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September 24th, 2014: Tensor Product Definition, Universal
Property

1 Remark
Course content: look at Eisenbud’s index and write down what 30 sections of the book we would like
covered, ranked in groups of five. Paul will then figure out a course based on our preferences and will
make 30 lectures for us. You can also write down topics you don’t want discussed.

Put the result in his mailbox as soon as possible (eg. today).

2 Definition (Tensor Product of Modules)
Let R be a ring with 1. If M is a right R-module and N is a left R-module (so R is a ring with 1),

their tensor product is the abelian group M ⊗R N which is the quotient of the free abelian group

with basis {(m,n) : m ∈M,n ∈ N} by the subgroup generated by the elements

(a) (m,n+ n′)− (m,n)− (m,n′)

(b) (m+m′, n)− (m,n)− (m′, n)

(c) (mr, n)− (m, rn)

for all m,m′ ∈M,n, n′ ∈ N, r ∈ R. We have a natural map (of sets) M ×N →M ⊗R N , where write
m⊗ n for the image of (m,n) in M ⊗R N . Hence we have

(a) m⊗ (n+ n′) = m⊗ n+m⊗ n′

(b) (m+m′)⊗ n = m⊗ n+m′ ⊗ n

(c) mr ⊗ n = m⊗ rn.
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3 Example
Z/2⊗Z Z/3 = 0 because

m⊗ n = m1⊗ n = m3⊗ n
= m⊗ 3n = m⊗ 0

= m⊗ 0 · 0 = m · 0⊗ 0

= 0.

More generally,
Z/r ⊗Z Z/s ∼= Z/d

where d = gcd(r, s).

4 Remark
In general, M ⊗R N is not an R-module. However, if R is commutative, it is! In particular, we
don’t distinguish between left and right modules (eg. we can define rm := mr), and we have an
action

r · (m⊗ n) := rm⊗ n = mr ⊗ n
= m⊗ rn = m⊗ nr
=: (m⊗ n) · r

Elements of M ⊗R N are finite sums of pure tensors m⊗ n. It can be difficult in general

to decide whether such a sum is zero in a tensor product.

5 Proposition (Right Exactness of Tensor Products)
If 0→ A→ B → C → 0 is a short exact sequence of left R-modules and M is a right R-module, then
there is an exact sequence

M ⊗R A
f→M ⊗R B

g→M ⊗R C → 0

given by
m⊗ a 7→ m⊗ f(a) 7→ · · · .

Proof Exactness at M ⊗R C is easy, exactness at M ⊗R B is more involved and will be proved next
time using the Tensor-Hom Adjunction below. Note that there is no 0→ · · · preceding the first
sequence above.

6 Example
Consider

0→ Z 3→ Z→ Z/3→ 0

with M = Z/3 over R = Z. This gives

Z/3⊗Z Z→ Z/3⊗Z Z→ Z/3⊗Z Z/3→ 0.

Note that 1 ⊗ n 7→ 1 ⊗ 3n = 3 ⊗ n = 0 ∈ Z/3 ⊗Z Z. However, the first induced map is not
injective, so we can’t just prepend a 0. To see this, we’ll use a little lemma:

7 Lemma
If M is a right R-module, then

M ⊗R R ∼= M

via
φ : m⊗ r 7→ mr.
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Proof We need to check that φ is well-defined, which is a consequence of the next
proposition.

We have that m⊗ r = mr⊗ 1, so every element in M ⊗RR is of the form m⊗ 1
for some m ∈M . Hence φ(m⊗ 1) = 0 says m = 0, so φ is injective. It is clearly
surjective.

By the lemma, the Z/3 ⊗Z Z’s on the left are each ∼= Z/3, while the induced map is
multiplication by 3 in Z/3, which is the zero map, so not injective.

8 Proposition (Universal Property of the Tensor Product)
Let R,M,N be as above. Let L be an abelian group. If f : M ×N → L is a bilinear map such that
f(mr, n) = f(m, rn) for all m ∈M,n ∈ N, r ∈ R, then there exists a unique homomorphism of abelian
groups F : M ⊗R N → L such that the composition

M ×N M ⊗R N

L
f

F∃!

(The horizontal map sends (m,n) to m⊗ n.)

