [y, z] + · · ·+ [x, z]⊗ [z, z],
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we’re strongly encouraged to make ε([a, a′]) = 1 if a = a′ and 0 otherwise. This is called the

incidence coalgebra .

There doesn’t seem to be a natural algebra structure—how do you multiply two arbitrary intervals?

116 Notation ( Sweedler Notation )
Let C be a coalgebra. We have c =

∑nc
i=0 ai ⊗ bi for some nc ≥ 0 and ai, bi ∈ C. Let (c) = {0, . . . , nc}

and let ci(1) = ai, c
i
(2) = bi. We can write this as c =

∑
i∈(c) c

i
(1) ⊗ c

i
(2) or, making the indexes implicit,

c =
∑
(c)

c(1) ⊗ c(2) .

Note that ci(1) ∈ C for i ∈ (c), so we can use the same conventions to write

ci(1) =
∑

(ci
(1)

)

(ci(1))(1) ⊗ (ci(1))(2).

This is rather verbose; we can unambiguously drop the i and ignore some parentheses to get c(1) =∑
(c(1))

c(1)(1) ⊗ c(1)(2). Coassociativity then reads∑
(c)

∑
(c(2))

c(1) ⊗ c(2)(1) ⊗ c(2)(2) =
∑
(c)

∑
(c(1))

c(1)(1) ⊗ c(1)(2) ⊗ c(2).

This is still rather verbose; we must sum over (c) to evaluate the c(1) or c(2), so we can drop the outer
sum without losing information. Likewise we can drop the inner sum, so a lazy form of Sweedler
notation for coassociativity reads

∆2(c) := c(1) ⊗ c(2)(1) ⊗ c(2)(2) = c(1)(1) ⊗ c(1)(2) ⊗ c(2).

Here ∆2(c) is an iterated comultiplication , which has the obvious definition in general. Up to this

point, Sweedler notation has been perfectly well-defined and unambiguous, even though it’s very
implicit. Some people even drop the parentheses and/or the tensor product symbols!

However, the notation becomes context-sensitive with iterated comultiplication. In particular,
we set ∆(2)(c) =

∑
(c) c(1) ⊗ c(2) ⊗ c(3). Compared to ∆(c) =

∑
(c) c(1) ⊗ c(2), each of the symbols

(c), c(1), c(2) have new meanings. The presence of (3) is at least a clue as to which definition of the
symbols to use. More generally, we write

∆n−1(c) =
∑
(c)

c(1) ⊗ · · · ⊗ c(n) .

Note: using
∑

(c)n c
n
(1) ⊗ · · · ⊗ c

n
(n) would at least be unambiguous, and we could write (cn(1))

m
(2) as

cnm(1)(2), though nothing like this seems to be in actual use.

117 Example
In this notation, (id⊗ε) ◦∆(c) = c⊗ 1 becomes∑

(c)

c(1) ⊗ ε(c(2)) = c⊗ 1 or
∑
(c)

c(1)ε(c(2)) = c,

among other possibilities.

118 Example
∆n−1[x, y] =

∑
x=x1≤···≤xn=y[x1, x2] ⊗ [x2, x3] ⊗ · · · ⊗ [xn−1, xn]. ∆n−1(σ) = σ ⊗ · · · ⊗ σ (n

terms) for σ ∈ Sn with the previous comultiplication.
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Definition 119. Let A,B be k-algebras. A k-linear map f : A→ B is a k-algebra homomorphism if and

only if f(aa′) = f(a)f(a′) and f(1A) = 1B . In diagrams,

A⊗A

A B ⊗B

B

mA f⊗f

f mB

k

A

B

uB

uA

f

Definition 120. Let C,D be k-coalgebras. A k-linear map g : C → D is a k-coalgebra homomorphism if

and only if ∑
(c)

g(c(1))⊗ g(c(2)) =
∑
(gc)

(gc)(1) ⊗ (gc)(2)

and εC = εD ◦ g. In diagrams,

D ⊗D

D C ⊗ C

C

∆D g⊗g

∆C
g

k

D

C

εD

εC

g

121 Example
Let C be the k-span of T = {t1, t2, . . . , tk}. Give it a coalgebra structure with ∆C(ti) = ti ⊗ ti and
εC(ti) = 1. Let D be the incidence coalgebra for the boolean lattice Bk on T (i.e. the lattice of subsets
of T ). Then

∆D([X,Z]) =
∑

X≤Y≤Z

[X,Y ]⊗ [Y, Z],

with εD[A,A] = 1, εD[A,A′] = 0 if A 6= A′.

Let’s try out g : C → D with ti 7→ [{ti}, {ti}], extended k-linearly. Is this a k-coalgebra homomor-
phism?

(g ⊗ g)(∆C(ti)) = (g ⊗ g)(ti ⊗ ti) = g(ti)⊗ g(ti) = [{ti}, {ti}]⊗ [{ti}, {ti}]
= ∆D(g(ti)).

The counit also works out:

εD(g(ti)) = εD([{ti}, {ti}]) = 1 = εC(ti).

Indeed, this gives an example of an injective k-coalgebra homomorphism.

April 21st, 2014: Subcoalgebras, Coideals, Bialgebras

122 Remark
Today: (1) we’ll discuss ker(f), im(f), coideals, subcoalgebras, etc. (2) we’ll introduce bialgebras.

123 Notation
Today, C,D are k-coalgebras, B ⊂ C is a k-subspace.
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Definition 124. A k-subspace B is a subcoalgebra of a k-coalgebra C if ∆(B) ⊂ B ⊗B and εB : B → K

is given by restricting εC : C → k. B is a coideal if ∆(B) ⊂ B ⊗C +C ⊗B and ε(B) = 0. Note that
a subcoalgebra is a coideal iff ε(B) = 0.

125 Example
Consider k[G] as a coalgebra using the diagonal comultiplication, where recall ε(g) = 1. If g ∈ G, then
k[g] is a subcoalgebra since ∆(cg) = cg ⊗ g ∈ k[g]⊗ k[g]. However, ε(k[g]) = k 6= 0, so it’s not quite a
coideal.

What about k[hn] ⊂ SYMk? It’s a k-subspace only. What do we have to add to make it a
subcoalgebra? Need k[h1, . . . , hn]. Recall ε annihilates each pn except ε(1) = 1.

What about the k-span of {pn}? It’s a coideal, but it’s not a subcoalgebra, since ∆(pn) =
1⊗ pn + pn ⊗ 1. We can make it a subcoalgebra if we take the k-span of {1, pn}. Similarly with the
k-span of {hλ} where λ is a non-empty partition.

126 Proposition
Let f : C → D be a coalgebra homomorphism.

1. ker(f) is a coideal;

2. im(f) is a subcoalgebra.

Proof First, a lemma.

127 Lemma (“Useful Lemma”)
Let f : V → V ′, g : W →W ′ be linear maps. Then f ⊗ g : V ⊗W → V ′ ⊗W ′ satisfies

i) im(f ⊗ g) = im(f)⊗ im(g)

ii) ker(f ⊗ g) = ker(f)⊗W + V ⊗ ker(g)

Proof Homework.

Proof of (1): c ∈ ker(f) implies f(c) = 0, so 0 = ∆D ◦ f(c) = (f ⊗ f)(∆C(c)), so ∆C(C) ∈
ker(f ⊗ f) = ker f ⊗ C + C ⊗ ker f from the useful lemma, which is precisely what we needed.
Also, εC(c) = εD(f(c)) = εD(0) = 0, so indeed εC(ker f) = 0.

Proof of (2): say f(c) ∈ im(f). Then ∆f(c) = (f ⊗ f)∆(c) =
∑

(c) f(c(1)) ⊗ f(c(2)) ∈
im(f)⊗ im(f), which is again what we needed.

128 Proposition
If I is a coideal of C, then C/I is a coalgebra, with ∆C/I inherited from ∆C .

Proof Our hope is

C C ⊗ C

C/I C/I ⊗ C/I

∆C

π π⊗π
∆C/I

∃!

Claim: (π ⊗ π) ◦∆C descends to C/I if the composite annihilates I. To see this, let i ∈ I, and
note ∆(i) ∈ I ⊗ C + C ⊗ I, so (π ⊗ π)(∆(i)) is indeed zero. εC/I(a+ I) = εC(a) is well-defined
since εC(I) = 0.

129 Theorem (Fundamental Theorem of Coalgebras)
If f : C → D is a coalgebra homomorphism, then

im(f) ∼= C/ ker(f)

as coalgebras.
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Proof It’s an isomorphism as k-vector spaces. Both are coalgebras. Check that α : C/ ker(f)→ im(f)
is a morphism of coalgebras; α−1 exists, so check it’s a morphism of coalgebras.

130 Homework
If f : C → D is an isomorphism of vector spaces and f is a coalgebra morphism, is it a
coalgebra isomorphism?

131 Remark
Recall that we earlier defined a natural k-algebra structure on the tensor product A⊗A of a k-algebra
A. Explicitly,

mA⊗A := (mA ⊗mA) ◦ (1⊗ T ⊗ 1)

using the “twist” operator T given by a⊗ a′ 7→ a′ ⊗ a, and uA⊗A(k) = k(1A ⊗ 1A). Alternatively, we
have

uA⊗A : k→ k⊗k k
uA⊗uA→ A⊗A

where k
k→ ⊗kk is the natural isomorphism, since then

uA⊗A(k) 7→ k ⊗ 1k = 1k ⊗ k 7→ uA(k)⊗ uA(1k) = uA(1k)⊗ uA(k) = k(1A ⊗ 1A) = k(1A⊗A).

Likewise, given a coalgebra C, we can give C ⊗ C a natural coalgebra structure with

∆C⊗C := (id⊗T ⊗ id) ◦∆C ⊗∆C

and where
εC⊗C : C ⊗ C εC⊗εC→ k⊗k k→ k.

Definition 132. Suppose (B,m, u) is an algebra and further suppose (B,∆, ε) is a coalgebra. Then

(B,m, u,∆, ε) is a bialgebra if

(1) m and u are coalgebra homomorphisms, and

(2) ∆ and ε are algebra homomorphisms

We’re roughly saying m and ∆ commute, though they don’t operate on the same spaces, so that’s not
quite right. In diagrams, first consider

B ⊗B B B ⊗B

B ⊗B ⊗B ⊗B B ⊗B ⊗B ⊗B

m

∆⊗∆

∆

id⊗T⊗id

m⊗m

The dashed lines represent mB⊗B and ∆B⊗B, so this is just (most of) the requirement that m is a
coalgebra homomorphism or ∆ is an algebra homomorphism. Similarly we require

B ⊗B B

k⊗k k k

m

ε⊗ε ε

∼

B ⊗B B

k⊗k k k

∆

u⊗u

∼

u

where the dashed lines are εB⊗B and uB⊗B , respectively. With the previous diagram, this makes m a
coalgebra morphism and ∆ an algebra morphism, respectively. Indeed, the left diagram is (most of)
the requirement that ε : B → k is an algebra morphism, and similarly for u with the right diagram.
The only remaining requirement is
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k k

B

∼
id

u ε

which in addition to the last two diagrams says ε is an algebra morphism and u is a coalgebra morphism,
since the unit and counit of k are id.

133 Proposition
Given (B,m, u,∆, ε,k), B is a bialgebra if and only if either (1) or (2) holds. That is, it suffices to
check that m,u are coalgebra morphisms, or that ∆, ε are algebra morphisms.

Proof The diagrams listed above for either set of requirements are exactly the same.

A few more equivalent conditions: (3) is

∆(gh) = ∆(g)∆(h)

= (
∑
(g)

g(1) ⊗ g(2))(
∑
(h)

h(1) ⊗ h(2))

=
∑
(g)

∑
(h)

g(1)h(1) ⊗ g(2)h(2),

which is also

∆(gh) =
∑
(gh)

(gh)(1) ⊗ (gh)(2)

so in the laziest notation

(gh)(1) ⊗ (gh)(2) = g(1)h(1) ⊗ g(2)h(2).

We also have ∆(u(1k)) = ∆(1B) = 1B⊗B = 1B ⊗ 1B = u(1k) ⊗ u(1k); ε(1B) = 1k;
ε(gh) = ε(g)ε(h).

(4) is just the set of four diagrams in the definition above.

Homework: teach this to someone!

April 23rd, 2014: Bialgebra Examples; Hopf Algebras Defined

134 Remark
Last time: did bialgebras. Today: more examples; Hopf algebras.

135 Example
k[x] is a bialgebra with the natural multiplication and with our previous comultiplication, where

∆(xn) =
∑n
k=0

(
n
k

)
xk ⊗ xn−k:

xa ⊗ xb xa+b
∑
k

(
a+b
k

)
xk ⊗ xa+b−k

(∑
i

(
a
i

)
xi ⊗ xa−i

)
⊗
(∑

j

(
b
j

)
xj ⊗ xb−j

) ∑
k

∑(
a
i

)(
b
j

)
xi+j ⊗ xa+b−i−j

m ∆

=?
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This commutes since
(
a+b
k

)
=
∑
i+j=k

(
a
i

)(
b
j

)
; this is the Vandermonde convolution . Also check

1k 1k

1k

xa⊗ xa+b

1⊗ 1 δa,b,0

ε⊗ε ε

136 Homework
Show k[x1, . . . , xn] and SYMk are bialgebras.

137 Example
Let I be the k-span of isomorphism classes of finite posets with 0̂ and 1̂. (Here 0̂ is a unique minimal

element; 1̂ is a unique maximal element. Hence such a poset is isomorphic to the interval [0̂, 1̂].) For
I ∈ I, set

∆(I) :=
∑
i∈I

[0̂, i]⊗ [i, 1̂]

and

ε(I) :=

{
1 I = ·
0 otherwise

,

where · denotes an interval of size 1. Define the algebra structure via

m(I ⊗ J) := I × J

as posets; the right-hand side is {(i, j) : i ∈ I, j ∈ J} with (i, j) ≤ (i′, j′) iff i ≤ i′, j ≤ j′. What’s
the identity? The singleton poset ·. To check that this defines a bialgebra, we need to check that
∆(I × J)“ = ”∆(I)×∆(J); note that multiplication in the right is taking place in I ⊗ I. We compute

∆(I × J) =
∑

(i,j)∈I×J

[0̂I×J , (i, j)]⊗ [(i, j), 1̂I×J ]

=
∑
(i,j)

[0̂, i]× [0̂, j]⊗ [i, 1̂]× [j, 1̂]

= mI⊗I(∆(I)⊗∆(J)).

∆(1I) = 1I ⊗ 1I = 1I⊗I and ε(I × J) = ε(I)ε(J) hold too. Hence I is indeed a bialgebra! Trying to
get rid of the finite assumption is confusing/maybe not possible, so let’s not.

138 Example
Let Pn be the k-span of w ∈ Sn, let P∞ or Perms be ⊕∞n=0Pn graded. For u ∈ Sm, v ∈ Sn, define

u� v =
∑

shuffles s of u,v s, where a shuffle is roughly an “interleaving” of the one-line notations for the
two permutations, as in the example:

139 Example
Image [4321] = [7654]. We have

[312]� [4321] = 3127654 + 3176254 + 3172654 + 7312654 + · · ·

with 35 =
(

7
3

)
terms.

What about comultiplication? For w ∈ Sn, use

∆(w) =

n∑
i=0

fl(w|[i])⊗ fl(w|[i+1,n])

where fl denotes flattening , meaning if a1, . . . , ap ∈ Rp are distinct, use fl(a1, . . . , ap) := v1 · · · vp ∈ Sp
where ai < aj ⇔ vi < vj . Here w|[i] = w1w2 · · ·wi except w|[0] is the “identity” element in S0, call it

•
ι.
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140 Example

∆(312) =
•
ι⊗ 312 + fl(3)⊗ fl(12) + fl(31)⊗ fl(2) + 312⊗ •ι =

•
ι⊗ 312 + 1⊗ 12 + 21⊗ 1 + 312⊗ •ι.

Again we’re more or less forced to pick

ε(w) =

{
1 w =

•
ι

0 otherwise

So, we have an algebra and a coalgebra! Is it a bialgebra? Is ∆(u� v)“=”∆(u)� ∆(v)? We
compute

∆

 ∑
�s of u,v

s

 =
∑
s

∑
(s)

fl(s(1))⊗ fl(s(2))

= u⊗ v + · · ·

=
∑

a1 . . . aj ⊗ b1 . . . bk, j + k = n+m

On the other hand,

mP∞⊗P∞(∆(u)⊗∆(v)) = m(
∑
(u)

∑
(v)

u(1) ⊗ u(2) ⊗ v(1) ⊗ v(2))

and

∆(u)�∆(v) =
∑∑

(u(1) � v(1))⊗ (u(2) ⊗ v(2))

so these two are equal, and they’re equal to ∆(u� v).

141 Homework
Check the other three diagrams.

142 Homework
Define fl on the relative positions of the values 1, . . . , i in one-line notation rather than w1, . . . , wi. Set
∆(w) =

∑
w|[i] ⊗ fl(w|[i+1,n]). How does P∞ relate to this structure? Is it the dual? (Note: we did

not forget an fl on the first factor: it’s just the identity using this new definition.)

143 Remark
k[x] and P∞ are graded; k[x] is commutative but P∞ is not.

Definition 144. A coalgebra C is cocommutative if

∆(c) =
∑
(c)

c(1) ⊗ c(2) =
∑
(c)

c(2) ⊗ c(1).

145 Example
k[x] is cocommutative; P∞ is not. What about k[G]?

Commutative Cocommutative Graded
k[G] no yes no
k[x] yes yes yes
Iranked yes no yes
P∞ no no yes

Here Iranked means the same things as I except we only use isomorphism classes of ranked
posets.
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Definition 146. A bialgebra (B,m, u,∆, ε,k) is a Hopf algebra if there exists a k-linear function S : H →
H, called an antipode , such that

H ⊗H H ⊗H

H k H

H ⊗H H ⊗H

S⊗id

m

ε

∆

∆

u

id⊗S
m

or in Sweedler ∑
S(h(1)) · h(2) = (u ◦ ε)(h) =

∑
h(1) · S(h(2)).

147 Remark
Recall a bialgebra axiom is that k

u→ H
ε→ k is the identity, i.e. ε ◦ u = id. An antipode gives us

a way to compute the opposite composition in terms of mutliplication and comultiplication, i.e.

u ◦ ε = ∆ ◦ (id⊗S) ◦m = ∆ ◦ (S ⊗ id) ◦m.

148 Example
For k[G], use S(g) = g−1.

April 25th, 2014: Properties of Antipodes and Takeuchi’s Formula

Summary Last time: a bialgebra B is a Hopf algebra provided there exists a k-linear function S : B → B
such that ∑

(h)

S(h(1))h(2) = u ◦ ε(h) =
∑
(h)

h(1)S(h(2))

for all h ∈ B. S is called the antipode.

149 Remark
Today:

1) Properties of antipodes.

2) Hopf algebras are plentiful, i.e. Takeuchi’s theorem.

150 Homework
Is every bialgebra a Hopf algebra?

Definition 151. Let C be a k-coalgebra (∆, ε) and A be a k-alegbra (m,u). The set Homk(C,A) of k-linear

maps from C to A can be given an algebra structure as follows, which will be denoted Hom(C,A) . It

is a k-vector space as usual. Define the algebra multiplication through convolution

(f ∗ g)(c) :=
∑
(c)

f(c(1))g(c(2)),
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i.e. f ∗g = m◦ (f ⊗g)◦∆. What is the identity of this algebra, if it has one? We find 1Hom(C,A) = u◦ ε:

f ∗ (u ◦ ε)(c) = m ◦ (f ⊗ (u ◦ ε))

∑
(c)

c(1) ⊗ c(2)

 = m

∑
(c)

f(c(1))⊗ uε(c(2))


= m

∑
(c)

ε(c(2))f(c(1))⊗ u(1k)

 =
∑
(c)

ε(c(2))f(c(1)) = f

∑
(c)

(c(1)ε(c(2))


= f(c),

and likewise on the other side.

Warning: the multiplicative identity of Hom(C,A) is not in general the identity map even if C = A.

152 Notation
Hom(U, V ),Hom(C,D),Hom(A,B),Hom(C,A) can be ambiguous or hard to decipher: they may be
k-linear, coalgebra, algebra or bialgebra, or k-linear or algebra maps, respectively. Such is life :(.