Proof Use the universal property of the quotient.

9 Remark
We can use this proposition to justify the existence of φ in the preceding lemma: use M×R→M
given by (m, r) 7→ mr.

10 Proposition ( Tensor-Hom Adjunction )

Let R and S be rings, N a left R-module and a right S-module such that

(sn)r = s(nr)

for all s ∈ S, n ∈ N, r ∈ R. (This is the definition of an S,R- bimodule ). Further suppose M is a
right R-module and L is a right S-module. Then

HomS(MR ⊗R RNS , LS) ∼= HomR(MR,HomS(NS , LS))

via
Φ(f)(m)(n) := f(m⊗ n).

(The subscripts are just a memory aid.)

11 Remark
Indeed, this isomorphism is functorial in the rigorous sense of adjoint functors. In particular,
−⊗R N : R -modright → S -modright is left adjoint to HomS(N,−) : S -modright → R -modright.

Proof Next time.

September 26th, 2014: Tensor-Hom Adjunction, Right Exactness
of Tensor Products, Flatness
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12 Remark
Recall the Tensor-Hom adjunction isomorphism Φ from the end of last class, Φ(f)(m)(n) = f(m⊗ n).
Today we’ll show there is a map back the other way. The rest of the proof is straightforward.

Proof Let φ ∈ HomR(M,HomS(N,L)). The map M ×N → L given by (m,n) 7→ φ(m)(n) has the
property that (mr, n) and (m, rn) map to the same thing,

φ(mr)(n) = (φ(m) · r)(n) = φ(m)(rn) = φ(m)(rn).

13 Aside
How do we remember which way rings act on morphisms? If A,B,C,D are rings, M is
an A,B-bimodule, and N is a C,D-bimodule, then HomZ(AMB ,CND) is a B⊗C,A⊗D-
bimodule via

((b⊗ c)f(a⊗ d)) (m) := cf(amb)d.

The key is that if we have four rings, there’s only one way we can reasonably write down
the above. Since Hom(−, N) is contravariant, the order of A,B “switched”; likewise since
Hom(M,−) is covariant, the order of C,D “stayed the same”.

Our map M ×N → L is bilinear, so there exists a unique homomorphism f : M ⊗R N → L
such that

f(m⊗ n) = φ(m)(n).

Now define Ψ: HomR(M,HomS(N,L))→ HomS(M ⊗R N,L) by

Ψ(φ)(m⊗ n) := φ(m)(n).

The correspondence between f and φ shows that Φ and Ψ are mutual inverses to each other.

More general statements are possible: we can add a left C action to L and a left A action to M ,
making Φ an isomorphism of C,A-bimodules.

14 Lemma
A sequence M →M ′ →M ′′ → 0 of right R-modules is exact if and only if the sequence

0→ HomR(M ′′, X)→ HomR(M ′, X)→ HomR(M,X)

is exact for all right R-modules X.

Proof Exercise.

15 Proposition (Right Exactness of Tensor Products)
If M → M ′ → M ′′ → 0 is an exact sequence of right R-modules and N is a left R-module, then
M ⊗R N →M ′ ⊗R N →M ′′ ⊗R N → 0 is exact.

Proof We need only show exactness as abelian groups, i.e. Z-modules. From the lemma, this occurs
if the following is exact for all abelian groups L:

0→ Hom(M ′′ ⊗R N,L)→ Hom(M ′ ⊗R N,L)→ Hom(M ⊗R N,L).

By the Tensor-Hom adjunction, this sequence is isomorphic to

0→ HomR(M ′′,Hom(N,L))→ HomR(M ′,Hom(N,L))→ HomR(M,Hom(N,L)).

This is exact by the other direction of the lemma, so our original sequence is exact.
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16 Definition
A left R-module X is a flat R-module if −⊗R X is an exact functor, i.e. a short exact sequence of
right R-modules

0→M →M ′ →M ′′ → 0

implies
0→M ⊗R X →M ′ ⊗R X →M ′′ ⊗R X → 0

is exact.

17 Remark
Since − ⊗R X is right exact in general, RX is flat if and only if M ⊗R X → M ′ ⊗R X is
injective, i.e. iff f ⊗ 1: M ⊗R X → M ′ ⊗R X is injective for all f ∈ HomR(M,M ′). (Here
(f ⊗ 1)(m⊗ x) := f(m)⊗ x.)

18 Example
Flatness in action:

(1) RR is flat because − ⊗R R is isomorphic to the identity functor on right R-modules, which is
trivially exact.

(2) 19 Lemma
−⊗R X commutes with ⊕, i.e., the natural map

(⊕i∈IMi)⊗R X → ⊕i∈I(Mi ⊗R X)

is an isomorphism. A direct sum is flat if and only if each summand is flat.

Proof Exercise.

(3) 20 Proposition
Projective R-modules are flat.

Proof Free modules are flat from the previous lemma. Projective modules are direct
summands of free modules, hence are also flat from the lemma.

(4) Recall that finitely presented flat modules are projective, giving a partial converse to the above.
Moreover, over a Noetherian ring, a finitely generated module is flat if and only if it is projective.

(5) 21 Proposition
Let S be a multiplicatively closed set in a commutative ring R. Localization at S is an
exact functor. Equivalently, RS−1 is a flat R-module.

Proof Recall the usual construction of MS−1 for an R-module M via equivalence classes.
One can prove the following directly (though tediously): if 0→M →M ′ →M ′′ → 0
is exact, so is 0 → MS−1 → M ′S−1 → M ′′S−1 → 0; this gives exactness of
localization. On the other hand, one may show MS−1 ∼= M ⊗RRS−1. It follows that
RS−1 is flat.

September 29th, 2014: Tensors and Quotients, Support of a
Module

22 Lemma
The map R/I ⊗R M → M/IM given by (x + I) ⊗ m 7→ xm + IM is an isomorphism for all left
R-modules M and all right ideals I.

(In general, this is an isomorphism of abelian groups, though if R is commutative, both sides have
R-module structures which are preserved.)

6



Proof This is well-defined as usual. Apply the right exact functor −⊗RM to the short exact sequence
0→ I → R→ R/I → 0 to get the exact sequence

I ⊗RM R⊗RM R/I ⊗RM 0

M

φ ∼

By exactness in the middle, R/I ⊗RM ∼= M/ im(φ). It’s very easy to see im(φ) = IM .

23 Proposition
R/I ⊗R R/J ∼= R/(I + J) if R is commutative.

Proof By the lemma,

R/I ⊗R R/J ∼=
R/J

I(R/J)
=

R/J

(I + J)/J
∼=

R

I + J
.

24 Definition
The support of a module M over a commutative ring R is the set

Supp(M) := {p ∈ spec(R) : Mp 6= 0.}.

(Recall: Mp := M(R− p)−1, whereas Mx := M{1, x, x2, . . .}−1.)

25 Proposition (Atiyah-Macdonald Exercise 19, Page 46)
Let R be a commutative ring with M,L,N R-modules.

1. If 0→ L→M → N → 0 is a short exact sequence of R-modules, then

Supp(M) = Supp(L) ∪ Supp(N).

2. Supp(R/I) = {p ∈ spec(R) : I ⊂ p} =: V (I).

3. Supp(M) = ∅ if and only if M = {0}.

4. Supp(M ⊗R N) = Supp(M) ∩ Supp(N) if M and N are finitely generated.

5. Supp(
∑
iMi) = ∪i Supp(Mi) (where the sum has arbitrary cardinality and is not necessarily direct).

6. If M is finitely generated, Supp(M) = V (AnnM).

Proof Two useful results first:

26 Lemma
Let M be an R-module. If I is an ideal in R maximal with respect to being the annihilator
of a non-zero element in M , then I is a prime ideal.

Proof Suppose I = Ann(m) for m 6= 0. Suppose ab ∈ I. Hence abm = 0. If bm 6= 0,
then Ann(bm) ⊃ I + (a). By maximality of I, Ann(bm) = I, so a ∈ I. Otherwise,
bm = 0, so b ∈ I.