153 Proposition
Let B be a bialgebra. Let id : B → B. S is an antipode for B if and only if

S ∗ id = u ◦ ε = 1Hom(B,B) = id ∗S.

Phrased this way, a Hopf algebra is precisely a bialgebra where the identity map in Hom(B,B) has a
two-sided multiplicative inverse.

Proof Immediate from the definitions.

154 Corollary
If S exists, it’s unique.

Proof If S, S′ are antipodes, then S = S ∗ (id ∗S′) = (S ∗ id) ∗ S′ = S′ since S ∗ id and id ∗S′ are
both u ◦ ε, which is the identity. Really this is just the uniqueness of two-sided inverses: S and
S′ are inverses of id under the convolution.

155 Proposition
In any Hopf algebra H,

(1) S(gh) = S(h)S(g)

(2) S ◦ u = u

(3) ε ◦ S = ε

(4) ∆ ◦ S(h) =
∑

(h) S(h(2))⊗ S(h(1)) = S ⊗ S ◦ T ◦∆(h)

Proof (1) Consider k-linear maps in Hom(H ⊗Hc, Hc) (where Hc indicates we’re thinking of the
coalgebra structure on H). We have three maps

m(g ⊗ h) = gh

N(g ⊗ h) := S(h)S(g)

P (g ⊗ h) := S(gh).

That is, N := m ◦ (S ⊗ S) ◦ T , P := S ◦m. Outline: a) P ∗m = 1Hom(H⊗H,H) (where this
identity is u ◦m ◦ ε⊗ ε(g ⊗ h) = ε(g)ε(h) · 1H). b) m ∗N = 1Hom(H⊗H,H). c) left and right
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inverses agree in an associative algebra with 1, so P = N . For a), we compute

P ∗m(g ⊗ h) =
∑

(g⊗h)

P ((g ⊗ h)(1))m((g ⊗ h)(2))

=
∑
(g)

∑
(h)

P (g(1) ⊗ h(1))m(g(2) ⊗ h(2))

=
∑
(g)

∑
(h)

S(g(1)h(1))g(2)h(2)

=
∑
(gh)

S((gh)(1))(gh)(2)

= S ∗ id(gh) = u ◦ ε(gh) = ε(g)ε(h) · 1H

where the second equality is true because

∆H⊗H(g ⊗ h) = id ◦T ◦ id ◦(∆⊗∆)(g ⊗ h)

= id ◦T ◦ id
∑

g(1) ⊗ g(2) ⊗ h(1) ⊗ h(2)

=
∑

g(1) ⊗ h(2) ⊗ g(2) ⊗ h(2)

and the fourth equality is true because

∆(gh) = ∆(g) ·∆(h)

=
∑

g(1) ⊗ h(1) ⊗ g(2) ⊗ h(2)

=
∑
(gh)

(gh)(1) ⊗ (gh)(2)

For b), we compute

m ∗N(g ⊗ h) =
∑
g⊗h

m((g ⊗ h)(1))N((g ⊗ h)(2))

=
∑
(g)

∑
(h)

m(g(1) ⊗ h(1))N(g(2) ⊗ h(2))

=
∑
(g)

∑
(h)

g(1)(h(1)S(h(2)))S(g(2))

=
∑
(g)

g(1)(ε(h)1H)S(g(2))

= ε(g)ε(h) · 1H

(2) Similar / homework.

(3) Similar / homework.

(4) Similar / homework.

156 Homework
If H is commutative or cocommutative, then S ◦ S = id.

157 Proposition
S cannot have odd order > 1.

Proof Suppose S2k+1 = id. Then

gh = S2k+1(gh) = S2k(S(h)S(g)) = S2k+1(h)S2k+1(g) = hg

so H is commutative, hence S has order 1 or 2, a contradiction.
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158 Theorem (Taft 1971)
There are Hopf algebras with antipode of order 2, 4, 6, . . . ,∞.

Definition 159. A graded k-bialgebra B = ⊕n≥0Bn is a bialgebra where BiBj ⊂ Bi+j and ∆(Bn) ⊂
⊕i+j=nBi ⊗ Bj . We say B is connected if B0

∼= k and this respects the bialgebra structure in the
sense that u ◦ ε = idB0

. (The direct sum is as k-vector spaces.)

160 Remark
ε(Bn) = 0 for all n > 0 for a graded k-bialgebra, which can be proved by chasing around the
counit and coproduct diagrams. Hence H is connected iff u ◦ ε = idB , i.e. iff u = ε−1.

The terminology probably comes from topology, where a space is connected if and only if its
0th homotopy group is Z.

161 Theorem ( Takeuchi’s Formula )
A graded connected bialgebra is a Hopf algebra with antipode

S =
∑
n≥0

(−1)n ·m(n−1) ◦ f⊗n ◦∆(n−1)

where m0 := id, ∆0 := id, m−1 := u, ∆−1 := ε, f := id−u ◦ ε ∈ Hom(Hc, H), so f(h) = h− ε(h)1H .

162 Remark
What does f do to the graded pieces Bn for n ≥ 0? For c ∈ B0, we have f(c) = c− ε(c)1H = 0,
and f(Bn) = Bn is the identity for n > 0. If k is large enough compared to m, we see

f⊗k∆(k−1)(Bm) ∈
∑

i1+···+ik=m

Bi1 ⊗ · · · ⊗Bik .

If k > m, then some ij = 0, so f kills it. Hence the sum is well-defined.

Proof First note

m(n−1)f⊗n∆(n−1)(h) =
∑
(h)

f(h(1))f(h(2)) · · · f(h(n))

= f∗n(h).

Hence S =
∑
n≥0(−1)nf∗n, so

S ∗ id =

∑
n≥0

(−1)nf∗n

 ∗ (f + u ◦ ε)

=
∑
n≥0

(−1)nf∗(n+1) +
∑
n≥1

(−1)nf∗n

= f∗0 = u ◦ ε,

and similarly on the other side.

163 Homework
Look at what this formula implies for k[x]–what is the antipode of x? Also do it for the graded
bialgebra we called Perms or P∞. Also do it for (ranked) posets Iranked.

April 28th, 2014: Homological Properties of Hopf Algebras:
projdim, injdim, gldim,GKdim, . . .
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164 Remark
Today is James Zhang’s first guest lecture. He’ll discuss homological properties of Hopf algebras.

165 Example
Some more examples of Hopf algebras:

• G a group and k[G] the group algebra where k is a field. We have ∆g = g ⊗ g for all g ∈ G, and
S(g) = g−1. Since this is cocommutative, S2 = id, which is of course also immediate.

• Algebraic geometry: let G be an algebraic group, O(G) the regular functions on G; commutative
implies S2 = id.

• Lie theory: if L is a Lie algebra, let U(L) be the universal enveloping algebra, namely the free
algebra k〈L〉 modulo xy − yx− [x, y] for all x, y ∈ L. This is a Hopf algebra with a coproduct
given by

∆(x) = x⊗ 1 + 1⊗ x

for all x ∈ L. Note, for instance, that ∆(x2) = (∆x)2 = x2 ⊗ 1 + 2x ⊗ x + 1 ⊗ x2. Note that
S(x) = −x for all x ∈ L. This is again cocommutative, and again we can see directly that
S2 = id.

• S2 6= id sometimes: for “quantum groups”, Og(G) where G is a semisimple Lie group or Uq(L)
where L is a semisimple Lie algebra and q ∈ kx, the order of S depends on q2. It turns out
that O1(G) = O(G) but U1(L) is not generally U(L). For instance, if q = −1, then S2 = id (for
both?).

• Fp[x]/(xp) for p prime has two possible Hopf structures. First comes from ∆x = x⊗ 1 + 1⊗ x,
and second uses ∆x = x⊗ 1 + 1⊗ x+ x⊗ x. Again S2 = id in either case.

166 Remark
The homological properties of Hopf algebras are connected to many areas of math: noncommutative
algebra, algebraic geometry, invariant theory, string theory. Our goal for this lecture and the next will
be to find common features of Hopf algebras, to find hidden invariants, and to see some open questions
which will be our homework.

167 Notation
H will be a Hopf algebra over k with multiplication m, unit µ, comultiplication ∆, counit ε, antipode
S.

168 Open Problem
If H is Noetherian (as a ring), is S bijective? Open question in general, known in some special cases:
graded connected case, finite dimensional case, “pi”, “semi-prime”.

Definition 169. Let M be a left H-module. The projective dimension of M is defined to be

projdimM := min{n : 0→ pn → pn−1 → · · · → p0 →M → 0}

where the minimum is over projective resolutions of M , i.e. the pi’s are projective modules and the

sequence is exact. This may well be ∞. Likewise, the injective dimension of M is defined to be

injdimM := min{n : 0→M → I0 → · · · → In → 0}

where the minimum is over injective resolutions of M , i.e. the Ii are injective modules and the sequence

is exact. Similarly, the global dimension of H is

gldimH := max{projdimM : M ∈ H -mod}.
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(You can use injdim instead of projdim.) We also define the Gelfand-Kirillov dimension of H to be

GKdimH = lim sup
n→∞

log(dimV n)

log n

where V 3 1 is any finite dimensional generating space of H, meaning H = ∪n≥0V
n. This turns out

to be independent of V , so long as it exists.

170 Proposition
Assume H is finitely generated over k. Then V exists. In this case,

GKdimH = 0⇔ dimkH <∞.

171 Example
k[x1, . . . , xn] has GKdim of n.

172 Open Problem
If GKdimH <∞, is GKdimH ∈ N?

173 Example
H = U(L) implies GKdimH = gldimH = dimk L.

174 Fact
If A is a commutative finitely generated k-algebra, then GKdimA is the Krull dimension of A.

175 Open Problem
Is GKdimH ≥ gldimH if gldim <∞?

176 Open Problem
Suppose H is Noetherian. Is it true that GKdimH ≥ KdimH, where Kdim is the Krull dimension for
a not necessarily commutative ring?

Definition 177. A Hopf algebra H is Frobenius if H is finite dimension and the left H-module of the dual
vector space H∗ is isomorphic to H as a left H-module. (You might call this “left Frobenius”.) (See
the aside following this lecture for a discussion of H∗ in the finite dimensional case.)

178 Homework
(1) There is one Hopf algebra structure on k[x1, x2] where chark = 0 up to isomorphism. (Assume

the standard algebra structure, and hunt for coalgebra/bialgebra/Hopf algebra structures.)

(2) There exist two Hopf algebra structures on k[x1, x2, x3] up to isomorphism where chark = 0.

179 Remark
Homological properties in GK0 , meaning Hopf algebras with GKdim = 0. (H finite implies
GKdimH = 0, as noted above.)

180 Theorem (Larson-Sweedler)
A finite dimensional Hopf algebra H is Frobenius.

181 Lemma
Being Frobenius is equivalent to saying injdimH = 0, where H is viewed as either a left or right
H-module. This is the same as saying HH is injective. (H finite dimensional?)

Definition 182. (a) H is Gorenstein if injdimHH = injdimHH <∞.

(b) H is regular if gldimH <∞.

(c) H is semisimple if H = ⊕Mni(Di) is a direct sum of matrix rings over division rings. (This is in

analogy with Artin-Wedderburn.)
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183 Theorem (Larson-Radford)
Suppose char k = 0 and H is finite dimensional over k. Then the following are equivalent:

(a) H is semisimple.

(b) H is regular of dimension (gldim) 0.

(c) H is cosemisimple. (This means H∗ is semisimple, where H∗ is the dual Hopf algebra; see below.)

(d) H is S2 = id.

Proof If H is semisimple, every module is both projective and injective, so the global dimension is
immediately 0. The rest are harder.

184 Example
This fails if chark = p > 0. Take H = Fp[x]/(xp); this has non-trivial nilradical, hence is not
semisimple. However, S2 = id since it’s cocommutative.

185 Remark
Is there a more general homological theorem that applies when S2 6= id?

186 Theorem (Maschke)
Let G be a finite group. Take H = k[G] the group ring of G viewed as a Hopf algebra. Then H is
semisimple if and only if char k - dimH.

187 Open Problem
Suppose H is Noetherian and injdimHH ≤ 1. Is GKdimH ≤ 1?

Aside: Dual Algebras, Coalgebras, Bialgebras, and Hopf Algebras

Definition 188. Let (A,m, u) be a finite dimensional associative k-algebra. There is a natural finite
dimensional coassociative k-coalgebra structure, which we’ll call (A∗,m∗, u∗) by a minor abuse of
notation. More precisely, the comultiplication and counit are given by

A∗
m∗→ (A⊗A)∗

∼→ A∗ ⊗A∗, A∗
u∗→ k

∗ ∼→ k,

where ∗ indicates the k-dual functor.

Proof Apply the −∗ := Homk(−,k) functor to the diagrams defining the algebra structure of A. We
see a problem immediately:

A⊗A⊗A

A⊗A A⊗A

A

m⊗id id⊗m

m m

(A⊗A⊗A)∗

(A⊗A)∗ (A⊗A)∗

A∗

(m⊗id)∗ (id⊗m)∗

m∗m∗

We roughly need to distribute the ∗’s over the tensor products. For that, first consider
the natural map U∗ × V ∗ → (U ⊗ V )∗ given by sending (f : U → k, g : V → k) to the map
u⊗ v 7→ f(u)g(v). This map is k-bilinear, so factors through U∗ × V ∗ → U∗ ⊗ V ∗. Indeed, this
induced map is injective: f ⊗ g is sent to u ⊗ v 7→ f(u)g(v), and if this latter map is always
zero, then f ≡ 0 or g ≡ 0, so f ⊗ g = 0. Assuming U and V are finite dimensional vector spaces,
the dimensions of either side of U∗ ⊗ V ∗ → (U ⊗ V )∗ are the same, so we have an isomorphism.

Indeed, this argument shows (U ⊗ V )∗ with the above map from U∗ × V ∗ satisfies the same
universal property as U∗ ⊗ V ∗. For instance, we get a map
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A∗ (A⊗A)∗

A∗ ⊗A∗

m∗

∃!
m∗

Using this property many times, we find m∗ : A∗ → A∗ ⊗ A∗ satisfies the diagram for
coassociativity. Likewise u∗ : A∗ → k

∗ has an associated map u∗ : A∗ → k using the natural
isomorphism k ∼= k

∗, and one may check with m∗ it satisfies the diagram for the counit. For
convenience, we drop the overlines.

Definition 189. Let (B,∆, ε) be a finite dimensional coassociative k-coalgebra. There is a natural finite
dimensional associative k-algebra structure we’ll call (B∗,∆∗, ε∗). More precisely, the multiplication
and unit are given by

B∗ ⊗B∗ ∼→ (B ⊗B)∗
∆∗→ B∗, k

∼→ k
∗ ε∗→ B∗.

Proof The proof is the same as in the previous case, with the same tacit isomorphisms applied to
distribute duals over tensor products.

190 Proposition
Let (B,m, u,∆, ε) be a finite dimensional k-bialgebra. The two structures previously defined give a
finite dimensional k-bialgebra (B∗,∆∗, ε∗,m∗, u∗).

Proof Treat the compatibility diagrams as before.

191 Proposition
Let (H,m, u,∆, ε, S) be a finite dimensional Hopf algebra over k. The bialgebra previously defined is

a finite dimensional Hopf algebra with antipode S∗. This is the dual Hopf algebra

Proof In this case, S∗ : H∗ → H∗ requires no implicit isomorphisms to distribute, so we can literally
use the dual.

192 Remark
There is a more general construction that works for infinite dimensional algebras, though it’s more
involved. Note the coalgebra maps can at least be defined even without the finite dimensional
hypothesis.

April 30th, 2014: (Left) Integrals; from GK0 to GK1 and Beyond

193 Remark
James Zhang, second guest lecture.

194 Remark
We’ll tacitly assume frequently that GK0 is equivalent to finite dimensional. Technically GK0 just
means GKdim is 0, but as mentioned last time if H is a finitely generated k-algebra, they are equivalent.
(Warning: there may be missing assumptions or other minor errors in this lecture. Double-check with
the literature to be sure.)

195 Remark
We’ll compare the following theorems from last time to infinite versions today.

196 Theorem (Larson-Sweedler)
Every GK0 (i.e. finite dimensional) Hopf algebra is Gorenstein of injdim 0.
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197 Theorem (Larson-Radford)
Suppose char k = 0 and GKdimH = 0. The following are equivalent:

(a) H is semisimple, i.e. H = ⊕Mni×ni(Di) for division rings Di.

(b) H is regular of gldim 0.

(c) H is cosemisimple.

(d) S2 = id.

Definition 198. A left integral element in a Hopf algebra H is some t ∈ H such that

ht = ε(h)t, ∀h ∈ H.

That is, t is an eigenvector of the “trivial character” ε. We use

∫ `

for the space of left integrals in

H. Note that 0 is trivially left integral, though frequently we don’t want to consider it. Of course,
this space is a k-vector space. “’integral’ is the most important invariant in the study of GK0 Hopf
algebras.”

199 Lemma
If H has GK0, then

∫ `
is one-dimensional, i.e. there is a unique (up to scalar) non-trivial left integral.

200 Example
Let H = k[G] for G a finite group. Then

∫ `
is spanned by

∑
g∈G g.

201 Notation
At least in the GK0 case, we have several abuses of notation:

(i)
∫ `

can refer to an arbitrary non-trivial left integral.

(ii)
∫ `

may also refer to itself as an H/AnnR(
∫ `

) module.

(iii)
∫ `

may also refer to the map H → H/AnnR(
∫ `

).

202 Theorem (Maschke Restated)
H is semisimple ⇔ ε(

∫ `
) 6= 0.

203 Remark
We have some general structure:

dim /k GKdim geometry algebraic group
<∞ 0 points finite group
∞ 1 curve 1-dim alg. group
∞ 2 surface 2-dim alg. group
...

...
∞ ∞

Definition 204. If M,N are left H-modules, then we define Ext1
H(M,N) first as a set: it consists of the

short exact sequences 0→ N → E →M → 0 up to isomorphism

0 N E M 0

0 N E M 0

id ∼= id
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We can give it an abelian group structure using the Baer sum construction, which we do not discuss.
(It is not clear to me how to give it either an H-module or k-module structure.) Of course, the usual
construction of taking a projective resolution P ∗ →M , applying Hom(−, N), and taking homology
works.

More generally, we define ExtiH(M,N) as the set of exact sequences 0→ N → E1 → · · · → Ei →
M → 0 mod a similar equivalence relation. (The Wikipedia article “Ext Functor” has a few details.)

205 Remark
Standing assumption: H is a finitely generated Noetherian k-algebra.

206 Theorem
If GKdimH = 1, then H is Gorenstein of injdimH = 1. Moreover, Ext0

H(k, H) = HomH(k, H) = 0

and Ext1
H(k, H) is one-dimensional.

The analogous question even for GKdimH = 2 is open.

Definition 207. The homological integral of H (f.g. Noetherian) is the H-module

∫ `

H

:= ExtinjdimH
H (k, H)H .

208 Remark
If GKdimH = 0, then

∫ ` ∼= HomH(k, H) via f 7→ f(1). If H is infinite dimensional over k,
then there does not exist a classical integral of H, so this is a generalization of our previous
definition.

209 Corollary
If GKdimH = 1, then S is bijective.

Proof Complicated, though the key step is the theorem above.

210 Open Problem
If GKdimH = 1, is S2 of finite order?

211 Example
Fix q 6= 0. Consider k〈g±1, x〉/(gx = qxg). Use ∆g = g ⊗ g, ∆x = x⊗ 1 + g ⊗ x. GKdimH = 2. S2

has infinite order if q 6∈
√

1. In this example, gldim is 2.

For another example (Taft), let qn = 1 and consider

k〈g, x〉/(gn = 1, xn = 0, gx = qxg).

In this example, gldim =∞ since S2 6= id.

212 Conjecture
If GKdimH = 1, then H is a finitely generated module over Z(H), the center of H.

213 Theorem (Wu-Zhang)
Suppose GKdimH = 1. If gldimH <∞, then gldimH = 1, H is isomorphic to a finite direct sum of
prime rings of GKdim 1, and the conclusion of the conjecture holds.

214 Remark
This is something like the (b) implies (a) part of the Larson-Radford theorem above. The
converse is not true: if H is a finite direct sum of prime rings of GKdim 1 (even over C), the
global dimension could be infinite. Hence roughly (a) implies (b) does not hold.

215 Theorem (Wu-Zhang)
Suppose conjecture 1 holds. If S2 = id and chark = 0, then gldimH = 1.
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216 Remark
Together with the previous theorem, roughly (d) ⇒ (b) ⇒ (a), but the reverse implications do
not hold. (The next step, GK2, is unclear.)

217 Example
(a) Suppose H has GK0. Then H ⊗ k[x] and H ⊗ k[g±1] are GK1. This allows us to make many

GK0 Hopf algebras. (The same trick works more generally.)

(b) If qn = 1, take k〈g, x〉/(gn = 1, gx = qxg) and use the same coproduct as Taft’s example above.
This is in GK1, has gldim 1, and is prime.

218 Conjecture
If GKdimH <∞, S2 = id, and char k = 0, then gldimH <∞.

May 2nd, 2014: Dual Hopf Algebras and QSYM

Summary Sara is lecturing again today. Last time: graded connected bialgebras are Hopf algebras using

S(h) =
∑
n≥0

(−1)nm⊗n−1f⊗n∆n−1

with f = id−u ◦ ε.

Today: SYM to QSYM and dual Hopf algebras.

219 Remark
Recall SYM = ⊕n≥0 SYMn, where SYMn is the k-span of eλ for λ ` n. The coproduct satisfies

∆(en) =

n∑
i=0

ei ⊗ en−i.

We noted this gave rise to

en(x+ y) =

n∑
i=0

ei(x)en−i(y)

where x+ y := {x1, y1, x2, y2, . . .} is the union of alphabets x and y.

220 Example
Take the Vandermonde determinant V (x1, . . . , xn) :=

∏
1≤i<j≤n(xi − xj). This is antisym-

metric, but V 2 is symmetric. We see∑
i1<···<in

V 2(xi1 , . . . , xin) = V 2[en],

where the notation on the right is a plethsym V 2[en], meaning you feed in the en’s as arguments

to the symmetric function V 2.

What is the antipode, using Takeuchi’s formula?

S(ek) =
∑
n≥0

(−1)n
∑

i1+···+in=k,ij≥1

ei1 · · · ein
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221 Example

S(e0) = 1

S(e1) = −e1

S(e2) = e1e1 − e2 = x2
1 + x1x2 + · · · = h2

S(e3) = −e3
1 + e1e2 + e2e1 − e3 = −h3

One would guess S(ek) = (−1)khk. Using the diagram for the antipode, we find

∑
ei ⊗ en−i (−1)ihi ⊗ en−i

en 0
∑

(−1)hien−i = 0

?

ε u

(unless n = 0), and we can do the same going around the other way. We’ve shown this identity
using the Cauchy identity, since H(−t)E(t) = 1 = E(−t)H(t), which (should) give an inductive
proof of our guess.

222 Example
What about S(sλ)? We have S(s(n)) = (−1)nS(1n), S(s(1n)) = (−1)ns(n). More generally,

S(sλ) = (−1)|λ|Sλ′ where λ′ is the conjugate of λ.

Proof Use Jacobi-Trudi:

sλ/µ = det(hλi−µj+i−j) = det(eλ′i−µ′j+i−j).

Definition 223 ( Duality and Hopf algebras). Suppose V is a vector space over k. V ∗ = Homk(V,k)

is the space of linear functionals . A linear map φ : V → W induces a map φ∗ : W ∗ → V ∗ as usual.
We have a bilinear form V ∗ × V → k where (f, v) 7→ f(v). Note (φ∗(g), v) = (g, φ(v)).

If C is a coalgebra, C∗ = Hom(C,k) is an algebra with multiplication

fg(v) =
∑

f(v(1))g(v(2)).

and unit ε∗ (where we identify k
∗ and k).

If A is a finite dimensional algebra, then (A ⊗ A)∗ ∼= A∗ ⊗ A∗, and we can define a coalgebra
structure on A∗ as

(∆(f), a⊗ b) = f(ab) = (f, ab)

Definition 224. The identity (A⊗A)∗ = A∗⊗A∗ fails in infinite dimensions. As a partial solution, suppose

H = ⊕Hn is a graded Hopf algebra of “ finite type ”, meaning each Hn is finite dimensional. Then let

H◦ =
⊕
n≥0

H∗n

and use multiplication and coproduct as above on each piece. This gives the dual Hopf algebra in

this case.

225 Remark
If {hi} is a basis for H respecting the graded structure, and {fi} is the dual basis of H◦

(i.e. union of dual bases for H∗n’s), so (fi, hj) = δij , then what are the structure constants?
hihj =

∑
ckijhk satisfies

∆H◦(fk) =
∑

ckijfi ⊗ fj .

The counit in H◦ kills all but H∗0 .
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226 Theorem
SYM is self-dual.

Proof {sλ} form an orthonormal basis. ∆SYM(s∗λ) =
∑
cλµνs

∗
µ ⊗ s∗ν .

227 Remark
Recall

sλ =
∑

T∈SSYT(λ)

xT = ch(V λ),

where dim(V λ) = fλ = # SYT(λ). This suggests we might want to partition SSYT(λ) into pieces
induced by SYT(λ).

228 Example
1117/227/3 ∈ SSYT((4, 3, 1)) 7→ 1237/456/8 ∈ SYT((4, 3, 1)). Indeed, 1, 2, 13, 122/14, 17, 22/306 ∈
SSYT((4, 3, 1)) maps to the same thing. Call this procedure “straightening”.

Hence
sλ =

∑
T∈SSYT(λ)

∑
S∈SSYT(λ),strait(S)=T

xS .

The inner sum for fixed T is called FT , the fundamental quasisymmetric functions, discussed more
formally below.

229 Example
FT for T = 12/34 of shape (2, 2) gives x1x2x3x4 + x2

1x
2
2 + x2

1x2x3 + x1x
2
2x3 + x1x2x

2
3 + · · · .

Definition 230. If f ∈ k[[x1, x2, . . .]] is of bounded degree, it is quasisymmetric provided

f |xα1
1 ···x

αk
k

= f |xα1
i1
···xαkik

for all 1 ≤ i1 < · · · ik and α = (α1, . . . , αk) is a composition (i.e. αj ≥ 1).

QSYM is the set of all quasisymmetric functions. It comes with a grading QSYM = ⊕n≥0 QSYMn

where QSYMn consists of the homogeneous quasisymmetric functions of degree n. Note QSYM0 = k.
QSYM is a graded connected algebra. The multiplication is just multiplication of power series. The
comultiplication ∆(f) is determined by f(x ∪ y), just as for SYM above. This gives a bialgebra
structure, so it must be a Hopf algebra.

It comes with a (homogeneous) basis of monomial quasisymmetric functions

Mα := xα1
1 xα2

2 · · ·x
αk
k + all shifts

where α � n. Hence dim(QSYMn) is the number of compositions of n, which is 2n−1 by taking subsets
of [n− 1].

231 Homework
Describe multiplication and coproduct on Mα’s, and the antipode too!

232 Remark
Note FS = FT is possible. For instance, this holds if S = 1237/456/8 and T = 1237/4568, which
requires a moment’s thought. However, FT is not equal to FU for U = 12378/456. For instance,
x5

1x
3
2 ∈ FU but not in FT . When are they equal, and when are they not?

Definition 233. Given T ∈ SYT(λ), define Des(T ) , the descent set of T , as the set of j where j + 1

is lower than j in T (i.e. strictly south, weakly west, in English notation). Note that if λ ` n,
Des(λ) ⊂ [n − 1]. There is a natural way to associate a composition of n with Des(λ), defined by
example below.
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234 Example
Des(1237/456/8) = {3, 7}, Des(1237/4568) = {3, 7}, and Des(12378/456) = {3}. Write out
∗ ∗ 3| ∗ ∗ ∗ 7|∗ for the first, giving associated composition 3 + 4 + 1. Similarly we get 3 + 4 + 1
and 3 + 5 for the second and third.

Definition 235. The fundamental quasisymmetric function for α � n is defined as follows. Let set(α)

mean the set corresponding to the composition α. Define

Fα := FDes(T ) =
∑

1≤i1≤···≤in

xi1 · · ·xin

where we require strict inequality ij < ij+1 to hold for j ∈ set(α). The previous FT for T ∈ SYT(λ)
are related to these by letting α be the composition associated to Des(T ).

(Note: this was copied from lecture, but I can’t make it make sense. To be updated.) (Reply: We
have strict inequality in the case where j ∈ set(α).)

236 Theorem (Gessel)
sλ =

∑
T∈SYT(λ) FDes(T ).

237 Remark
Expand sµ[sλ] =

∑
dνµλsν ; this is super hard and the coefficients are unknown except in the most basic

of cases.

May 5th, 2014: Rock Breaking, Markov Chains, and the Hopf
Squared Map

238 Remark
Eric and Chris are presenting today on “Hopf algebras and Markov chains: two examples and theory”
by Diaconis, Pang, and Ram.

Definition 239. We start with the Hopf squared map of a bialgebra H,

ψ2 : H → H := m∆

240 Example
ψ2(en) =

∑n
i=0 eien−i for SYM. More generally, ∆(eλ) =

∑
α⊂λ eα ⊗ eλ−α where the α are

weak compositions which are subsets of the partition λ in the obvious sense.

241 Example
ψ2 on k〈x1, . . . , xn〉 with coproduct given by xi primitive: then

∆(xi1 · · ·xik) =
∑

S⊂{1,...,k}

∏
j∈S

xij ⊗
∏
j∈Sc

xij ,

so that for instance

m∆(x1x2x3) = x1x2x3 + x1x2x3 + x2x1x3 + x3x1x2

+ x1x2x3 + x1x3x2 + x2x3x1 + x1x2x3

= 4x1x2x3 + x2x1x3 + x3x1x2 + x1x3x2

(The underlined terms come from the Sc term.)
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Definition 242 ( Markov Chains ). Let Ω denote a finite “state space”. A sequence {xk}k≥0 is a Markov
chain if

P(xi = y : xi−1 = y′) = P(xi = y : x0 = y′).

In words, the probability that you go to a new state only depends on where you are, not when you get
there.

243 Example
From the previous example, divide by 23 so the coefficients sum to 1. You can construct a
Markov chain by giving the conditional probabilities above in a matrix with y vs. y′. For instance,
we can use the result of m∆(x1x2x3) to fill in such a matrix, where the row corresponding to
x1x2x3 is includes 1/2, 1/8, 1/8, 1/8, 0, 0, 0, 0.

244 Remark
Suppose f =

∑
aifi where the fi : Ω→ R are eigenfunctions (of the transition matrix) with eigenvalues

βi. We can compute the expected value of f after k steps starting at x0 as

Ex0
(f(xk)) =

∑
i

aiEx0
(fi(xk)) =

∑
i

aiEx0
(βif(xk−1))

=
∑
i

aiβ
k
i Ex0(f(x0)).

Definition 245 ( Rock breaking process ). Let (n) be an object of mass n, which can be broken into

two parts, (j) on the left and (n − j) on the right. Let the probability that we go from (n) to (j)
and (n− j) be

(
n
j

)
/2n. At the next step, (j) breaks up into (j1), (j − j1) with probability

(
j
j1

)
/2j and

(n− j) breaks up into (j2), (n− j − j2) with probability
(
n−j
j2

)
/2n−j . Note it’s possible for j = 0, in

which case we just get (n).

This is defined on partitions by breaking each part independently and interpreting the result as
a partition. Note that 1n is the final state. For instance, one could ask what the expected time for
reaching this state is from some initial state.

246 Remark
Our goal is to find a basis for SYMn in which the (scaled) comultiplication map 1

2nψ
2 : SYMn → SYMn

corresponds to the transition matrix of the rock breaking process defined above. In the n = 2 case, our
naive basis is e12 , e2, and ψ2(e12) = 4e12 , ψ2(e2) = e12 + 2e2. ψ2/22 in this basis is(

1 0
1/4 1/2

)
The second row doesn’t add up to 1, so this isn’t a transition matrix. Since we understand our

present basis well, let’s just rescale it by some φ : {e12 , e2} → R>0 where êλ := eλ/φ(eλ). Start with

φ(e12) = 1 = φ(e1)2. Then

ψ2(ê2) = φ(e2)−1(e12 + 2e2) = φ(e2)−1e12 + 2φ(e2)−1e2

= φ(e2)−1ê12 + 2ê2.

The matrix is now (
1 0

φ(e2)−1/4 1/2

)
forcing φ(e2) = 1/2.

What about the n = 3 case? We know ê13 , ê12, and we can solve for the remaining element.
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247 Theorem
Let H be a Hopf algebra over R that is either a polynomial algebra or a cocommutative free associative
algebra. Also suppose we have a basis B such that ∆(c) has non-negative coefficients, and given any

basis element c of degree greater than 1, then ∆ (c) := ∆(c)− 1⊗ c− c⊗ 1 6= 0.

A result of the paper is that there is a new basis B̂ which is a rescaled version of the original such
that ψ2/2n : B̂n → B̂n has as matrix a transition function for some Markov chain.

248 Proposition
For any generator, we have the right eigenvector

e(x) =
∑
n≥1

(−1)a−1/am[a]∆
[a]

(x)

249 Homework
If H is commutative, check ψa is an algebra homomorphism. If H is cocommutative, check that

ψa is a coalgebra homomorphism. (To be clear, ∆
[a]

= (id⊗ · · · ⊗∆) ◦∆
[n−1]

.

250 Example (Rock-breaking example)
Use êi = i!ei so φ(ei) = 1/i!. Now

ψ2(ên) = n!m

(
n∑
i=0

eien−i

)

=

n∑
i=0

(
n

i

)
êiên−i

In particular, this gives part of the transition matrix for the rock-breaking Markov process.

251 Proposition
If µ, λ are partitions of n, then the right eigenfunction associated to µ evaluated at λ is

fµ(λ) =
1∏
i µi!

∑∏
j

λj !

a1(µj)! · · · aλj (µj)!
,

where the sum is over all sets {µj} such that µj is a partition of λj ,
∐
µj = µ, and ai(µ

j) is the
number of parts of size i in µj .

252 Example
Say µ = 1n−22. For any λ, fµ(λ) =

∑
j

(
λj
2

)
. This has associated eigenvalue 1/2 and is non-zero

on all λ except the trivial partition 1n.

For instance, if x0 = (n), we find

P(xk 6= 1n) = P(fµ(xk) ≥ 1) ≤ E(fµ(xk)) = 1/2kfµ(x0)

=

(
n

2

)
/2k.

(The inequality uses Markov’s inequality.)

Aside: Hopf Algebras for k[x, y, z] and Hom(A,A) Invariants
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253 Proposition
Let A,A′ be algebras, C ′, C coalgebras, all over k. As before, endow Homk(C,A) with an algebra
structure. An algebra morphism A→ A′ induces an algebra morphism Homk(C,A)→ Homk(C,A′),
a coalgebra morphism C ′ → C induces an algebra morphism Homk(C,A)→ Homk(C ′, A), and these
operations are both functorial (the former covariant, the latter contravariant).

In particular, if A and B are bialgebras and φ : A→ B is an isomorphism of bialgebras, then we
have

Hom(A,A) Hom(A,B)

Hom(B,A) Hom(B,B)

φ◦−

−◦φ

φ◦−

−◦φ

and every arrow is an isomorphism. Indeed, the composite φ∗ : Hom(A,A)→ Hom(B,B) sends idA to
idB . If A,B are also Hopf algebras with antipodes SA, SB , then φ∗SA = SB .

254 Proposition
Suppose φ : A → B is an isomorphism of Hopf algebras with antipodes SA, SB. φ∗ induces an
isomorphism

k[SA, idA]
φ∗→ k[SB , idB ]

which acts via SA 7→ SB , idA 7→ idB. (For instance, the left-hand side is isomorphic to a quotient of
k[x, x−1].)

255 Example
Consider A = k[x1, x2, . . .], given the usual Hopf algebra structure where each xi is primitive. Let
Pn := Span

k
{
∏n
i=1 xij}. If S denotes the antipode, then

S(q) = (−1)nq if q ∈ Pn.

Hence S ⊗ S = id⊗ id for all q ∈ A, so in fact S2 − id2 = 0 ∈ Hom(A,A).

256 Example
Consider B = k[e1, e2, e3], given a Hopf algebra structure via ∆(ek) =

∑k
i=0 ei ⊗ ek−i (e0 = 1). The

antipode satisfies

S(e1) = −e1 S2(e1) = −2e1

S(e2) = e2
1 − e2 S2(e2) = 3e2

1 − 2e2

S(e3) = 2e1e2 − e3
1 − e3 S2(e3) = 6e1e2 − 4e3

1 − 2e3.

(To be clear, S2 denotes S · S ∈ Hom(B,B).)

In particular, (S2 − id2)(e2) = (3e2
1 − 2e2)− (e2

1 + 2e2) = 2e2
1 − 4e2. If chark 6= 2, this is non-zero.

257 Corollary
The Hopf algebras A and B (using three variables for A) are not isomorphic when chark 6= 2.

Proof If φ : A→ B were an isomorphism, the induced map φ∗ : k[SA, idA]→ k[SB , idB ] would
send S2

A − id2
A = 0 to S2

B − id2
B = 0. However, this latter map is not zero.

258 Remark
Some haphazard thoughts: a Hopf algebra A has a “primitive subspace” spanned by primitive elements,
where the antipode is particularly well-behaved. There are relations between S, id, 1 ∈ Hom(A,A) on
this subspace. Powers of this subspace are also interesting. There are still relations between S, id, 1
on the powers, but I wasn’t able to find a nice general pattern. Maps between Hopf algebras send
the primitive subspace of the source into the primitive subspace of the target. Perhaps other notions
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besides “primitive” have similar properties and induce similar “filtrations” which in good situations
are non-trivial. The two Hopf algebras above both have at least one non-zero primitive element, which
seems important. I wasn’t able to prove uniqueness, unfortunately. (Addendum: perhaps not so
unfortunate; it’s false.)

May 7th, 2014: Chromatic Polynomials and applications of
Möbius inversion

259 Remark
Kolya and Connor are lecturing today on Stanley’s “Symmetric Function Generalization of the
Chromatic Polynomial of a Graph”.

Definition 260. Let G be a graph with vertices V , edges E. A coloring of G is a function k : V → P; a

proper coloring is a coloring such that for all ab ∈ E, k(a) 6= k(b), i.e. no vertexes connected by an

edge have the same color. χG(n) is the number of colorings V → [n].

261 Example

(1) Take a (connected) tree G with d vertices, so d− 1 edges. Claim: χG(n) = n(n− 1)d−1. One can
see this by deletion-contraction (below) and induction. Alternatively, simply color some vertex one
of n colors, so each adjacent vertex can have (n− 1) colors, and we will always have (n− 1) colors
for the next vertex since we have no cycles.

(2) Take G with four vertexes, with one being a “central” vertex connected to each of the others, and
no other edges. Values of χG(n) for n = 1, 2, 3, . . . are 0, 2, 24, . . ..

262 Proposition
Given a graph G, for any edge e in G,

χG = χG−e − χG/e

where G/e means G with the edge e “contracted” (i.e. its two vertices identified) and G− e means G
with the edge e removed.

Proof Easy ennumerative exercise.

Definition 263. Given a graph G = (V,E), define the chromatic polynomial

XG :=
∑
κ

xκ(v1) · · ·xκ(vn)

where the sum is over proper colorings of G and the product is over all vertices. This is symmetric and
homogeneous of degree #V .

264 Example
Let G be a “bow tie” graph, where the crossing point is a vertex. Then

XG = 4m(2,2,1) + 24m(2,1,1,1) + 120m(1,1,1,1,1)

(using the monomial symmetric functions).
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265 Example
Let G be a square with one diagonal edge added in. Add a vertex with a single edge to one of
the box’s vertices which wasn’t used when adding the diagonal edge. Then XG is the same as
for the previous example, so G 7→ XG is not in general injective.

Definition 266. A stable partition of V (G), the vertex set of G, is a set partition of V (G) where no two

vertices in the partition are connected by an edge. We set aλ as the number of stable partitions

of V (G) of “type” λ ` n (where n = #V ). Now XG =
∑
λ`n aλm̃λ where m̃λ = mλr1!r2! · · · if

λ = (r1, r2, . . .).