27 Proposition
If M is a non-zero finitely generated module over a noetherian ring R, then there exists a
chain of submodules

0 = M0 ⊆M1 ⊆ · · · ⊆Mn = M

such that Mj/Mj−1 ∼= R/pj for some pj ∈ spec(R) for all j = 1, . . . , n.
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Proof Pick p1 maximal with respect to being the annihilator of a non-zero element
m1 of M ; it may be the zero ideal. By the lemma, p1 is prime. Now (m1) ∼=
R/Ann(m1) = R/p1, so define M1 = (m1) and apply the same argument to M/M1,
yielding some prime p2 = Ann(m2 +M1). We have

R/p2 =
R

Ann(m2 +M1)
= R(m2 +M1) ⊂M/M1.

Letting M2 = (m2) +M1 ⊂ M gives R(m2 +M1) = M2/M1. In general, induct.
The noetherian hypothesis ensures we must stop after finitely many steps.

(1) Since localization is an exact functor,

0→ Lp →Mp → Np → 0

is exact, so Mp = 0 iff both Lp = 0 and Np = 0.

(2) By exactness and flatness, (R/I)p ∼= Rp/Ip, so

p ∈ Supp(R/I)⇔ Rp/Ip 6= 0

⇔ 1 6∈ Ip = I(R− p)−1

⇔ I ∩ (R− p) = ∅
⇔ I ⊂ p.

(3) It suffices to show that M 6= 0 implies Supp(M) 6= ∅, the converse being obvious. Suppose
0 6= m ∈M . Then Rm ∼= R/I for some ideal I 6= R. Now Supp(R/I) 6= ∅ by (2) (here we use the fact
that V (I) 6= ∅ for I proper; for instance, it contains all maximal ideals containing I). By (1) applied to

0→ Rm→M →M/Rm→ 0,

we have Supp(M) 6= ∅.

(4) One may check that for any multiplicatively closed set S ⊂ R,

(M ⊗R N)S−1 ∼= MS−1 ⊗R NS−1.

(By the next lemma, we don’t need ⊗RS−1 ; this generalizes and is used in the last step of the following
computation.)

28 Lemma
RS−1 ⊗R RS−1 ∼= RS−1 by the multiplication map.

In any case, if p ∈ Supp(M ⊗R N), then

0 6= (M ⊗R N)p
∼= M ⊗R N ⊗R Rp

∼= M ⊗R N ⊗R Rp ⊗R Rp

∼= (M ⊗R Rp)⊗R (N ⊗R Rp)
∼= Mp ⊗R Np

∼= Mp ⊗Rp
Np.

Hence Mp 6= 0 and Np 6= 0. In particular, Supp(M ⊗R N) ⊂ Supp(M) ∩ Supp(N). We’ll finish next
time.
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October 1st, 2014: Prime Avoidance Lemma, Associated Primes

Summary Today we finish the proof from last time, introduce associated primes, and prove some of their
basic properties.

Proof (Continued from last time.)

We proved ⊂ of (4) last time. For the other direction, suppose p ∈ Supp(M)∩Supp(N), so Mp 6= 0
and Np 6= 0. Note that Rp/pRp is a field (Rp being a local ring), and

Rp/pRp ⊗Rp
Mp
∼= Mp/pMp 6= 0.

Likewise Np/pNp 6= 0, and these are each Rp/pRp-vector spaces. Hence

0 6= Mp/pMp ⊗Rp/pRp
Np/pNp.

Now Mp ⊗Rp
Np surjects onto the above since ⊗ is right exact, so Mp ⊗Rp

Np 6= 0. From last time
this is (M ⊗R N)p, so p ∈ Supp(M ⊗R N), giving ⊃.

For (5), we first note in general from (1) that ifA� B or indeed ifB ↪→ A, then Supp(B) ⊂ Supp(A).
Hence since ⊕Mi �

∑
Mi, we have Supp(

∑
Mi) ⊂ Supp(⊕Mi) by (1). Since ⊗ commutes with

arbitrary ⊕, it follows that
Supp(⊕iMi) = ∪i Supp(Mi).

Conversely, M0 ↪→
∑
Mi for each particular M0, so Supp(M0) ⊂ Supp(

∑
Mi), hence ∪Supp(Mi) ⊂

Supp(
∑
Mi).

For (6), let I = Ann(M). Take generators m1, . . . ,mn of M and consider the map

R/I → ⊕ni=1M

given by x+ I 7→ (xm1, . . . , xmn). This is well-defined and evidently injective. Hence

V (AnnM) = V (I) = Supp(R/I) ⊂ Supp(⊕ni=1M) = Supp(M).

(This direction fails with infinitely many generators, since we must use the direct product rather than
the direct sum.) On the other hand, if p 6∈ V (AnnM), then there is some x ∈ AnnM such that x 6∈ p.
Hence x is a unit in Rp, but xMp = 0, so Mp = 0, and p 6∈ Supp(M).

29 Lemma (Prime Avoidance Lemma)
Let I be an ideal in a commutative ring and let p1, . . . , pn be prime ideals.

1. If I ⊂ p1 ∪ · · · ∪ pn, then I is contained in somce pi.

2. If I is not contained in any pi, then there exists x ∈ I such that x 6∈ p1 ∪ · · · ∪ pn.

Proof These are equivalent (contrapositives), so we’ll prove (2). Argue by induction. n = 1 is trivial.
Write q := p1 ∪ · · · ∪ pn−1. Since I is not contained in pn, there is some a ∈ I − pn. If q ⊂ pn,
then a 6∈ pn = p1 ∪ · · · ∪ pn is of the required form. So, suppose q 6⊂ pn, giving some r ∈ q− pn.
Inductively, there is some x ∈ I with x 6∈ q. If x 6∈ pn, we would be done, so suppose x ∈ pn.

Consider x+ ra. This is in I since x and a are. If x+ ra ∈ q, then since r ∈ q, we would
have x ∈ q, contrary to our assumption. Hence x+ ra 6∈ q, and we need only show x+ ra 6∈ pn
for it to be of the required form. Now if x+ ra ∈ pn, then since x ∈ pn, we have ra ∈ pn. Since
pn is prime, either r ∈ pn or a ∈ pn, a contradiction in either case. Hence x+ ra 6∈ pn is of the
required form.
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30 Definition
The associated primes of an R-module M are

Ass(M) := {p ∈ specR : p = Ann(m) for some 0 6= m ∈M}.

31 Lemma
Let N be a non-zero submodule of M . If p is an ideal in R that is maximal subject to being the
annihilator of some non-zero element in N , then p ∈ Ass(M).

Proof By a previous lemma, p is prime.

32 Proposition
If 0 6= N ⊂M is a submodule of an R-module M , then Ass(N) ⊆ Ass(M).

Proof Trivial from the definition.

33 Lemma
If R is a noetherian ring and M is a noetherian R-module, then:

(1) Ass(M) = 0 if and only if M = 0

(2) Ass(M) ⊆ Supp(M)

(3) If p ∈ spec(R), then Ass(R/p) = {p}

(4) If N is a submodule of M , then

Ass(N) ⊆ Ass(M) ⊆ Ass(N) ∪Ass(M/N).

(5) Ass(M) is finite.

Proof (1) is obvious from the lemma: there is an ideal in R that is maximal subject to being
the annihilator of a nonzero element in M .

(2) Suppose p = Ann(m) is prime for m 6= 0. Then

Rm ∼= R/Ann(m) = R/p ↪→M,

so p ∈ Supp(Rm) ⊂ Supp(M).

(3) Pick 0 6= m+ p ∈ R/p. Since R/p is a domain, we see AnnR/p(m+ p) = 0, whence
AnnR(m+ p) = p. Further, such an m+ p exists by (1).

(4) We must show that if p ∈ Ass(M)−Ass(N), then p ∈ Ass(M/N). By hypothesis
there exists m ∈ M − N such that p = Ann(m). One would naturally hope that
p = Ann(m+N) as well. Let I = Ann(m+N). Now Rm ∼= R/p and the annihilator of
every nonzero element of Rm is p as in (3). If Rm ∩N 6= 0, by (1) we have p ∈ Ass(N);
hence Rm ∩N = 0. That is, Rm ↪→M �M/N is injective, or equivalently R/p embeds
in M/N . Thus

{p} = Ass(R/p) ⊂ Ass(M/N).

(5) Using a proposition above, we may find 0 = M0 ⊆ M1 ⊆ · · · ⊆ Mn = M with
Mi/Mi−1 ∼= R/pi with pi prime. By (4) and induction, Ass(M) ⊂ ∪ni=1 Ass(M/Mi−1) =
{p1, . . . , pn}.