Definition 267. Let G be the k-span of [G] where G is a finite simple graph. Define multiplication by
cartesian product. Define a coproduct as follows:

∆([G]) =
∑

V1
∐
V2=V (G)

G|V1
⊗G|V2

,

where G|V1
refers to the induced subgraph of G with respect to V1. That is, remove all other vertices

not in V1.

268 Example
If G is a triangle with an edge removed, then ∆(G) is 1⊗ [G]+2(·⊗−)+[G]⊗1+2(−⊗·)+(· ·⊗·).

269 Proposition
The map G → SYM given by G 7→ XG is a Hopf algebra morphism. Indeed, G is graded by number of
vertices and connected, so is a Hopf algebra.

270 Theorem (Humpert-Martin)
Let M be the graphic matroid of G. (It is the set of subsets F of edges such that if v and v′ are

connected in that subset, possibly by a sequence of several edges, then vv′ is in that subset.) Then the
antipode is

S[G] =
∑
F

(−1)|V |−|F |acyc(G/F )GV,F

where acyc refers to the number of acyclic orientations and the sum is over F in the graphic matroid.

271 Theorem (Reiner)
G is self-dual via [G] 7→

∑
[H]∗ where the sum is over all H where V (H) = V (G) and E(H)∩E(G) = ∅.

For instance, the triangle with an edge removed maps to the sum of three disjoint points’s dual plus
−
∐
·’s dual.

272 Theorem

XG =
∑
S⊂E

(−1)#Spλ(S)

where λ(S) is a partition whose parts are the sizes of components of GS , and the p’s are power
symmetric functions.

Proof Let KS be the set of colorings which are monochromatic on components of GS . Set xα =
xα(v1) · · ·xα(vn). Then ∑

α∈KS

xα = pλ(S)

since we get a factor of pm for each component of size m. The right-hand side of the formula in
the theorem is ∑

S⊂E
(−1)#S

∑
α∈KS

xα =
∑

β : V→P
xβ

∑
S⊂Eβ

(−1)#S
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Here, we have reversed the order of the sum with Eβ := {(u, v) ∈ E : β(u) = β(v)}. This
equality oocurs because β is monochromatic on the components of GS if and only if all edges in
S are between vertices of the same color in β. Hence,∑

S⊂E
(−1)#Spλ(S) =

∑
β : V→P

xβδEβ=∅

However, Eβ = ∅ if and only if β is a proper coloring. Hence, we conclude that

XG =
∑
S⊂E

(−1)#Spλ(S).

Definition 273. Let I be our interval bialgebra as before on some poset P (with finite intervals), where the
coproduct of an interval was given by breaking it up into two pieces in all possible ways. Let Hom(I,k)
be an algebra using convolution (pre- and post-composing with ∆: I ⊗ I and m : k⊗ k→ k), which
in particular has identity

1([s, t]) = δs=t

The zeta function is Z([s, t]) = δs≤t. The Möbius function is the inverse of the zeta function in this
algebra,

µZ = Zµ = 1.

274 Proposition
µ(s, s) = 1 and

µ([s, t]) =
∑
s≤x≤t

µ([s, x]).

275 Proposition ( Möbius inversion )
For any f, g : P → k, we have

g(t) =
∑
s≤t

f(s) ⇔ f(t) =
∑
s≤t

g(s)µ(s, t).

Definition 276. Define the lattice of contractions LG as the set of connected (set) partitions of the vertices
of a graph G ordered by refinement; it is a sublattice of the partition lattice. The type is as usual the
obvious associated integer partition of #V (G).

277 Example
For the square with four vertices (and four edges), the elements of LG with three blocks are

12|3|4 13|2|4 1|3|24 1|2|34

278 Theorem
We have XG =

∑
π∈LG µ([0, π])ptype(π), where µ([0, π]) is the Möbius function on LG.

Proof Use Möbius inversion. For σ ∈ LG, let

Yσ =
∑
α∈Jσ

xα

where α ∈ Jσ iff α is a coloring where the blocks of σ are precisely the monochromatic connected
pieces of α. Now

ptype(π) =
∑
α

xα =
∑
σ≥π

Yσ

55



where the α are monochromatic on blocks of π. One can see this by conditioning on what the
monochromatic connected blocks of α are. By Möbius inversion,

Yσ =
∑
σ≥π

µ(π, σ)ptype(σ).

Now notice Y0̂ =
∑
α x

α where the α’s are monochromatic connected pieces are 1|2| · · · |n. But
this is just equivalent to being a proper coloring, so

XG =
∑
π∈LG

µ(0̂, π)ptype(π)

279 Example (Forests)
Let G be a forest. We show XG =

∑
λ`d eλbλpλ where eλ = (−1)d−|λ| = µ(0, π) for any type(π) = λ

and bλ is the number of connected partitions of type λ. First, observe that LG is a Boolean algebra,
by the poset isomorphism where each connected partition is sent to the edges its blocks contain. It
follows that we have the Mobius function µ(0, π) = (−1)d−|λ| for any type(π) = λ. The result then
follows from the preceding theorem.

280 Conjecture
XG 6= XH for two non-isomorphic trees G,H.

281 Remark
XG = XH iff bλ(G) = bλ(H).

Definition 282. Consider some labeling γ on the edges of a graph G. Call S ⊂ E a broken circuit
if it is a cycle with its largest edge removed, with respect to the labeling γ. Furthermore, let
BG denote the set of all subsets of E which do not contain a broken circuit.

283 Theorem
We have XG =

∑
S∈BG(−1)#Spλ(S)

Proof From other results, we have that

µ(0, π) =
∑
S

(−1)#S

where the sum is over all S ∈ BG such that GS has the blocks of π as its connected
components. The result then follows from using the preceding theorem.

May 9th, 2014: Reduced Incidence Coalgebras; Section
Coefficients; Matroids and Hereditary Classes; Many Examples

284 Remark
Neil is presenting on “Coalgebras and Bialgebras in Combinatorics” by Joni and Rota. No particular
big result; just a lengthy collection of interesting examples and observations.

Definition 285. Recall that if P is a poset, then we can form the incidence coalgebra of P , denoted C(P ) ,

as follows. It is the free k-vector space spanned by the segments [x, y] of P , with comultiplication
defined by breaking up the segments,

∆[x, y] =
∑

[x, z]⊗ [z, y].

(For this sum to be finite, P must be locally finite, i.e. P must have finite intervals.)
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Definition 286. An equivalence relation ∼ on intervals of a poset P is order-compatible if

{[x, y]− [u, v] : [x, y] ∼ [u, v]}

is a coideal. Given such a relation, we define the reduced incidence coalgebra as the quotient coalgebra

C(P )/∼, abbreviated as RIC.

287 Example
The standard RIC is the RIC defined by the equivalence relation [x, y] ∼ [u, v] iff [x, y] ∼= [u, v]
as posets.

Definition 288. A collection of section coefficients (i|j, k) on a set G is a map

(i, j, k) 7→ (i|j, k) ∈ Z≥0

such that

(1) For all i, #{(j, k) : (i|j, k) 6= 0} <∞.

(2)
∑
k(i|j, k)(k|p, q) =

∑
s(i|s, q)(s|j, p); this quantity is called (i|j, p, q) , a multisection coefficient .

Intuitively, we “cut i into pieces j and k”. Given a coalgebra with basis xi, we can take (i|j, k) to be
the coefficient of xj ⊗ xk in ∆(xi), so long as those coefficients are in Z≥0.

Definition 289. If G is a semigroup, bisection coefficients additionally require

(3) (i+ j|p, q) =
∑

(i|p1, q1)(j|p2, q2),

where the sum is over p1 + p2 = p and q1 + q2 = q.

290 Example
The binomial coefficients are bisection coefficients: (n|j, k) = n!/(j!k!) if j + k = n and 0 otherwise.
The bisection condition is Vandermonde’s convolution identity,(

i+ j

p

)
=

∑
p1+p2=p

(
i

p1

)(
j

p2

)
.

291 Example
We define a system of section coefficients on the incidence coalgebra using

([x1, x2]|[y1, y2], [z1, z2]) =

{
1 if x1 = y1, x2 = z2, y2 = z1

0 otherwise

292 Proposition
If there is a map ε : G→ k which satisfies∑

j

(i|j, k)ε(j) = δi,k and
∑
k

(i|j, k)ε(k) = δi,j ,

then we can form a coalgebra from the free k-vector space spanned by elements of G with coproduct
∆xi =

∑
(i|j, k)xj ⊗ xk. This is cocommutative if and only if (i|j, k) = (i|k, j). If we use bisection

coefficients, we get a bialgebra structure using xixj = xi+j as our multiplication.

293 Example
Let B be the boolean lattice on P, and consider C(B).
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(1) The boolean coalgebra on B uses

∆A =
∑

A1
∐
A2=A

A1 ⊗A2.

This arises as a quotient of C(B) using [A,B] ∼ [C,D] if B −A = D − C.

(2) The binomial coalgebra is given as follows. Let s > 0. Define Bs using the k-vector space

k[x1, . . . , xs] and comultiplication given by

∆(xn1
1 · · ·xnss ) =

∑(
n1

m1

)
· · ·
(
ns
ms

)
xm1

1 · · ·xmss ⊗ x
n−m1
1 · · ·xn−mss ,

where the sum is over (m1, . . . ,ms) ≤ (n1, . . . , ns).

This arises as the quotient of C(B) by the equivalence relation where [A,B] ∼ [C,D] if for all
k = 1, . . . , s, the number of i ∈ B −A where i ≡s k is the same as the number of j ∈ D−C where
j ≡s k.

For instance, if s = 1, we have [A,B] ∼ [C,D] iff |B−A| = |D−C|. If s = 2, we have [A,B] ∼ [C,D]
iff the number of even (respectively, odd) integers in B −A is the same as the number in D − C.

294 Example
Some coalgebras arise as duals of formal power series.

(1) The divided powers coalgebra D is the standard RIC of C(Z≥0) (standard order). One can check

that, using a coproduct on k[x] given by

∆xn =

n∑
k=0

xk ⊗ xn−k,

D∗ ∼= k[[x]] as algebras.

(2) The Dirichlet coalgebra D is defined as follows. Order P by divisibility. Use [i, j] ∼ [k, l] iff

j/i = l/k. Set D = C(P)/∼. An isomorphic description is to take the k-span of formal symbols
{nx : n ∈ Z≥0} using

∆nx =
∑
pq=n

px ⊗ qx.

This suggests an algebra structure given by nxmx = (nm)x, which unfortunately does not give a
bialgebra, but does give the identity

∆(nxmx) = ∆(nx)∆(mx)

whenever (n,m) = 1.

In this case, D∗ is isomorphic as an algebra to the algebra of formal Dirichlet series via f 7→∑
n f(ns)/ns.

Definition 295. Let S be a set. A matroid M(S) is a “closure relation” on S, meaning a map associating

a subset A of S to its “closure” A, such that the following holds:

1. A ⊂ A; A = A; A ⊂ B implies A ⊂ B; and

2. If A ⊂ S and p, q ∈ S, and p ∈ A ∪ {q}, then p ∈ A implies q ∈ A ∪ {p}.

Definition 296. Let A,B ∈M(S) with A ⊂ B. A segment M(A,B;S) is the matroid defined on B −A
as follows. If C ⊂ B −A, then C̃ := C ∪A−A.

Isomorphism classes of matroids are called types ; lattices of closed sets are called geometric lattices

(i.e. starting from a matroid, form a lattice by inclusion using the closure of the union).
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Definition 297. Given a geometric lattice L, let S be the atoms of L, that is, the elements covering 0̂.

For A ⊂ S, let A := {p ∈ S : p ≤ supA}, where supA is the join of the atoms. The result is the

combinatorial geometry of L.

Definition 298. A hereditary class H is a family of types of combinatorial geometries such that

(1) If α, β ∈ H, then α+ β ∈ H.

(2) If [M(S)] ∈ H, A,B ⊂M(S), then [M(A,B;S)] ∈ H.

(3) If α ∈ H and α = α1 + α2, then α1, α2 ∈ H.

299 Proposition
Given a hereditary class of matroids, we can form section coefficients (α|β, γ) as follows. If [M(S)] = α,
let the section coefficients be the number of closed sets A of such that β = [M(∅, A;S)] and γ =
[M(A,S;S)].

May 12th, 2014—Draft

Summary Hailun is presenting, “On Posets and Hopf Algebras”. Previous work included Schmidt’s
“Antipodes and Incidence Coalgebra” from 1987 and Gessel’s “Multipartite P -partitions and inner
products of skew Schur functions” from 1984. The main results are (1) there exists a Hopf algebra
homomorphism between them, and (2) re-express Möbius function Z(P, x) and X(P ).

Definition 300. Let I be the reduced incidence Hopf algebra. Let P be the type of the poset, meaning the
isomorphism class of the poset P . As before, the algebra structure is cartesian product. The coalgebra
structure is

∆(P ) =
∑
x∈P

[0̂, x]⊗ [x, 1̂]

with counit ε(P ) = 1 if P is a single point, and 0 otherwise. The antipode satisfies

ε(P ) =
∑

S(P(1)P(2).

Here we take posets which are finite, ranked, and have 0̂, 1̂.

301 Lemma
B graded, B = ⊕n≥0Bn, B0 = k, then S(1) = 1,

S(x) = −
m∑
i=1

S(yi)zi

where for x ∈ Bn, ∆(x) = x⊗ 1 +
∑m
i=1 yi ⊗ zi, deg yi < m.

302 Remark
Let Φ be the zeta function; Φ(P ) = 1. Then Φ ◦ S is the Möbius function and φ× (φ ◦ s) = 1Hom(I,I).

Definition 303 (QSYM recap). f(x1, x2, . . .) is quasi-symmetric if it is shift invariant, meaning the
coefficient of xa11 · · ·x

ak
k is the same as the coefficient of xa1i1 · · ·x

ak
ik

for an increasing sequence i1 < i2 <
· · · .
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We have the monomial basis Ma =
∑
i1<···ik x

a1
i1
· · ·wakik where a = (a1, . . . , ak) � n. We also have

the fundamental basis M̃a =
∑
b≤aMb, where the compositions are ordered by refinement. For this

paper, we change the definition slightly and use

M̃a = (−1)m−k
∑
b≤a

Mb

where a is a composition of m into k parts.

Definition 304. We give QSYM (called Ω today) its usual algebra structure; its coalgebra structure is given
by

∆(Ma) =

k∑
i=0

M(a1,...,ai) ⊗M(ai+1,...an)

and
ε(Ma) = δa,∅, ε(f) = const. term.

The Hopf algebra structure requires an argument. The antipode will be

S(Ma) = (−1)`(a)
∑
b≤a

Mb∗

where if b = (b1, . . . , bk), then b∗ = (bk, . . . , b1), and the sum is over b ∈ Σm, the set of compositions of
m.

Proof

S(Ma) = −
k−1∑
i=0

SM(a1,...,ai)M(ai+1, . . . , ak) = −
k−1∑
i=0

∑
MbM(ai+1, . . . , ak)

where the sum is over b ≤ (ai, . . . , a1). We can expand this in monomials, though it becomes
quite large and complicated. We can observe the first entry is from ai + ai−1 + · · · a1, or
ai + · · · aj + ai+1, or ai+1. There are many cancellations; consider ak + ak−1; all monomials
c ≤ a∗. The previously mentioned formula follows.

305 Theorem
There exists a Hopf algebra homomorphism F : I → Ω. It is defined by

P 7→
∑

M(ρ(x0, x1), . . . , ρ(xn−1, xn)

where the sum is over chains 0̂ = x0 < x! < · · · < xn = 1̂. (Here ρ(xi, xi+1) is the rank of the interval
[xi, xi+1].)

Proof Note that Ω is the inverse limit of Ωn (where Ωn is the same as Ω but we only use n
variables). Clearly F (1) = 1. It suffices to show the composite Fn : I → Ωn is an algebra

homomorphism. In particular, we need Fn(P ×Q) = Fn(P )Fn(Q). Letting κi(P ) = x
ρ(P )
i , we

find Fn = µn ◦ (κ1 ⊗ · · · ⊗ κn) ◦∆n), and the result will follow.
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Next we show F is a coalgebra homomorphism. We need (F × F ) ◦∆ = ∆ ◦ F . We have

(F × F ) ◦∆(P ) =
∑

0̂≤x≤1̂

F [0̂, x]× F [x, 1̂]

=
∑

0̂≤x≤1̂

 ∑
0̂=y0<···<yk=x

M(ρ(y0, y1), . . . , ρ(yk−1, yk))


⊗

∑
x=z0<···<zn=1̂

M(ρ(z0, z1), . . . , ρ(zk−1, zk))

=
∑

0̂=x0<···<xn=1̂

n∑
k=0

M(ρ(x0, x1), . . . , ρ(xk−1, xk)⊗M(ρ(xk, xk+1, . . . , ρ(xn−1, xn))

=
∑

∆M(ρ(x0, x1), . . . , ρ(xn−1, xn)

= ∆(F (P )).

306 Corollary
F (P ) =

∑
α(S)M(s1 − s0, . . . , sk − sk−1) where α(s) is the flag f -vector and the sum is over

S ⊂ [m − 1] and m is the rank of P . More explicitly, α(S) is the number of maximal chains of
P (S) := {x ∈ P : ρ(x) ∈ S}. In particular, F (Bm) = hm1 , F (Cm) = hm.

307 Theorem
Consider the diagram

I Ω

I Ω

F

id ω

F̃

Here Ω → Ω is given by Ma 7→ M̃a. Note that ω2 = 1. (Checked by Malvenuto and Reutenauer.)
Also, F̃ is given by P 7→

∑
(−1)ρ(P )µ(x0, x1) · · ·µ(xn−1, xn)Mρ(x0,x1)···ρ(xn−1,xn) where the sum is over

chains 0̂ = x0 < x1 < · · · < xn = 1̂. From Philip Hall’s theorem,

µ(x0, x1) =
∑

x0=y0<···<yn=x1

(−1)n,

so this is
∑

(−1)k over all 0̂ = z0 < z1 < · · · < zk = 1̂ which contains x0 < x1 < · · · < xn.

(The theorem is that this diagram commutes.)

308 Theorem
Consider Ω

Ψ→ k[x] given by f 7→ f(1, 1, . . . , 1, 0, . . .); call the vector we’re substituting 1x. Define

Ma(1x) =
(
x
k

)
where a is a composition of k.

Definition 309. The Zeta polynomial is the number of multichains from 0̂ to 1̂ of length n. This is equal to
ψ ◦ F . This is because ψ ◦ F = F (P ; 1n) counts the number of multichains.

May 14th, 2014: Characters; Combinatorial Hopf Algebras;
(QSYM, ζQ) as Terminal Object; Even and Odd Subalgebras;

Dehn–Sommerville Relations
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Summary Jose is lecturing today on “Combinatorial Hopf algebras and generalized Dehn–Sommerville
relations” by Aguiar, N. Bergeron, and Sottile. Today’s outline:

(1) Character group

(2) Combinatorial Hopf algebras

(3) (QSYM, ζ) as terminal object

(4) Dehn–Sommerville relations

310 Notation
(H,m, u,∆, ε, S) is a graded, connected Hopf algebra throughout this lecture, and our Hopf algebras
are generally graded connected today.

Definition 311. A character of H is a linear map ζ : H → k which is an algebra map, i.e. ζ(ab) = ζ(a)ζ(b)
and ζ(1) = 1. We can multiply linear functionals φ, ψ : H → k using convolution:

φψ : H
∆→ H ⊗H φ⊗ψ→ k⊗ k m→ k.

Let χ(H) be the set of characters on H. The convolution gives it a group structure with identity ε

and inverse ζ−1 = ζ ◦ S.

If H is cocommutative, then χ(H) is commutative. If α : H ′ → H is a Hopf algebra morphism,
there is an induced morphism α∗ : χ(H)→ χ(H ′) given by ζ 7→ ζ ◦ α. Indeed, this is a contravariant
functor from the category of Hopf algebras to the category of groups.

Definition 312. Let (·) : H → H be the involution defined by h 7→ h := (−1)nh for h ∈ Hn. This is linear,

so induces an automorphism χ(H) → χ(H), which we’ll denote ζ 7→ ζ. Call a character ζ even iff

ζ = ζ, and call it odd iff ζ = ζ−1.

Definition 313. Let χ+(H) be the set of even characters in χ(H), which is a subgroup in general, and let

χ−(H) be the set of odd characters, which is a subgroup when H is cocommutative.

A character ζ comes with two other induced characters, namely

ν := ζ
−1
ζ (odd)

χ := ζζ (even).

314 Theorem
Every character ζ can be written uniquely as a product of an even and odd character,

ζ = ζ+ζ−

Definition 315. A combinatorial Hopf algebra (CHA) is a pair (H, ζ) where H is a Hopf algebra and ζ

is a character. We define the category of CHA’s using these objects and the following morphisms.
α : (H ′, ζ ′) → (H, ζ) is a morphism when α : H ′ → H is a graded Hopf algebra morphism and α is
compatible with the characters in the sense that

H ′ H

k

α

ζ′ ζ
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Definition 316. Given a CHA (H, ζ), call ζ the zeta character , call ζ−1 the Möbius character , call

χ = ζζ the Euler character , and call ν = ζ−1ζ the odd character . (Minor note: ζ−1 = ζ
−1

.)

Some motivation for this notation: let R be the Hopf algebra of posets from last time. Then
ζ(P ) := 1, the Möbius character is ζ−1(P ) = µ([0p, 1p]), we can define a simplicial complex from a poset
whose Euler characteristic is given by χ(P ), and the odd character is related to the Dehn–Sommerville
relations.

Definition 317. Define a free algebra of non-commutative variables NSYM via H := k〈H1, H2, . . .〉
graded by Hi ∈ Hi. Use the “rock-breaking” coproduct

∆(Hn) :=

n∑
i=0

Hi ⊗Hn−i.

Here we write H0 for 1H for convenience. There is a map NSYM → SYM given by Hn 7→ hn; the
kernel is the commutator subalgebra, so essentially SYM is just making NSYM commutative.

318 Remark
Let H be a Hopf algebra. Recall that H∗ = ⊕∞n=0H

∗
n (so long as the graded pieces are each finite

dimensional). There is a map
NSYM→ (QSYM)∗

given by Hi 7→M∗(i), Hα 7→M∗α where α is a composition and Hα := Hα1 · · ·Hαn . Indeed, this is an
isomorphism!

Definition 319. Define a character ζQ : QSYM→ k by

Mα 7→
{

1 if α = (n)
0 otherwise

which is given by evaluating at (1, 0, 0, . . .).

320 Theorem
(QSYM, ζQ) is a terminal object in the category of CHA’s. That is, for every CHA (H, ζ), there is a
unique morphism ψ : (H, ζ)→ (QSYM, ζQ). Furthermore, given h ∈ Hn,

ψ(h) =
∑
α�n

ζα(h)Mα

where ζα is defined as follows. Let α = (α1, . . . , αk), so k is the number of parts of the composition.

H H⊗k Hα1
⊗ · · · ⊗Hαk

k
⊗k

k

∆(k−1)

ζα

ζ⊗k

m(k−1)

This composite is a (graded) linear functional, but is not in general a character since it is not in general
an algebra homomorphism.

Proof Some definitions first. Let ζn := ζ|Hn ∈ H∗n. Define φ : NSYM→ H∗ given by Hn 7→ ζn. One
can check that using the formula for ψ above, ψ = φ∗; implicitly we use the fact that H∗∗n ∼= Hn
since each graded piece is finite dimensional. Since φ is an algebra map, φ∗ = ψ is a coalgebra
map. One can also see this gives uniqueness, using the fact that NSYM is a free algebra: any

63



other ψ′ can be dualized to give φ with the same action on each Hn, hence the same action on
all of NSYM; dualize again to get ψ = ψ′. The only remaining step is showing ψ is an algebra
map.

Indeed, at this point we’ve shown that (QSYM, ζQ) is a terminal object in the category
of coalgebras (with characters, which are only assumed to be linear functionals in this case).
Running a⊗ b through the top row of the following diagram gives ψ(a)ψ(b):

H⊗2 QSYM⊗2 QSYM

k

ψ⊗2

ζ⊗2

m

ζ2Q
ζQ

Similary, running a⊗ b through the top row of the next diagram gives ψ(ab):

H⊗2 H QSYM

k

m

ζ⊗2
ζ

ψ

ζQ

Since (QSYM, ζQ) is the terminal object for these coalgebras, the top rows H⊗2 → QSYM must
in fact agree, so ψ(a)ψ(b) = ψ(ab).

321 Remark
If you’re only interested in cocommutative Hopf algebras, you can replace QSYM with SYM in the
above.

Definition 322 (Even and odd subalgebras). Let φ, ψ be two characters for H. Where are they equal?

Let S(φ, ψ) be the maximal graded subcoalgebra such that ψ = φ on S(φ, ψ). (The arbitrary union of

graded subcoalgebras is a subcoalgebra, in analogy to the arbitrary intersection of graded subalgebras

being a subalgebra.) Define I(φ, ψ) be the ideal in H∗ generated by φn − ψn (again, φn := φ|Hn).

323 Theorem
(i) S(φ, ψ) = {h ∈ H : f(h) = 0 for all f ∈ I(φ, ψ).}

(ii) I(φ, ψ) is a graded Hopf ideal (i.e. an ideal, a coideal, and graded).

(iii) S(φ, ψ) is a Hopf subalgebra (i.e. a subalgebra and subcoalgebra).

(iv) S(φ, ψ) = ker((id⊗(φ− ψ)⊗ id) ◦∆(2)).

Definition 324. Let S+(H, ζ) := S(ζ, ζ) be the even subalgebra . Roughly, this is the largest sub-Hopf-

algebra where ζ is even. Similarly define S−(H, ζ) := S(ζ, ζ−1), called the odd subalgebra .

325 Proposition
A quick computation shows S(ζ, ζ) = S(ν, ε) is the even subalgebra, and S(ζ, ζ−1) = S(χ, ε) is the
odd subalgebra. Hence

S−(H, ζ) = ker((id⊗(ζ − ζ−1)⊗ id) ◦∆(2))

= ker((id⊗(χ− ε)⊗ id) ◦∆(2))
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Definition 326. Consider QSYM. Let h =
∑
γ�n fγMγ be a quasisymmetric function. If we use the first

kernel from the previous proposition, we find h ∈ S−(H, ζ) if and only if for all α = (a1, . . . , ak),

(−1)aifα =
∑
β�ai

(−1)`(β)fα0iβ ,

where α0iβ := (a1, . . . , ai−1, β, ai+1, . . . , ak). Using the second kernel, the condition is instead

ai∑
j=0

(−1)jf(a1,a2,...,ai−1,j,ai−j,ai+1,...) = 0.

These two equations are the (generalized) Dehn-Sommerville relations .

327 Example
P is Eulerian if and only if µ([x, y]) = (−1)`(x)−`(y).

May 16th, 2014: The Centralizer Theorem; Schur-Weyl Duality;
Partition Algebras

Summary Brendan will be presenting on “Partition algebras” by Halverson-Ram.

328 Theorem (Centralizer Theorem)
Let A be a finite dimensional algebra over an algebraically closed field k. Suppose M is a semisimple A-

module, so A =
∑
λ∈M̂ mλA

λ for some simple A-modules Aλ and some index set M̂ . Set Z := EndA(M),
the A-linear maps M →M , which is a subset of End(M), the k-linear maps M →M . Then

(1) The simple Z-modules are indexed by M̂ .

(2) As an (A,Z)-bimodule, M ∼= ⊕λ∈M̂A
λ ⊗k Zλ for simple Z-modules Zλ (note: multiplicity free).

(3) EndZ(M) ∼= A.

A remark on the name: we have φ : A→ End(M), and Z = {f ∈ End(M) : fg = gf,∀g ∈ imφ}, so Z
is the centralizer of the image of φ.

329 Example
Take V = Cn. Then V ⊗k is an Sk-module:

σ(v1 ⊗ · · · ⊗ vk) = vσ(1) ⊗ · · · ⊗ vσ(k).

Let A = C[Sk], M = V ⊗k. By Maschke’s theorem, the hypotheses of the centralizer theorem
are satisfied. What is Z = EndSk(V ⊗k, V ⊗k)? That is, which linear T : V ⊗k → V ⊗k satisfy
T (vσ(1) ⊗ · · · ⊗ vσ(n)) = σT (v1 ⊗ · · · ⊗ vn).

The answer is (maybe–there may be an error here) maps of the form v1 ⊗ · · · ⊗ vk 7→
gv1 ⊗ · · · ⊗ gvk for a fixed g ∈ GL(V ). This is the standard action of GL(V ) on V ⊗k using the
diagonal action. So, as an (Sk,GL(V ))-bimodule,

V ⊗k ∼=
⊕
λ∈M̂

Sλ ⊗ Eλ

for Specht modules Sλ and simple GL(V )-modules Eλ. Indeed, M̂ is the set of partitions of k

with length ≤ dimV . This is called Schur-Weyl duality .
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330 Example
Consider V ⊗2 ∼= S2(V )⊕ Λ2(V ) (for chark 6= 2), using the decomposition

v ⊗ w =
1

2
[(v ⊗ w + w ⊗ v) + (v ⊗ w − w ⊗ v)].

One can check S2(V ) and Λ2(V ) are irreducible GL(V )-modules. As (S2,GL(V ))-modules,

V ⊗2 ∼= (triv⊗ S2(V ))⊕ (sgn⊗ Λ2(V )).

Letting M = V ⊗k, n = dimV , we have

GL(V ) ⊃ O(V ) ⊃ Sn

where Sn permutes basis elements, and

Sk ⊂ CBk(n) ⊂ CAk(n) ⊂ CAk+1/2(n)

where Sk permutes tensor factors, CBk(n) is the Brauer algebra, CAk(n) and CAk+1/2(n) are
“partition algebras”.

Definition 331. The partition algebra CAk(n) has as C-basis the set partitions of

{1, 2, . . . , k, 1′, 2′, . . . , k′}.

For instance, one element is {13, 244′5′, 56′, 2′3′, 6, 1′}. One can draw this by labeling vertexes 1, . . . , n
in the top row, labeling vertexes 1′, . . . , n′ in the bottom row, and drawing a path between elements in
the same blocks. (There are many such representations in general.) See the paper for many pretty
pictures. We “stack” two partitions π, ρ resulting in π ∗ ρ by stacking the resulting diagrams vertically,
deleting and components that don’t go entirely from “top to bottom”. We define multiplication of π
and ρ as

πρ := nc(π ∗ ρ)

where c is the number of components we deleted in π ∗ ρ.

Definition 332. We define an action of CAk(n) on V ⊗k as follows. Suppose v1, . . . , vn is a basis of V with
dimV = n. Now k-tuples I ∈ [n]k index a basis for V ⊗k,

vI := vi1 ⊗ · · · ⊗ vik if I = (i1, . . . , ik).

View (I, J) as a function {1, 2, . . . , k, 1′, 2′, . . . , k′} → [n] where I corresponds to the unprimed elements
and J to the primed elements. For π a partition, define

(π)IJ =

{
1 if (I, J) is constant on blocks of π
0 else

Then π : V ⊗k → V ⊗k via
πvI =

∑
J

(π)IJvJ .

333 Example
Let π = {1′, 122′, 33′}, k = 3, n = 2. Then πv112 = v112 + v212. Now consider applying the
transposition (2, 1) ∈ S2; this gives πv221 = v221 + v121. So, the CAk(n)-action and the action
of Sn commute.

334 Theorem
The above-defined map CAk(n)→ End(V ⊗k) has image EndSn(V ⊗k). We can decompose V ⊗k as a
(CAk(n), Sn)-bimodule

V ⊗k ∼=
⊕

λ∈Âk(n)

Aλk(n)⊗ Sλ
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where the Aλk(n) are simple modules and the Sλ are Specht modules. As Sn-modules,

V ⊗k ∼=
⊕

λ∈Âk(n)

dim(Aλk(n))Sλ.

A relatively easy computation gives (as Sn-modules)

V ⊗k ∼= (IndSnSn−1
ResSnSn−1

)k1,

which is analogous to the Pieri formula.

May 19th, 2014: Internal Product on SYM; P -partitions;
Factorizations with Prescribed Descent Sets

Summary Jair is presenting “Multipartite P -partitions and inner products of skew Schur functions” by
Gessel, 1984.

335 Remark
Recall Λ (the symmetric functions in countably many variables t = t1, t2, . . .) is a bialgebra using
the usual multiplication and the following comultiplication. First view Λ⊗ Λ as Λ on the alphabet
x ∪ y = x1, y1, x2, y2, . . .. Given f(t), we define ∆(f(t)) = f(x ∪ y); since f is symmetric, the order in
which we substitute variables is irrelevant, so this is well-defined. An alternate coproduct ∆′ is given
by ∆′f(t) = f(xy), where we interpret the right-hand side as being over xy := {xiyj : xi ∈ x, yj ∈ y}.

Recall that, for the usual coproduct, pi is primitive, so ∆pi = 1⊗ pi + pi ⊗ 1. For this alternate
coproduct, we have

∆′pi = ∆′(ti1 + ti2 + · · · ) = ∆′((x1y1)i + (x1y
2)i + (x2y1)i + · · ·

= xi1(yi1 + yi2 + · · · ) + xi2(· · · ) + · · · = pi(x)pi(y).

Hence ∆′pi = pi(x)⊗ pi(y), so pi is grouplike under ∆′.

Fact: (Λ,m,∆′, u, ε) is a bialgebra.

Definition 336. We have a multiplication on Λ∗ induced by ∆′. We also have an isomorphism

Λ→ Λ∗

f 7→ 〈f,−〉

using the Hall inner product. This induces a multiplication ∗ on Λ as the unique solution to

〈f ∗ g, h〉 = 〈f ⊗ g,∆′h〉.

Consider this operation on the pi’s. Recall that {pλ} and {pλ/zλ} are dual bases, where if λ =
1m12m2 · · · , then zλ = 1m1m1!2m2m2! · · · . Hence

〈pµ ∗ pν , pλ〉 = 〈pµ ⊗ pν , pλ ⊗ pλ〉
= 〈pµ, pλ〉〈pν , pλ〉
= δµλzλδνλzλ.

Thus pµ ∗ pν = 0 if µ 6= ν, and otherwise

〈pµ ∗ pµ, pλ〉 = z2
λδµλ = 〈zµpµ, pλ〉,

so that pµ ∗ pν = δµνzµpµ. Call the ∗ operation the internal product .
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337 Proposition
Fact: ∗ is equivalent to tensoring Sn-representations, in the following sense. Recall the Frobenius
characteristic map

chχ =
∑
µ

χ(µ)

zµ
pµ,

where χ is a class function on Sn and the sum is over conjugacy classes.

Claim:
chχ1 ⊗ χ2 = chχ1 ∗ chχ2

and
ch(V1 ⊗ V2) = chV1 ∗ chV2

for Sn-modules V1, V2. (Compare to our earlier definition,

ch(V1 ⊗ V2)↑Sn+m

Sn×Sm= (chV1)(chV2).)

Proof (of claim). Recall sλ =
∑ χλ(µ)

zµ
pµ = chχλ, where the χλ are the irreducible characters. Hence

sλ ∗ sν =
∑
µ1,µ2

χλ(µ1)χν(µ2)

zµ1
zµ2

pµ1
∗ pµ2

=
∑
µ

χλ(µ)χν(µ)

zµ
pµ

= chχλ ⊗ χν .

338 Notation
If α = (α1, α2, . . .) is a composition, let R(α) be the corresponding ribbon λ/µ:

339 Example
R(3214) is −−− ∗ ∗ ∗ ∗/−−− ∗/ ∗ ∗ − −/ ∗ ∗∗ where the ∗’s indicated boxes taken and the
−’s indicate boxes skipped, and the /’s indicate new rows; this is in English notation.

There is an implicit translation between descent sets of a given permutation and compositions given
as in the following example. If π = 132465 in one-line notation, the associated composition is
13|246|5 7→ (2, 3, 1). Let D(π) denote the usual descent set of a permutation π, and let R(D(π)) denote
the associated composition. More generally, for fixed n, there is an easy bijection between compositions
of n and subsets of [n− 1] generalizing this operation.

340 Theorem
Let π ∈ Sn and supposeD1, . . . , Dk ⊂ [n−1]. The (“absurd fact”) number of factorizations π = π1 · · ·πk
where D(πi) = Di for all i is

〈sR(D(π)), sR(D1) ∗ · · · ∗ sR(Dk)〉.

Proof Lengthy; we’ll just hit a few high points for the rest of the lecture.

Definition 341. Let P be a poset P = ([n],≤P ). A P -partition is a function

f : [n]→ P

which is

i. weakly increasing, so i ≤p j implies f(i) ≤ f(j);

ii. “squishes nicely”, so that if i < j (in [n]) with f(i) = f(j), then i <p j.

Equivalently, if i <p j and i > j, then f(i) < f(j).
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342 Example
Let P have vertices 1, 2, 3, 4 with covering relations 1 < 2, 1 < 3, 3 < 4. Then a P -partition must
satisfy f(1) ≤ f(2), f(1) ≤ f(4), f(4) < f(3).

Definition 343. Let A(P ) = {P-partitions} and let ΓP be the generating function

ΓP :=
∑

f∈A(p)

n∏
i=1

xf(i) ∈ QSYM .

If π ∈ Sn, form a poset π(1) < π(2) < π(3) < · · · . Then Γπ = FD(π), the fundamental quasisymmetric
function associated with the descents of π.

344 Remark
How do these P -partitions connect to counting factorizations? The idea is

∆′(FD(π)) =
∑

τσ=π∈Sn

FD(τ)(x)FD(σ)(y).

345 Example
Given skew shape λ/µ, take labeled poset Pλ/µ by −− ∗ ∗ ∗/ ∗ ∗ ∗ /∗ which maps to the poset
with covering relations 2 < 1, 2 < 3, 3 < 4, 5 < 4, 5 < 6, 6 < 7. Then ΓPλ/µ = sλ/µ.

346 Conjecture
Only the skew shapes give posets with symmetric associated quasisymmetric functions; see
Stanley.

May 21, 2014: (Special) Double Posets, E-Partitions, Pictures,
Yamanouchi Words, and a Littlewood-Richardson Rule

Summary Today, Michael is lecturing on “A Self Paired Hopf Algebra on Double Posets and a Littlewood-
Richardson Rule” by Malvenuto and Reutenauer. Outline:

(1) ZD is a graded Hopf algebra

(2) ZDS is a special case

(3) Connection to L-R rule

Definition 347. A double poset is a triple (E,<1, <2) where E is finite, <1 and <2 are two partial orders

on E. (Today, E will typically refer to a double poset.) Define a morphism between double posets
as one which is order-preserving for both partial orders, so we have a notion of isomorphism. Today
we’ll tacitly take double posets only up to isomorphism, i.e. we’ll implicitly use isomorphism classes of
double posets.

Let D be be the set of double posets, and ZD the formal Z-linear combinations of double posets.

348 Example
Given a poset, label the vertices giving a total order; use the original order as <1, and use the
labeling order for <2.

Definition 349. Let E,F ∈ D. Define EF to be the poset (E ∪ F,<1, <2) where <1 compares pairs of
elements of E or of F using their first orders and pairs consisting of one element of E and one element
of F are incomparable. <2 is the same using the second orders, except e <2 f for any e ∈ E, f ∈ F .
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Definition 350. Suppose (E,<) is a poset. An inferior order ideal I is a subset of E which is closed under

<, i.e. if y ∈ I and x < y, then x ∈ I. Likewise a superior order ideal is closed under >. Define (I, S)

to be a decomposition of E if I is an inferior order ideal, S is a superior order ideal, and E is the

disjoint union of I and S. (Hence I and S are complements.)

Definition 351. Let (E,<1, <2) be a double poset. Define a decomposition of E to be a decomposition of
(E,<2), but endow I, S with partial orders <1 and <2 by restriction, yielding double posets.

Definition 352. We define a comultiplication ∆: ZD → ZD ⊗ ZD by breaking into decompositions:

∆(E,<1, <2) =
∑

(I,S) of (E,<1,<2)

(I,<1, <2)⊗ (S,<1, <2).