October 3rd, 2014: Associated Primes Continued, Minimal
Primes, Zero-Divisors, Regular Elements
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34 Example
Let R = k[x, y] with I = (x2, xy) = (x)(x, y). Pictorially, V (I) is the line x = 0 with a double point at
(0, 0) in the xy-plane. We show that Ass(R/I) = {(x), (x, y)}: we have a filtration 0 ⊂ kx ⊂ R/I with
successive quotients R/(x, y) and R/(x), so by the proof of (5) of the preceding lemma, Ass(R/I) ⊂
{(x), (x, y)}. But (x) = Ann(y + I) and (x, y) = Ann(x+ I).

Because (x) ⊂ (x, y) we call (x, y) an embedded prime .

35 Proposition
Let R be a commutative noetherian ring, I an arbitrary ideal. Let {pi}i∈J be the set of minimal primes
over I. (Explicitly, p ∈ spec(R) is minimal over I if p ⊃ I and if p′ ∈ specR is such that p ⊃ p′ ⊃ I,
then p = p′.)

(1) {pi}i∈J = {p1, . . . , pn} is finite and non-empty.

(2) I ⊃ pi11 · · · pinn for some i1, . . . , in ≥ 1 and p1 ∩ · · · ∩ pn =
√
I.

(3) The irreducible components of V (I) are the V (pi).

36 Definition
Let M be an R-module. We call x ∈ R a zero-divisor on M if xm = 0 for some 0 6= m ∈ M . x is

called M -regular otherwise.

37 Proposition
Let R be a commutative notherian ring, M a noetherian R-module. Then⋃

p∈Ass(M)

p = {zero-divisors on M}.

Proof If p ∈ Ass(M), then p = Ann(m) for some 0 6= m ∈ M , so the left-hand side is contained
in the right-hand side. On the other hand, let x be a zero-divisor on M . Then x ∈ Ann(m)
for some 0 6= m ∈ M and, taking a maximal annihilator as usual, there is some p ∈ Ass(M)
containing Ann(m), so x ∈ p.

38 Definition
Let R be commutative noetherian, M a noetherian R-module. The minimal primes over Ann(M) are

called the minimal primes of M .

39 Proposition
Let R be commutative noetherian, M a noetherian R-module. If p is a minimal prime of M , then
p ∈ Ass(M).

Proof Let p1, . . . , pn be the minimal primes of M . Since M is noetherian, it is finitely generated, so
Supp(M) = V (AnnM). In particular, p := p1 is contained in SuppM , so Mp 6= 0. For some
i1, . . . , in ≥ 1, pi11 · · · pinn ⊂ Ann(M), i.e. pi11 · · · pinn Mp = 0. In Rp, each (pi)p for i 6= 1 contains
a unit, so pi1p Mp = 0. Hence there exists 0 6= ms−1 ∈ Mp with m ∈ M, s ∈ R − p such that
ppms

−1 = 0, i.e. ppm = 0. Since pp is the maximal ideal of Rp, AnnRp
(m) = pp. Therefore

AnnR(m) = pp ∩R = p ∈ Ann(M).

40 Lemma
Let R be commutative noetherian, M a noetherian R-module. An element m ∈M is zero if and only
if the image of m under the map M →Mp is zero for all p ∈ Ass(M).

Proof ⇒ is trivial. For ⇐, suppose m 6= 0. Then we have some Ann(m) ⊂ p ∈ Ass(M), so
Rm ∼= R/Ann(m) and Ann(m) ⊂ p ⊂ R. Hence we have a short exact sequence

0→ p/Ann(m)→ R/Ann(m)→ R/p→ 0.

Localize the sequence at p. Since (R/p)p 6= 0, (R/Ann(m))p 6= 0, so (Rm)p 6= 0. But
(Rm)p = Rpm ⊂Mp, so the image of m in Mp is non-zero.
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41 Lemma
Let R be a commutative noetherian ring, M,N noetherian R-modules. An R-module homomorphism
f : M → N is injective if and only if fp : Mp → Np is injective for all p ∈ Ass(M).