353 Theorem
ZD is a graded Hopf algebra over Z (graded by size of E). (This is different from our usual assumption
that Hopf algebras are over fields, but it works out.) See the paper for a terminal morphism to QSYM.

Definition 354. Let E ∈ D. If <2 is a total order, then E is called a special double poset . This is just a

labeled poset. Let ZDS be the subset of ZD spanned by special posets.

Definition 355. A linear extension of a special double poset E is a total order on E that extends <1.
Given a linear extension, write the elements of E in increasing order, e1 <1 e2 <1 e3 <1 · · · . Now let
ω : E → [#E] be the labelling given by <2. Define σ ∈ S#E by σ(i) = ω(ei). For instance, with the
“Y”-shaped poset labeled 1 at the bottom, 2 at the branch, and 3 and 4 at the tips, extend the poset to
a linear order by taking 3 > 4. Then σ in one-line notation is 1243.

356 Theorem
ZDS is a sub-bialgebra of ZD, and there is a bialgebra homomorphism

ZDS → ZS

which sends a special double poset to the sum of all its linear extensions.

Definition 357. A Yamanouchi word is as usual: it’s a word in P such that when read left to right the
number of 1’s always weekly exceeds the number of 2’s, which always weekly exceeds the number of

3’s, etc. For instance, w = 11122132 is Yamanouchi. It has weight 142331. The complement of a

word in P is given by replacing i by k − i+ 1, where k is the maximum element of P appearing in the
word. For instance, the complement of w is 33322312.

Definition 358. If E ∈ D, a map χ : E → X (where X is a totally ordered set) is an E-partition if

(1) e <1 e
′ ⇒ χ(e) ≤ χ(e′), and

(2) e <1 e
′ and e ≥2 e

′ together imply χ(e) < χ(e′).

(Compare to the previous lecture’s P -partitions. There <2 comes from the standard ordering on [n],
though this is a little more general.)

Definition 359. Given a special double poset (E,<1, <2) with labeling ω (i.e. ω encodes the total order <2

as above) and a word w = a1 · · · an on a totally ordered alphabet A, we say w fits into E if the map
e 7→ aw(e) is an E-partition.

360 Example
Consider the case when the word is the one-line notation of a permutation in Sn. The map
to consider takes e to τω(e). Since τ is bijective, the second condition for an E-partition is
vacuously satisfied, so we just need the map (E,<1)→ [n] to be weakly increasing.
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Definition 361. Given a partition ν of n, we can construct a special double poset as follows. Let Eν be
the Ferrers diagram of ν. For concreteness, use French notation and consider Eν ⊂ N⊗ N. Let <1 be
the partial order induced by the component-wise order on N× N. Let <2 be the partial order induced
by (x, y) <2 (x′, y′) if and only if y > y′ or y = y′ and x < x′. Hence Eν is a double poset.

Definition 362. A picture between two double posets E,F is a bijection φ : E → F such that (1) e <1

e′ ⇒ φ(e) <2 φ(e′) and (2) f <1 f
′ ⇒ φ−1(f) ≤2 φ

−1(f ′). (The origin of the term “picture” is unclear;
originally due to Zelevinsky in 1981.)

Given a double poset E, define Ẽ to be E but using the opposite posets for both <1 and <2.

363 Theorem
Let E be a special double poset. Suppose ν is a partition. Then the number of pictures from E to Eν
is

i. the number of Yamanouchi words of weight ν whose complement fits into E;

ii. the number of Yamanouchi words whose mirror image fits into Ẽ

Note: Zelevinsky says (ii) gives the Littlewood-Richardson coefficients. We only have one partition ν
here, so we need two more: these can be encoded in the special double poset E, though it seems the
translation is not entirely immediate.

Proof See paper. We’ll just discuss one proposition it relies on.

364 Proposition
Let T be a standard Young tableau and let w be the associated Yamanouchi word. If u is the
complement of w, then the reading word of T is equal to the inverse of the standard permutation
of u.

365 Example
Consider the tableau T = 3/25/1467. The associated Yamanouchi word is w = 1231211
where we read off the row number of 1, 2, 3, . . .. Hence u = 3213233. The reading word
is obtained by just reading normally (in French): 3251467. The standardization of u is
4215367, whose inverse is indeed 3251467. The standarization is constructed in blocks as
−− 1−−−−, −21− 3−−, 4215367.

Aside: Affine Group Schemes and Commutative Hopf Algebras

Summary This explains and formalizes the statement “commutative Hopf algebras are equivalent to affine
group schemes”.

Definition 366. An affine group scheme over k is an affine k-scheme G together with (scheme) morphisms

M : G×G→ G (multiplication), I : G→ G (identity), and U : speck→ G (unit) satisfying the usual
group axioms in diagrammatic form. The associativity and unit axioms are:

G×G×G G×G

G×G G

(M,id)

(id,M) M

M

speck×G G G× speck

G×G G G×G

U×id

∼

id

∼

id×U

M M

The inverse axiom is
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G×G

G speck G

G×G

Mid,I

I,id

U

M

(Recall that a k-scheme by definition comes with a map G→ speck, which endows the rings of sections
Γ(G,U) as U varies over open subsets of G with (compatible) k-module structures. In particular, the

global sections k[G] are a k-vector space. Recall further that speck is the final object in the category

of k-schemes, which explains its appearance in the inverse map and axiom: in the category of sets,
speck would be replaced by a singleton, and we would have literally the definition of a group. Of
course, rings of sections of schemes are by assumption commutative, so k[G] is a commutative ring.

Also, given affine k-schemes specA and specB, we have specA × specB = spec(A ⊗k B). In
particular, speck× specA = spec(k⊗k A) = specA.)

367 Proposition
The category G of affine group schemes over k is (anti-)equivalent to the category H of commutative
Hopf algebras over k. More precisely, the global sections functor G → H is well-defined and part of
an (anti-)equivalence of categories, the other half of which is the spec functor H → G, which is also
well-defined.

Proof Given an affine group scheme G, let H := k[G] be its global sections. Let ∆: H → H ⊗k H
be the map of global sections corresponding to M : G × G → G, let ε : H → k correspond to
U : speck→ G, and let S : H → H correspond to I : G→ G.

For instance, if G is a variety, H = k[G] consists of algebraic functions G → k, and the
global sections functor corresponds to taking pullbacks: I : G→ G is in particular a map of sets
and the induced map S : H → H is just given by f : G→ k maps to f ◦ I : G→ k.

In any case, apply the (contravariant) global sections functor to the associativity and unit
diagrams (together with the comment above about products in G corresponding to tensor
products over k) to get

H ⊗k H ⊗k H H ⊗k H

H ⊗k H H

∆⊗id

id⊗∆

∆

∆

k⊗k H H H ⊗k k

H ⊗k H H H ⊗k H

∼ ∼

ε⊗id

∆

id

∆

id⊗ε

Of course, these are just the coproduct diagrams. ∆ and ε are also algebra morphisms, and H
is in particular a k-algebra with multiplication m : H⊗kH → H and unit u : k→ H, so we have
a bialgebra structure (H,m, u,∆, ε). There is one wrinkle: the inverse axiom’s diagram isn’t
quite the same as the Hopf algebra diagram. We claim the map of global sections corresponding

to G
id,I→ G×G is precisely the composite

H ⊗k H
S⊗id→ H ⊗k H

m→ H,

in which case the corresponding diagram is
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H ⊗k H H ⊗k H

H k H

H ⊗k H H ⊗k H

m

S⊗id

u ε

∆

∆m
id⊗S

which is exactly the antipode diagram. (The claim is an easy exercise. It is essentially the same
as proving specA× specB = spec(A⊗k B).)

The rest of the proof is tedious and trivial: maps of affine group schemes over k indeed induce
maps of their corresponding Hopf algebras; this is functorial; the spec functor indeed yields
affine group schemes over k where the comultiplication corresponds to the group multiplication,
the counit corresponds to the group unit, and the antipode corresponds to the group inverse;
this correspondence is also functorial; and these functors give an (anti-)equivalence of categories,
since they are contravariant; it is not an (anti-)isomorphism of categories because affine schemes
are merely isomorphic to spec of their global sections.

May 23rd, 2014: Open Problem Day

Summary ¡Today will be open problem day! Monday there is no class, Wednesday will be Monty, Friday
will be Sara.

368 Remark
Sadly, these notes have been redacted. They were distributed in an email to the class, though.

May 28th, 2014: Hecke Algebra of Sn; Kazhdan-Lusztig
Polynomials; Cells

Summary Monty McGovern is lecturing on the Kazhdan-Lusztig polynomials today.

369 Remark
Recall the standard presentation for the symmetric group expressing it as a Coxeter group, Sn =
〈s1, . . . , sn−1 : s2

i = 1, (sisj)
mij = 1〉 where mij is 2 if |i− j| ≥ 2 and 3 if |i− j| = 1 for i 6= j.

Definition 370. The Hecke algebra H attached to Sn is the following structure. It is an algebra over
Z[q, q−1] generated by T1, . . . , Tn−1 subject to relations

(Ti + 1)(Ti − q) = 0, (TiTj)
mij = 1 (i 6= j)

with mij as above. Then we may set Twi = Tsi1 · · ·Tsik if w = si1 · · · sik is a reduced expression for w.

Claim: Tw is independent of the choice of decomposition, and the Tw form a free basis for H over
Z[q, q−1].

371 Remark
We will produce a (Kazhdan-Lusztig) basis of H, also indexed by Sn, with triangular change of basis
matrix to Tw, such that we can find quotients of certain left ideals spanned by the Cw (the new basis
vectors) which are irreducible H-modules.
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Definition 372. Recall the Bruhat order on Sn, in the following guise. Given a reduced decomposition
w = si1 · · · sik , the elements v < w in Bruhat order are precisely the subexpressions of this reduced
word (i.e. “cross off” some of the factors sij ).

Definition 373. Define an involution ι on H as follows. Unusually, ι does not fix the base ring of the algebra
H, but instead ιq = q−1. Also use ιTw = T−1

w−1 .

Proof These operations preserve the defining operations.

We will find a new basis of H indexed by W := Sn consisting of elements fixed by ι. Since
T−1
s = q−1Ts − (1 − q−1) is asymmetric, we need to enlarge our scalars to find ι-fixed elements. In

particular, use Z[q1/2, q−1/2].

Definition 374. Let Cs := q−1/2(Ts − q). One can check this is fixed by ι. Naively, we might try using
Cw = Csi1 · · ·Csik for w = si1 · · · sik , but this is not independent of reduced decomposition. However,
we will take this as a “first approximation” and tweak it.

375 Notation
Let ε(w) := (−1)`(w), which is 1 if w is even and −1 if w is odd. Let qw := q`(w) where `(w) is the

length of a reduced decomposition for w.

376 Theorem (Kazhdan-Lusztig, Inv. Math 53 (1979), 105-184)
For each w ∈ Sn, there is a unique Cw ∈ H such that

(a) ιCw = Cw

(b) Cw = εwq
1/2
w
∑
x≤w εxq

−1
x Px,wTx where Pw,w = 1, Px,w ∈ N[q] has degree ≤ 1/2(`(w)− `(x)− 1)

if x < w, and Px,w = ιPx,w. Finally, Px,z = 0 if x 6≤ z.

Requirement (b) is a refinement of the statement above that the change of basis matrix between {Cw}
and {Tx} is triangular. The Px,w are the Kazhdan-Lusztig polynomials .

377 Proposition
Their proof of existence yields an inductive formula for the Kazhdan-Lusztig polynomials,

Px,z = q1−cPsx,sw + qcPx,sw −
∑
z<sw
sz<z

µ(z, sw)q−1/2
z q1/2

w Px,z

where: s is a transposition chosen so that sw < w; c = 0 if x < sx and c = 1 if x > sx; µ(z, sw) :=
coefficient of q1/2(`(sw)−`(z)−1) in Pz,sw. (One may argue that indeed the Px,w involve only integral
powers of q, hence they are honest polynomials in q.)

378 Corollary
All constant terms of non-zero Px,w are 1. Moreover, Px,w = 0 iff x 6≤ w.

(Indeed, a result of Polo says that every polynomial in N[x] with constant term 1 is a Kazhdan-
Lusztig polynomial for some Coxeter group.)

379 Proposition
Using the Kazhdan-Lusztig basis (it is indeed a basis from the triangular relationship (b) above), we
can deduce an “almost triangular” formula for the left action of H on a Cw (there is a similar formula
for the right action). In particular,

TsCw =

{
−Cw sw < w
qCw + q1/2Csw + q1/2

∑
z<w
sz<z

µ(z, w)Cz sw > w

Roughly, much of the complicated information that goes into constructing the polynomials gets washed
out by this action.
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Definition 380. Write x ≤L w if the left ideal HCw contains an element involving Cx. Similarly we define

x ≤R w if the right ideal CwH contains an element involving Cx. Likewise define x ≤LR w if HCwH

(the set of sums of products hCwh
′) contains a term involving Cx.

381 Proposition
We can decompose H into left ideals spanned by Cw. It is clear that

{Z[q1/2, q−1/2]Cx : x ≤L w}

is a left ideal of H, called the left cone over w. Similarly we have the right cone and the

two-sided cone .

Definition 382. To make these cones irreducible (as H-modules), we pass to the corresponding “cells”, as
follows. Define x <L w if x ≤L w but w 6≤L x (this is essentially fixing up antisymmetry). Then the
span of all Cx with x ≤L w modulo the span of all Cx with x <L w is a quotient by the construction
of left ideals of H, so is a left module for H, which at least has a better chance of being irreducible.

We call this quotient or the set of x with x ∼L w (meaning x ≤L w and w ≤L x) the left cell of w .

We similarly define right cells and two-sided cells or double cells , giving equivalence relations
∼R,∼LR.

These relations have “many, many, many applications to representation theory of left cells”.

383 Proposition
For W = Sn, the left cells are irreducible H-modules, and likewise for right and two-sided cells.
Moreover, the left, right, and two-sided cells may be computed by RSK, w 7→ (TI(w), TR(w)) where TI
is the insertion tableau, TR is the recording tableau. In particular, w is in the same left cell as v (i.e.
w ∼L v) iff TI(w) = TI(v), w is in the same right cell as v iff TR(w) = TR(v), and w and v are in the
same double cell iff TI(w) = TI(v), TR(w) = TR(v).

384 Remark
This implies that left, right, and two-sided cells as modules are irreducible. (Note that two-sided
cells are bimodules, so they use both left and right actions.) There are generalizations to other
groups, for instance the hyperoctahedral group, but these are no longer irreducible in general.

More information on this comes from Chapter 7 of Humphreys “Reflection Groups and
Coxeter Groups”, 1990.

May 30th, 2014—Draft

Summary Sara is lecturing again today. She will be presenting on “Indecomposable Modules for the Dual
Immaculate Basis of QSYM”, by Berg, N. Bergeron, Saliola, Serreno, Zabrocki (BBSSZ).

385 Remark
The following will be assumed as known background on QSYM.

Recall QSYM is defined to be the Q-span of allMα =
∑
i1<···im x

α1
i1
xα2
i2
· · · where α = (α1, . . . , αm) ∈

Pm is a (strong) composition of n, written α � n. Compositions are ordered by refinement. We define
the fundamental quasisymmetric functions in terms of the monomial quasisymmetric functions as

Fα :=
∑
β≤α

Mβ

=
∑

i1≤···≤ij

xi1 · · ·xin
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where if j ∈ S(α), we require ij < ij+1. Here S(α) := {α1, α1 + α2, · · · , α1 + · · ·+ αm−1}. (We don’t
need to include αm, since α � n implies it.)

We can multiply fundamental quasisymmetric functions using

FαFβ = FD(u)FD(v) =
∑

w∈u�v
FD(w),

where u ∈ S|α|, v ∈ S|β|, and u� v is the shuffle product. The coproduct is

∆(Fα) =
∑

Fγ ⊗ Fβ

where “α ribbon cuts into γ and β” (to be updated).

The antipode is given by
S(Fα) = (−1)|α|Fω(α).

Also recall Perms is the Hopf algebra of permutations, defined to have basis Pw for w ∈ ∪nSn. It
has the “shuffle product” and the “cut coproduct”.

SYM := Q[h1, h2, . . .] and NSYM := Q〈H1, H2, . . .〉 with ∆(Hn) :=
∑
i+j=nHi ⊗Hj .

386 Theorem (Ditters Conjecture, proved by Hazelwinkel)
QSYM is freely generated as a polynomial ring. They’re indexed by compositions which are
certain Lyndon words.

387 Open Problem
How do you write Hazelwinkel’s generators of QSYM using {Mα} or {Fα}?

388 Remark
BBSSZ defined a basis for NSYM.

Note that NSYM � SYM ↪→ QSYM naturally. Moreover, Perm maps surjectively onto QSYM via
pw 7→ FD(w). This suggests NSYM may map into Perm. Indeed,

NSYM Perm

SYM QSYM
dual

via

Hα

∑
D(w)=S(α) Pw

hα hα

Hence Hβ =
∑
Kα,βSα since the Sα are a basis, for some Kα,β , which will be the number of

“immaculate tableau” of shape α content β. We define S∗a as the dual immaculate basis element.

Definition 389. Let α, β � n (to be clear, strong compositions). An immaculate tableau of shape α and
content β is a filling of the diagram of α with β1 one’s, β2 two’s, etc., such that

(i) each row is weakly increasing

(ii) the first column is strictly increasing from top to bottom
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390 Example
Consider 112/35/4445. (Since α is just a composition, the row lengths do not have to be weakly
monotonic.) Here α = (3, 2, 4) and β = (2, 1, 1, 3, 2).

Let Dα,β be defined to be the number of immatulate tableaux of shape α, content β. An immaculate

tableau T of content 1n is standard (and is highly restricted). For instance, T = 1235/4/67.

The descent set of an immaculate tableau T is the set of all i such that i+ 1 is in a row strictly
below i. For T above, D(T ) = {3, 5}.

Definition 391. Let S∗α :=
∑
T FD(T ) where the sum is over standard immaculate tableaux of shape α.

(This turns S∗α = dual immaculate basis element into a proposition rather than a definition.)

392 Theorem (BBSSZ-2013)
S∗α is the Frobenius character of an indecomposable representation Hn(0), the 0-Hecke algebra. Recall
Hn(q), the Hecke algebra of Sn, was defined last time, with generators Ti for 1 ≤ i ≤ n− 1 with certain
relations, or as the span of Tw for w ∈ Sn where

TsiTw =

{
Tsi,w siw > w
qTsiw + (q − 1)Tw siw < w

At q = 1, we just get the group algebra of Sn. At q = 0, we get the relations T 2
i = −Ti, and TiTj = TjTi.

(There are several slightly different conventions; for instance, we used a different one on the first day.)
Another presentation: Hn(0) = 〈πi : 1 ≤ i < n〉 subject to π2

i = πi (use πi ↔ 1 + Ti).

393 Theorem (Norton, 1979)
The irreducible representations of Hn(0) are indexed by compositions α. Each irreducible Lα is
one-dimensional and spanned by vα ∈ Lα such that

πi(vα) =

{
0 i ∈ S(α)
vα otherwise

394 Remark
Let Gn := the Grothendieck group of finite dimensional representations of Hn(0) up to isomorphism

with addition given by exact sequences. In particular, it is the span of [A] where A is a finite dimensional
representation of Hn(0), modded out by [B] = [A] + [C] when

0→ A→ B → C → 0

is an exact sequence of Hn(0)-modules. Grade Gn by dimension. By Norton’s theorem, G is spanned
by {Lα : α is a composition}.

395 Theorem (Duchamp-Krob-Leclere-Thibon, 1996)
F : G→ QSYM given by [Lα] 7→ Fα is a graded Hopf algebra isomorphism.

396 Remark
[N ][M ] = Ind

Hn+m(0)
Hn(0)⊗Hm(0)(N ⊗M), in exact analogy with the Sn representation ring above.

397 Proposition
Hn(0) acts on the standard immaculate tableaux via

πi(T ) =

 0 i, i+ 1 in first column
T if i is in a row weakly below i+ 1
si(T ) otherwise

398 Example
Let T = 129/3567/48; π1(T ) = T ; π2(T ) = 139/2567/48; π3(T ) = 0, etc.
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399 Notation
Let SIT(α) denote the set of standard immaculate tableaux of shape α.

400 Proposition
There is a natural partial order on SIT(α), where S < T if there exists σ ∈ Sn such that πσ(T ) = S.
Take a linear extension and list SIT(α) as {T1, T2, . . . , Tp}.

401 Example
T = 1234/56/789 is maximal for α = (4, 2, 3).

Let Mj be the span of Ti for i ≤ j. We have a filtration

0 ⊂M1 ⊂M2 ⊂ · · · ⊂Mp = vα,

where dim(Mj/Mj−1) = 1 (spanned by Tj). It follows that

πi(Tj +Mj−1) =

{
0 i ∈ D(Tj)
Tj otherwise

So, [Mj/Mj−1] = [Lcomp(D(Tj))]. (Remark: different linear orders may give different successive
quotients, but the collection of them is unique up to isomorphism.)

402 Homework
Count # SIT(α). (Hopefully reasonable.)

403 Theorem (BBSSZ)
F [V α] =

∑
T∈SIT(α) FD(T ).

404 Corollary
V α is a cyclic module.

405 Theorem
V α is indecomposable as an Hn(0)-module.

406 Remark
Consider T = 129/3567/48. Write 123456789, and then 11232223 corresponding to the row numbers of
i. The “Y -words” of α have content α and, for each j, the first j is before the first j + 1. There is a
bijection between such T and Y -words.

They define a space Wordsαn given by the span of words w1 · · ·wn for wi ∈ [m] of content α. There
is an Hn(0)-action on this space

π(w1 · · ·wn) =

{
w wi+1 ≥ wi
wsi wi+1 < wi

where wsi is w with the i and i+ 1st letters interchanged. What is F [Wordsαn]? What if we know

[Wordsαn] = [IndHα1
⊗···⊗Hαn(0)

L(α1) ⊗ · · · ⊗ L(αm)].

(Exercise: prove this.) Then F [Wordsαn] = F(α1) · · ·F(αm) = hα.

June 2nd, 2014—Draft
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Summary Sara is lecturing again today. Unfortunately Ed Witten had to cancel Wednesday’s lecture. Sara
will be giving some lectures for Bogata on quasisymmetric functions.

407 Remark
There are numerous analogues between SYM and QSYM: the representation of Sn and GLn vs the
0-Hecke algebra; the monomials mλ and the fundamentals Fα both expand nicely in terms of monomial
quasisymmetric functions; the Schurs decompose very nicely using the fundamental basis.

Definition 408. Given two symmetric functions f(x1, x2, . . .) and g(x1, x2, . . .) = xa + xb + xc + · · · , define

the plethysm of f and g to be the function

f [g] := f(xa, xb, xc, . . .).

Then f [g] is again a symmetric function.

409 Example
Expand h2[e2(X)] on X = {x1, x2, x3}. Then

h2[e2(x1, x2, x3)] = h2(x1x2 + x1x3 + x2x3])

= h2(x1x2, x1x3, x2x3)

= (x1x2)2 + (x1x3)2 + (x2x3)2 + x2
1x2x3 + x1x

2
2 + x3 + x1x2x

2
3

= s(2,2)(x1, x2, x3).

These computations get nasty by hand quickly. Using the infinite Schur functions (for instance),
Sage tells us there is an s(1,1,1,1) term, but we didn’t have enough variables for this to show up.
Doing some more examples, we see these plethysms seem to be Schur-positive, not multiplicity
free, and the number of terms can be horrendous quickly. Schur-positivity follows from showing
sµ[sν ] is the character of a GLN representation: see Fulton-Harris, 1991.

410 Open Problem
Find a combinatorial or “optimal” formula for the coefficients dλµ,ν in the exapansion

sµ[sν ] =
∑
λ

dλµ,νsλ.

411 Theorem (Thrall, 1942)
h2[hn(X)] has a very nice explicit formula.

Definition 412. P is the set of all questions which can be decided in polynomial time depending on the
input size. NP is the set of all questions for which one can test a proposed solution in polynomial
time depending on the input size. #P is the set of all questions of the form, “How many solutions
does X have?” where X is in NP?

413 Example

1. Does a permutation w ∈ Sn contain another v ∈ Sk? NP-complete; Bose-Buss-Lubiw, 1998.
In NP

2. How many instances of the permutation v ∈ Sk does w ∈ Sn have? Bose-Buss-Lubiw, 1998.
This is in #P .

3. Does a permutation w ∈ Sn contain a fixed v ∈ Sk? Guillemot-Marx, 2013. In P . (Found a
linear time algorithm!)

4. Does a graph G have a planar embedding? Kuratowski 1930, in P . Hopcroft-Tarjan 1974.

5. Does G have a 3-coloring? NP-complete, Gary-Johnson-Stockmeyer, 1976.
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6. How many k-colorings does G have for k = 1, 2, 3, . . .? #P .

7. What are the coefficients of the chromatic polynomial? Jaeger-Vertifan-Welsh, 1990. Harder
than any #P − complete problem.

8. What is the determinant of an n× n matrix? (Williams 2012, Cohn-Umans 2013.) In P .

9. What is the permanent of an n × n matrix? (Valiant 1979) #P − complete. (Compute
permanent by using cofactor expansion without negative signs.)

414 Open Problem
Does P = NP? Does NP = #P? Does P = #P? All unknown. Millenium prize: $1,000,000 in US
dollars for P vs NP problem.

415 Remark
Mulmuley-Sohoni (2001-2002) have an approach to P 6= NP :

1. Homogeneous degree n polynomials form a vector space with a GLN action. Here N is the number
of monomials of degree n.

2. The determinant of an n× n matrix is a homogeneous polynomial of degree n2 which is computable
in O(n3) time, perhaps O(n2+ε). (Cohn-Kleinberg-Szegedy-Umans 2005. To update.)

3. The permanent of an n× n matrix is a homogeneous polynomial of degree n2. Its computation is a
#P -complete problem. (Valiant, 1979a.)

4. Every formula f of size u can be written as a determinant of some k × k matrix Mf with entries
depending linearly on the original inputs where k ≤ 2u. (Valiant, 1979b.)

5. Use GLN representation theory to study the orbit of the permanent vs determinant.

416 Theorem (Loehr-Warrington, 2012)
For any two partitions µ, ν,

sµ[sν(X)] =
∑

A∈S(a,b)(µ,ν)

FDes(rw(A)−1).

(See their paper for definitions.)

417 Remark
The plethysm σµ[sν ] is the generating function for semistandard tableaux with entries which are
semistandard tableaux. The weight of such a tableau is the product of the weights of each entry. If ν
is a fixed partition shape, we can identify T ∈ SSYT(ν) with its reading word, eg. T = 6/23/113 goes
to 623113. For a tableau µ = (2, 2) with entries which are tableaux of shape ν = (3, 2, 1), we might
have V ′ = (633222)(735244)/(423112)(423112). Let SSYTW (ν)(µ) be the set of all tableaux of shape µ
with entries which are words associated to semistandard Young tableaux of shape ν. One can obtain a
matrix from such an element by sticking the words into rows of a matrix. Let M(µ, ν) be the matrices
obtained in this way. (We order the inner tableaux using lexicographic order.)

418 Remark
Let Wordsn be the words of length n in P. Define weight in obvious way. Clearly f(X) =

∑
w∈Wordsn

xw

is a symmetric function. How do we collect terms into a finite sum? (Question: what’s the Schur
expansion?)

Goal: partition the set Wordsn by standardizing them as above:

std: Wordsn → Sn.
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419 Example
w = 331241123 maps to [671492358]. In steps,

331241123 7→ ..1..11.. 7→ ..1..23..

7→ · · ·

What are the fibers of this map? We can “lift” every letter by some amount so long as the relative
ordering is the same, as in the quasisymmetric function shifting definition.

420 Lemma
We have

f(X) =
∑

w∈Wordsn

xw =
∑
π∈Sn

FDes(π−1)(X).

The left-hand side is the generating function for Wordsn. The right-hand side is the generating function
for pairs (π, u) where π ∈ Sn and u = u1 . . . un is a weakly increasing word of length n such that
ui < ui+1 whenever i ∈ Des(π−1). Let Iπ be the set of such pairs (π, u). Construct a weight preserving
bijective function

g : Wordsn → ∪π∈SnIπ
w = w1 . . . wn ∈Wordsn 7→ (π, u) = (std(w), sort(w)).

421 Example
g(331241123) = ([671492358], 111223334).

Question: does g−1 exist? A moment’s thought says yes. sort(w) is really just telling us how many
of each letter there were.

422 Proposition
We have

f(X) =
∑

w∈Wordsn

xw =
∑
π∈Sn

FDes(π−1)(X) =
∑
λ`n

fλsλ

where fλ is the number of standard tableaux of shape λ.

Proof Bijective proof relies on two important facts:

1. sλ =
∑
T∈SYT(λ) FDes(T )

2. RSK is a bijection roughly preserving descents.

423 Remark
We would like to standardize elements of M(µ, ν) by standardizing the reading word. The most obvious
way does not land in M(µ, ν). With more thought, there is a standardization algorithm which does
work. An example computation:

424 Example
Let

A =

 8 7 2 10
6 1 9 4
12 5 11 3

 ∈ S3,4.

Then rw(A) = 6, 12, 8; 7, 1, 5; 11, 9, 2; 10, 4, 3.

Similarly we can produce a standardization of a matrix, for instance via
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425 Example

M =

1 1 3 3 5
1 2 2 2 4
2 2 3 3 3

 ⇒ std(M) =

1 3 10 12 15
2 5 7 8 14
4 6 9 11 13


See Loehr-Warrington for more details.

Proof (of Loerh-Warrington’s theorem.) Bijective proof. Two things to check

1. The map S taking M ∈Ma,b to (std(M), sort(M)) is invertible.

2. The map std on Ma,b maps M(µ, ν) into Sa,b(µ, ν). (Sa,b(µ, ν) refers to the standard matrices.)
(To update: Sara should add the matrices associated to her example s(2)[s(3)].)

From here neither step is particularly involved!

426 Open Problem
Expand sµ[sν(X)] in Schur basis and relate back to P vs NP .

427 Remark
Recently established methods:

1. Use Dual Equivalence Graphs. (Assaf 2008-2013, Roberts 2013-2014.)

2. Flip Fα to sα ∈ {1, 0,−1}ssort(alpha). (Egge-Loehr-Warrington, 2010.)

3. Find a quasi-Schur expansion: sλ =
∑
α:sort(α)=λ Sα. (Haglund-Luoto-Mason-van Willigenburg

2011, book 2013.)

428 Open Problem
Other similar open problems:

1. Find the Schur expansion of Macdonald polynomials

Hµ(X; q, t) =
∑
π∈Sn

q
−1
µ (π)tmajµ(π)FDes(π−1)

(Update: add π ∈ Sn.) (See Macdonald 1988, Haiman-Haglund-Loehr 2005.)

2. See also LLT polynomial expansions in same paper.

3. Find the Schur expansion of k-Schur functions

S
(k)
λ (X; q) =

∑
S∗∈SST(µ,k)

qspin(S∗)FD(S∗).

(Lam-Lapointe-Morse-Shimozono + Lascoux, 2003-2010, Assaf-Billey 2012.) (Remark: there are
currently five different definitions of k-Schurs that are conjecturally the same.)

429 Open Problem
Easier open problem: for a partition λ, find the Schur expansion of∑

π∈Sn:cycle(π)=λ

FDes(π).

June 4th, 2014—Draft

82



Summary Sara is giving another Columbia lecture.

Definition 430. Every permutation w ∈ S∞ := ∪n>0Sn can be written as a finite product of adjacent
transpositions si = (i, i+ 1), sometimes in many ways. Her favorite permutation is

ν = [2, 1, 5, 4, 3] = s1s3s4s3 = s1s4s3s4 = s4s1s3s4 = s3
4s1s3s4.

There are evidently some relations involved: s2
i = 1 (“involution”), sisj = sjsi when |i − j| > 1

(“commutation”), and sisi+1si = si+1sisi+1 (“braid”). Indeed, these are the only relations in the sense
that they give a presentation of S∞.

A minimal length expression for w is said to be reduced . The length `(w) is the number of

inversions. If w = sa1 · · · sap is reduced, we say the sequence (a1, . . . , ap) is a Reduced word for w.

Let R(w) denote the set of reduced words for w.

431 Remark
Today’s questions: how many reduced words are there? what structure do they have?

432 Theorem (Tit’s Theorem)
The graph with vertices indexed by reduced words in R(w) and edges connecting two words if they
differ by a commutation move or a braid move is connected. If w = [2, 1, 5, 4, 3], then R(w) has 8
elements arranged in a cycle,

1343− 1434− 4134− 4314− 4341− 3431− 3413− 3143− 1343.

433 Example
[7, 1, 2, 3, 4, 6] has reduced word (6, 5, 4, 3, 2, 1), and we clearly can’t apply braid relations or
commutations, so there is precisely one such word. While we can count the number of reduced
words this way, we have to generate all of them, which is inefficient.

434 Remark
There is one reduced word for the identity. For any other permutation,

#R(w) =
∑

i∈Des(w)

#R(wsi).

This is not quite as “efficient as possible”, since we might compute #R(w′) multiple times while we
recurse.

435 Theorem
Stanley’s first observation: R([n, n− 1, . . . , 3, 2, 1]) is the same as the number of standard tableaux of
the staircase shape (n− 1, n− 2, . . . , 2, 1), which is(

n
2

)
!

1n−13n−2 · · · (2n− 3)!
.

(Update: missing factorial on
(
n
2

)
.)

Definition 436. (Stanley 1984.) For any w ∈ Sn with p = `(w), define

Gw(X) =
∑

a∈R(w)

FDes(a)(X).

437 Example
For w = [7, 1, 2, 3, 4, 5, 6], Gw(X) = F(1,2,3,4,5)(X) = F(16)(X) = s16(X).

(Update: second w = [7, 1, 2, 3, 4, 5, 6] should be w = [2, 1, 5, 4, 3].)
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438 Theorem
Stanley’s second observation: Gw is a symmetric function with positive Schur expansion. They are

now called Stanley symmetric functions .

439 Theorem (Edelman-Greene 1987)
Gw has positive Schur expansion

Gw =
∑
λ

aλ,wsλ, aλ,w ∈ N.

Corollary: |R(w)| =
∑
λ aλ,wf

λ where fλ is the number of standard tableaux of shape λ. (Really,
just needs that Gw is symmetric, but positivity is nice to have.)

440 Example
If w = w0, then Gw = sδ where δ is the staircase shape with n− 1 rows.

Proof They construct an injective map from R(w) to pairs of tableaux (P,Q) of the same shape
where P is row and column strict and Q is standard. For each P every single standard tableaux
of the same shape occurs as Q in the image.

Algorithm: Edelman-Greene insertion is a variation on RSK. The only difference is when
inserting i into a row with i and i+ 1 already, skip that row and insert i+ 1 into the next row.

441 Example
For 4314, we get 4, 4/3, 4/3/1, 4/3/14 = P with Q = 3/2/14.

If a maps to (P,Q) under Edelman-Greene, then Des(w) = Des(Q).

Definition 442. The Coxeter-Knuth graph for w has vertices R(w). If two reduced words differ by a braid
relation, they have an edge between them. We only allow edges for “witnessed commutations”.

443 Theorem (Edelman-Greene 1987)
Two words a, b ∈ R(w) have the same P -tableau if and only if they are in the same component of the
Coxeter-Knuth graph for w.

Definition 444. The Coxeter-Knuth graph for w has V = R(w) and two reduced words are connected by
an edge labeled i if they agree in all positions except for a single Coxeter-Knuth relation starting in
position i.

445 Theorem
The Coxeter-Knuth graphs in type A are dual equivalence graphs and the isomorphism is given by the
Q tableaux in Edelman-Greene insertion. Furthermore, descent sets are preserved.

In type A this is a nice corollary of (Roberts, 2014) and (Hamaker-Young, 2014).

446 Notation
Let 1×w = [1, w1 + 1, . . . , wn + 1]. There is a bijection from R(w) to R(1×w) that preserves descent
sets, so Gw = G1×w.

447 Theorem (Lascoux-Schuztenberger)
If w is vexillary, then Gw = sλ(w). Otherwise,

Gw =
∑

Gw′

where the sum is over all w′ such that `(w) = `(w′) and w′ = tirtrsw with 0 < i < r. Call this set
T (w). In the case T (w) is empty, replace w by 1× w.
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448 Remark
We can apply this formula recursively, forming a tree where the leaves correspond to vexiillary
permutations. (Update: on transition tree slide, discuss grassmannians.)

Some nice corollaries: if w doesn’t contain any 2143 pattern, then T (w) has one element w′

which also avoids 2143. If w is vexillary, #R(w) = fλ(w) as before. The proof Sara’s outlined
isn’t bijective.

Is there a bijection from R(w) to ∪w′∈T (w)R(w′) which preserves the descent set, the Coxeter-
Knuth classes, and the Q-tableau? Yes! It’s called Little’s bijection, named for David Little
(Little, 2003) + (Hamaker-Young, 2013). (Update: possibly delete some of the discussion on
Little bumps.)

Definition 449 (Little Bump Algorithm). Given a reduced word, there is an associated reduced wiring
diagram. Very roughly, “push” crossings, checking if the resulting word is reduced and stopping when
it is. The Little bijection initiates a Little bump at the crossing (r, s) of the lexicographically largest
inversion.

450 Example
Little’s bijection could be used to prove the transition equation. There is an identity (Macdonal 1991,
Fomin-Stanley 1994, Young 2014). For (Update: on curious application slide, get rid of a2 in the
middle; same on next slide) w0 the longest word,∑

a1,...,ap

∈ R(w0)a1 · · · ap =

(
n

2

)
!

(Young, 2014) There exists an algorithm based on the Little bijection to choose a reduced word
a = a1 · · · ap ∈ R(w0) with probability distribution a1 · · · ap/

(
n
2

)
!.

(Macdonal 1991, Fomin-Stanley 1994.) For any permutation w of length p,∑
a1···ap∈R(w)

a1 · · · ap = p!Sw(1, 1, . . . , 1)

where Sw(x1, . . . , xn) is the Schubert polynomial for w. Open problem: find a bijective proof.

451 Remark
The Schubert polynomial

Sw =
∑

a∈R(w)

∑
i1≤···≤ipx1···xp

=
∑

T∈RC(w)

xT

where the sum is over ij < ij+1 if aj < aj+1, ij ≤ aj . Lascoux and Schutzenberger originally
defined these, and Billey-Jokusch-Stanley proved the above equivalent definition. The second
equality uses rc-graphs; see Billey-Bergeron’s rc-graphs paper for more on that.

To update: “generalizing Vexilary permutation”: F should be G; (help from Mike Albert).

Definition 452. A permutation is k-vexillary if Fw =
∑
aλ,wsλ and aλ,w ≤ k.

453 Theorem (Billey-Pawlowski)
A permutation w is k-vexillary iff w avoids a particular finite set of patterns Vk for all k ∈ N.

454 Example
2-vexillary permutations have expansion Fw = sλ(w) + sλ(w−1)′ . 3-vexillary permutations are
multiplicity free.
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Proof One step: James-Pell use generalized Specht modules. For D(w) the diagram of w, it happens
that

SD(w) = ⊕(Sλ)aλ,w .

June 7th, 2014—QSYM∗, the Concatenation Hopf Algebra, and
Solomon Descent Algebras

Summary Josh is presenting on Malvenuto and Reutenauer’s “Duality between Quasi-Symmetric Functions
and the Solomon Descent Algebra”.

There is a bialgebra structure (QSYMQ,m, u, γ, ε) which dualizes to give a bialgebra

(QSYM∗Q, γ
∗, ε∗,m∗, u∗).

This is isomorphic as a bialgebra to the bialgebra Q〈t1, t2, . . .〉 where deg ti = i and each ti is primitive.
They are both Hopf algebras; the latter is called the concatenation Hopf algebra. Note that the main
difference between

NSYMQ := Q〈H1, H2, . . .〉
and the concatenation Hopf algebra is that the coproducts differ (rock-breaking vs. primitive).

There is a second coproduct γ′ on QSYM with counit ε′. Dualizing gives a ring structure
(QSYM∗, (γ′)∗, (ε′)∗). Gessel showed the Solomon Descent Algebras Σn have a ring structure isomorphic
to (QSYM∗n, (γ

′)∗, (ε′)∗). (Indeed, this second coproduct and counit give a second bialgebra structure
(QSYM,m, u, γ′, ε′), which gives a second bialgebra structure (QSYM∗, (γ′)∗, (ε′)∗,m∗, u∗).)

There is a different multiplication ∗ and a coproduct ∆ on Σ (with unit and counit) such that
(Σ, ∗,∆) forms a Hopf algebra isomorphic to (QSYM∗, γ∗, ε∗,m∗, u∗).

455 Remark
Outline:

1. Define QSYM∗ with bialgebra structure.

2. Show (1) is naturally isomorphic to the concatenation Hopf algebra Q〈T 〉.

3. Corollaries: QSYMQ is a free algebra and a free SYMQ-module; antipode formula for QSYM.

4. Define QSYM∗ with second algebra structure.

5. Define Solomon Descent Algebra Σ, which is naturally isomorphic to (4).

6. Define a Hopf algebra structure on Σ agreeing with (1).

(Note: only 1, 2, and part of 3 were presented in class.)

Definition 456. Let T be a countable totally ordered set. QSYM(T ) is the subring of formal power series

F (T ) over Z in commuting variables T which are of finite degree and which have the property that, if
tc11 · · · t

ck
k is a monomial in F (T ) (here ci ≥ 1), then uc11 · · ·u

ck
k is a monomial in F (T ) with the same

coefficient, for any u1 < · · · < uk in T .

To each (strong) composition C = (c1, . . . , ck), we associate a quasisymmetric function MT
C in

QSYM(T ) given by
∑
t1<···<tk t

c1
1 · · · t

ck
k . These are the monomial quasisymmetric functions, and they

form a Z-basis for QSYM(T ).

Note that QSYM(X) and QSYM(Y ) are canonically isomorphic, for any totally ordered sets X
and Y (even if there is no order-preserving bijection between them). In particular, send MX

C to MY
C .

86



457 Remark
Consider the tensor product QSYM(X)⊗QSYM(Y ) (tensored over Z). An element xa11 · · · ⊗ y

b1
1 · · ·

with x1 < x2 < · · · , y1 < y2 < · · · can naturally be identified with the element xa11 · · · y
b1
1 · · · of

QSYM(X ∪ Y ) where X ∪ Y is totally ordered by declaring xi < yj for all i, j. This gives a ring
isomorphism QSYM(X)⊗QSYM(Y ) ∼= QSYM(X ∪ Y ). It operates via

MX∪Y
C 7→

∑
C=AB

MX
A ⊗MY

B

where AB denotes the concatenation of compositions A and B.

Definition 458. Define γ : QSYM(T )→ QSYM(X)⊗QSYM(Y ) to be the composite

QSYM(T )
∼→ QSYM(X ∪ Y )→ QSYM(X)⊗QSYM(Y )

∼→ QSYM(T )⊗QSYM(T ).

We call γ the outer coproduct . One can check

γ(MT
C ) =

∑
C=AB

MT
A ⊗MT

B .

From now on, we drop the alphabet from the notation when disambiguation is not needed.

459 Remark
The counit ε of γ is evaluation at 0, i.e. it gives the constant coefficient. Indeed, (QSYM,m, u, γ, ε)
is a bialgebra, where m denotes the usual multiplication and u the natural inclusion Z→ QSYM.

460 Remark
QSYM is a graded Z-algebra, with homogeneous Z-basis consisting of MC of degree |C| :=

∑
ci. (We

allow M∅ = 1.) Moreover each homogeneous component QSYMn of QSYM is finite dimensional.

Definition 461. The graded dual of QSYM is

QSYM∗ :=

∞⊕
n=0

QSYM∗n

as a Z-module, where QSYM∗n := HomZ(QSYMn,Z).

462 Remark
The maps m,u, γ, ε above respect the grading, so we may dualize them as well. (Note that
(QSYM⊗QSYM)n := ⊕p+q=n QSYMp⊗QSYMq.) Since each component has finite rank, the
natural map QSYM∗p⊗QSYM∗q → (QSYMp⊗QSYMq)

∗ is an isomorphism, allowing us to view
m∗ as a coproduct with counit u∗. Similarly (QSYM∗, γ∗, ε∗,m∗, u∗) is a bialgebra.

463 Remark
Since QSYMn is finite dimensional, QSYM∗n is isomorphic as a Z-module to QSYMn. Similarly,
QSYM∗∗ is canonically isomorphic to QSYM as a bialgebra. Graded duals V ∗ of other graded
Z-modules, algebras, or coalgebras, with finite rank in each (free) component, are defined in the
same way. Note that V ∗ ⊗ V ∗ is canonically isomorphic to (V ⊗ V )∗ for such an object.

464 Remark
We have a dual Z-basis {M∗C} of QSYM∗, which is the Z-linear function QSYM → Z which
is 1 on MC and 0 on MD for D 6= C. Throughout, we use the isomorphism (of Z-modules)
QSYM

∼→ QSYM∗ given by MC 7→M∗C .

As usual, the dual is non-canonically isomorphic (as a Z-module) to the original object: we
seem to like the monomial basis, so we choose it to give a “pseduo-canonical” isomorphism.
However, we could theoretically use the fundamental basis, giving a different isomorphism, and
neither choice is clearly “correct”.
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Definition 465. If V is a Z-module, define the pairing (i.e. Z-bilinear map)

〈−,−〉 : V ∗ × V → Z
〈φ, v〉 7→ φ(v).

If the graded dual of V exists in the above sense, this naturally induces a pairing

〈− ⊗ −,−⊗−〉 : (V ∗ ⊗ V ∗)× (V ⊗ V )→ Z
〈φ⊗ ψ, v ⊗ w〉 7→ 〈φ, v〉〈ψ,w〉

= φ(v)ψ(w).

466 Remark
Suppose V,W have graded duals V ∗,W ∗. If Γ: V →W , the dual Γ∗ : W ∗ → V ∗ is defined by

(φ : W → Z) 7→ (φ ◦ Γ: V →W → Z).

In particular, Γ∗(φ)(v) = φ(Γ(v)). In terms of the pairing,

〈Γ∗(φ), v〉 = 〈φ(Γ), v〉,

and this condition characterizes Γ∗.

467 Remark
Denote the product γ∗ : QSYM∗⊗QSYM∗ → QSYM∗ by juxtaposition. It is characterized by

〈φψ, F 〉 = 〈φ⊗ ψ, γ(F )〉

for all F . Likewise, the coproduct m∗ can be defined by requiring

〈 m∗(φ) , F ⊗G〉 = 〈φ, FG〉

for all F ⊗G. The unit remains obvious. The counit is given by u∗(φ) = φ(1).

Definition 468. Let T be a set of noncommuting variables and consider the free associative Z-algebra Z〈T 〉.
Define coproduct δ(ti) = ti⊗1 + 1⊗ ti, counit ti 7→ 0, 1 7→ 1, and antipode S(t1 · · · tn) = (−1)ntn · · · t1,

which gives the concatenation Hopf algebra over Z. (This is similar to NSYM, except we use a

primitive rather than rock-breaking coproduct.)

469 Remark
Z in the above may be replaced by Q (or any field) with no change whatsoever. We use SYMQ,
QSYMQ, QSYM∗Q and the like to denote these versions.

470 Theorem (2.1)
QSYM∗Q is canonically isomorphic as a bialgebra to the concatenation Hopf algebra Q〈T 〉, where
T = {tn : n ≥ 1} and deg tn = n.

Explicitly, the isomorphism is given by

tn 7→
∑
|C|=n

(−1)`(C)−1

`(C)
M∗C =: P(n) ,

where `(C) = k for C = (c1, . . . , ck).

471 Remark
Note that Q〈T 〉 is finitely generated in each component, and indeed dim(Q〈T 〉)n is the number
of (strong) compositions of size n.

Proof There are three main steps:
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(1) M∗AM
∗
B = M∗AB .

(2) ∆(M∗(n)) =
∑
p+q=nM

∗
(p) ⊗M

∗
(q) for n ≥ 1.

(3) The elements P ∗(n) ∈ QSYM∗Q, n ≥ 1 from the theorem statement are primitive.

Note that from (1) we may define an isomorphism of algebras NSYMQ → QSYM∗Q given by
tn 7→ M∗(n). Jose asserted this is an isomorphism of Hopf algebras. (2) is a weak form of the

coalgebra isomorphism. Roughly, (3) goes from the rock-breaking coproduct on NSYM to the
primitive coproduct on Q〈T 〉.

(1) Follows since

〈M∗AM∗B ,MC〉 = 〈M∗A ⊗M∗B , γ(MC)〉

=
∑

C=A′B′

〈M∗A ⊗M∗B ,MA′ ⊗MB′〉

=
∑

C=A′B′

δAA′δBB′ = δAB,C

= 〈M∗AB ,MC〉.

Thus QSYM∗Q is freely generated as a Z-algebra by {M∗(i) : i ≥ 1}.

(2) is similar to (1) and not worth the time to discuss.

(3) begins by defining the P ∗(n) through a generating function,∑
n≥1

P ∗(n)t
n = log(1 +M∗(1)t+M∗(2)t

2 + · · · ),

where these expressions live in QSYM∗[[t]]. By comparing coefficients and using (1), the formula
from the theorem statement follows, so in particular Pn is homogeneous of degree n. These
elements are primitive:

∑
n≥1

∆(P ∗(n))t
n = ∆(log

∑
i≥0

M∗(i)t
i) = log

∑
i≥0

∆(M∗(i))t
i


= log

∑
p,q≥0

M∗(p)t
p ⊗M∗(q)t

q


= log

(
∑
p≥0

(M∗(p)t
p ⊗ 1)(1⊗

∑
q≥0

M∗(q)t
q)


= log

∑
p≥0

M∗(p)t
p ⊗ 1

+ log

1⊗
∑
q≥0

M∗(q)t
q


= log

∑
p≥0

M∗(p)t
p

⊗ 1 + 1⊗ log

∑
q≥0

M∗(q)t
q


=
∑
n≥1

P ∗(n)t
n ⊗ 1 + 1⊗

∑
n≥1

P ∗(n)t
n.

(The fifth equality uses the fact that log(ab) = log(a) + log(b) when a, b commute.)
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Applying exp to the generating function defining Pn, we find

M∗(n) =
∑
|C|=n

1

`(C)!
P ∗C .

Hence each M∗(i) is a polynomial combination of Pn’s, so we’ve found a primitive generating set.
Apparently it’s free; they say this follows from the formula in the theorem statement, but I
don’t see it immediately.

472 Corollary
QSYMQ has a free generating set containing a free generating set of SYMQ. In particular, QSYMQ is
a free commutative algebra and a free SYMQ-module.

Proof Identify QSYM∗Q and Q〈T 〉 as in the theorem. Define tC := tc1 · · · tck for C = (c1, . . . , ck).
Note {tC} is a Q-basis, essentially by definition. Let {PC} denote its dual basis in QSYMQ.

Take L to be the set of Lyndon compositions , which is to say, the set of compositions which

are Lyndon words (with respect to the natural ordering on P), which is to say the set of

compositions which are lexicographically smaller than all of their rotations. Then {P` : ` ∈ L}
is a free generating set for QSYM as an algebra: see Reutenauer, “Free Lie Algbras”, Theorem
6.1(i).

We claim P(n) = M(n). Since this is just the usual power symmetric functions of degree n,
these are free generators of SYMQ, giving the first part of the corollary. To prove the claim,
roughly, use the formula for M∗(n) in terms of P ∗C to write M∗D as a certain sum of P ∗C , where

the sum is over C ≤ D (ordered by refinement). Hence the transition matrix from M∗D to P ∗C is
upper triangular. Taking duals just transposes the matrix, whence PC is a sum over C ≤ D of
MD. Since C = (n) is as coarse as possible for n-compositions, the sum has one term, and in
fact the coefficient is 1.

The second part of the corollary is just saying

QSYMQ = Q[{P`}] = Q[{P(n)}][{P`} − {P(n)}] = SYMQ[{P`} − {P(n)}],

so QSYMQ is a free SYMQ-algebra, and in particular a free SYMQ-module.

Definition 473. Let FC denote the fundamental quasisymmetric function indexed by C, let I be the usual

stars and bars bijection between (strong) compositions of n and subsets of [n−1]. Courting ambiguity,

we denote both I and its inverse by the same letter I, relying on context to disambiguate. Let C
denote the reverse of the composition C. Define ω to be the involution on n-compositions given by
applying I, taking the complement in [n− 1], applying I, and reversing the resulting composition.

474 Example
ω((2, 1, 3, 2, 1)) = (2, 2, 1, 3, 1):

2 + 1 + 3 + 2 + 1 7→ ∗ ∗ | ∗ | ∗ ∗ ∗ | ∗ ∗|∗
7→ ∗| ∗ ∗ ∗ | ∗ | ∗ ∗| ∗ ∗
7→ 1 + 3 + 1 + 2 + 2

7→ 2 + 2 + 1 + 3 + 1.

475 Corollary
QSYMQ is a Hopf algebra with antipode S equivalently defined by either

S(MC) :=
∑
C≤D

(−1)`(C)MD or S(FC) := (−1)|C|Fω(C).
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Proof The concatenation Hopf algebra Q〈T 〉 from the theorem has antipode S∗ given by S∗(t1 · · · tk) =
(−1)ktk · · · t1, which is the unique anti-automorphism of Q〈T 〉 such that S∗(tn) = −tn. Hence
QSYM∗Q is a Hopf algebra with antipode S∗ determined by S∗(P ∗(n)) = −P ∗(n). Since QSYM∗∗Q
is canonically isomorphic to QSYMQ as a bialgebra, QSYMQ is a Hopf algebra with antipode
S∗∗ = S, which we now compute.

Using generating functions, one may show

S∗(M∗(n)) =
∑
|C|=n

(−1)`(C)M∗C .

It follows that
S∗(M∗D) =

∑
C≤D

(−1)`(C)M∗
C

;

the C comes from the fact that S∗ is an antiautomorphism; eg. try the D = (n,m) case.
Applying duality (and reversing all compositions in sight) gives the first formula. The second
formula follows with a little more work; see the paper for details.

Definition 476. Define ω : QSYMQ → QSYMQ to be the linear map given by ω(FC) = Fω(C).

477 Corollary
ω is an antiautomorphism of QSYMQ which extends the usual conjugation automorphism of SYMQ.

Proof Since ω(FC) = (−1)|C|S(FC), ω is an antiautomorphism. Since ω(n) = (1n), we have
ω(F(n)) = F1n , which is ω(hn) = en using the complete homogeneous and elementary symmetric
polynomials. This property characterizes the usual conjugation automorphism.

478 Remark
The theorem was useful. Our next goal is to define the Solomon Descent Algebras, recall previous
results, and endow it with a new Hopf algebra structure making it isomorphic to QSYM∗Q from above.

Definition 479. Let X,Y be countable totally ordered sets. Define XY as X × Y with lecicographic order.
Recall the canonical map Z[XY ] → Z[X ∪ Y ] given by MXY

C 7→ MX∪Y
C . Suppressing other similar

canonical maps, define a second coproduct γ′ on QSYM to be the composite

γ′ : QSYM(T )→ QSYM(T )⊗QSYM(T )

QSYM(XY )→ QSYM(X ∪ Y )→ QSYM(X)⊗QSYM(Y )

→ QSYM(Y )⊗QSYM(X).

Let ε′ be the counit determined by ε′(F(n)) = 1 and ε′(FC) = 0 for `(C) ≥ 2.

480 Remark
More concretely, Gessel showed (and Jair said)

γ′(FD(π)) =
∑
στ=π

FD(σ) ⊗ FD(τ)

where D(π) := I(Des(π)).

These operations give QSYM∗ a second bialgebra structure (QSYM,m, u, γ′, ε′).

Definition 481. Let n ≥ 0 and I ⊂ [n− 1]. Define

DI :=
∑
σ∈Sn

Des(σ)=I

σ ∈ ZSn.

Say degDi := n. Let Σn := SpanZ{DI} be a Solomon Descent Algebra . (Note: it is not obvious

that it is closed under multiplication.)
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482 Theorem (Solomon, 1976)
Σn is a subalgebra of ZSn.

483 Remark
See for instance Schocker 2004, “The Descent Algebra of the Symmetric Group”, for a
survey of relatively recent work, a formula for the expansion coefficients, and much more.
Note he uses (ZSn)op. This algebra is also implemented in Sage; see “Descent Algebras”.
Solomon in fact defined similar algebras for all Coxeter groups.

484 Remark
Malvenuto and Reutenauer define Σ := ⊕n≥0Σn with a (non-unital) ring structure given by
στ = 0 if σ, τ do not belong to the same Sn. They claim in Theorem 3.2 that Σ is isomorphic
to QSYM∗((γ′)∗) as a not-necessarily-unital ring, but since γ′ had a counit ε′, the latter is a
unital ring, forcing the former to be as well, a contradiction. More concretely, if you compute
the product of two elements from different homogeneous components of QSYM∗ using their
bijection, you always get 0 on the Σ side, which is nonsense.

They almost surely meant the slight variation below, given by (Gessel, 1984). They do not
use this theorem for anything more than motivation.

485 Theorem (Gessel, 1984)
(QSYM∗n, (γ

′)∗) is isomorphic as a ring to Σn, with F ∗C ↔ DC .

486 Remark
Letting juxtaposition denote (γ′)∗, as before this product on QSYM∗n is characterized by

〈φψ, F 〉 = 〈φ⊗ ψ, γ′(F )〉.

Using φ = F ∗A, ψ = F ∗B , F = FC , and applying the theorem, the right-hand side is the coefficient
of FA ⊗ FB in γ′(FC) and the left-hand side is the coefficient of DC in the product DADB.
Compactly,

(γ′(FC))A⊗B = (DADB)C .

487 Theorem
Let ZS := ⊕n≥0ZSn as a Z-module. There is a product ∗ and coproduct ∆ on ZS (with unit and
counit) which make ZS into a Hopf algebra. Indeed, Σ := ⊕n≥0Σn ⊂ ZS is a Hopf subalgebra, and
(QSYM∗, γ∗, ε∗,m∗, u∗) is isomorphic to Σ as a Hopf algebra via F ∗C ↔ DC .

488 Remark
Note that Σ no longer has a product induced by the group algebra in any sense.

Proof Lengthy; main tool is the “shuffle Hopf algebra”; they connect ∗ to the convolution in
End(Z〈T 〉) and consider a second (ultimately dual) bialgebra structure on ZS; see their paper
for details. We merely define the operations involved.

Definition 489. Let str denote the straightening in Sn of a word (of length n) on a totally ordered

alphabet. Call str(w) the standard permutation of w.

490 Example
PIAZZA 7→ − − 1−−2 7→ −31−−2 7→ 431−−2 7→ 431562 = str(PIAZZA).

Definition 491. For σ ∈ Sn and I ⊂ [n], let σ|I denote the word obtained from σ (viewed as a word on

[n] in one-line notation) where only letters in I are kept.

Definition 492. Define a coproduct ∆ on ZS by

∆ (σ) :=

n∑
i=0

σ|[1, i]⊗ str(σ|[i+ 1, n]).
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493 Example

∆(3124) = λ⊗ 3124 + 1⊗ str(324) + 12⊗ str(34) + 312⊗ str(4) + 3124⊗ λ
= λ⊗ 3124 + 1⊗ 213 + 12⊗ 12 + 312⊗ 1 + 3124⊗ λ.

Here λ ∈ S0 is the empty word. The associated counit is given by λ 7→ 1 and σ 7→ 0 for σ ∈ Sn
with n ≥ 1.

Definition 494. Define a product ∗ on ZS as follows. For σ ∈ Sn, τ ∈ Sm, let

σ ∗ τ =
∑

uv

where the sum is over words u, v in [n + q] such that u, v together are a disjoint union of [n + q],
str(u) = σ, and str(v) = τ .

495 Example
12 ∗ 12 = 1234 + 1324 + 1423 + 2314 + 2413 + 3412.

Evidently λ is the identity.
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