Proof For any p ∈ specR, localizing away from p gives the following commutative diagram with
exact rows:

0 ker f M N

0 (ker f)p Mp Np

f

fp

In particular ker(fp) = (ker f)p, giving ⇒. For ⇐, suppose ker(fp) = 0 for all p ∈ Ass(M). If
m ∈ ker f , then running it through the diagram immediately gives mp = 0 ∈ ker(fp) ⊂Mp. By
the previous lemma, m = 0.

42 Proposition
Let R be a commutative noetherian ring, M a noetherian R-module, I an ideal in R. If every element
of I is a zero-divisor on M , then I is contained in some p ∈ Ass(M).

Proof Since I is contained in the set of zero-divisors on M , it is contained in the union of the
associated primes by the proposition above. The prime avoidance lemma then says I is contained
in some particular associated prime.

43 Proposition
Let R be a commutative noetherian ring, M a noetherian R-module. An ideal I in R contains an
M -regular element if and only if HomR(R/I,M) = 0.

Proof (⇒) If x ∈ I is M -regular, then given any f ∈ HomR(R/I,M) we have 0 = f(x) = xf(1)
since x ∈ I. Because x is M -regular, f(1) = 0, so f = 0.

(⇐) (Contrapositive.) If I consists of zero-divisors on M , by the previous proposition
I ⊂ p ∈ Ass(M). Therefore

R/I � R/p = R/Ann(m) ⊂M

for some 0 6= m ∈M . Hence HomR(R/I,M) 6= 0.

October 6th, 2014: Duality Theories, Injective Envelopes, and
Indecomposable Injectives

44 Remark
Here’s a rough discussion of where we’re headed and what Cohen-Macaulay means.

Cohen-Macaulay-ness is a “duality” theory. The prototypical duality theory comes from linear
algebra. If V is a finite dimensional vector space, there is a natural map V → Homk(Homk(V, k)) =: V ∗∗

given by v 7→ (α 7→ (v 7→ α(v))). This map is part of a natural transformation from the identity
functor to the double-dual functor. Further, it restricts to an isomorphism on the subcategory of finite
dimensional vector spaces.

Many more sophisticated dualities rely on this elementary duality, eg. Serre duality, Poincare
duality; Fourier transforms are in the same spirit, etc. For instance, we can replace the field k with Z.
We generally need a finiteness assumption for these sorts of dualities. For instance, suppose F is a

12



finitely generated projective (equivalently, free) Z-module. The natural map F → HomZ(Hom(F,Z),Z)
is then an isomorphism. If G is a finitely generated torsion Z-module, then the natural map

G→ HomZ(HomZ(G,Q/Z),Q/Z)

is an isomorphism. Roughly, over Z we have to use two different dualizing objects, Z and Q/Z. In fact,
the minimal injective resolution of Z is

0→ Z→ Q→ Q/Z→ 0.

Indeed, this discussion is a special case of Pontryagin duality: if G is a locally compact abelian
group, then the natural map

G→ HomZ(HomZ(G,S1), S1)

with S1 := {z ∈ C : |z| = 1} is an isomorphism. Note that Q/Z ↪→ S1 via z 7→ e2πiz (the roots of
unity) and Z ↪→ S1 via z 7→ eiz.

One of Grothendieck’s great inventions was the “derived category” D of an abelian category A. We
won’t go into this category very far, though the objects are complexes of objects in A. If M,N ∈ D,
one may naturally define a complex RHom(M,N) ∈ D. Roughly, if R is Cohen-Macaulay, there exists
an object ωR ∈ D such that the natural map

M → RHom(RHom(M,ωR), ωR)

is an isomorphism for all M . Indeed, Hi(RHom(M,N)) = Exti(M,N). It also happens that ωR is
concentrated in a single degree, i.e. it is of the form 0→ · · · → 0→ ωR → 0→ · · · ; this turns out to
be very restrictive. We’ll formulate as much of this result as we can just using Ext groups, without
developing the machinery of derived categories.

What about Gorenstein rings? They satisfy the above “duality” isomorphism with the additional
condition that ωR is ‘invertible”, i.e. there exists some ω−1R such that ωR ⊗ ω−1R ∼= R.

Here’s a duality theorem; we won’t define all the terms quite yet; it involves injective envelopes,
local cohomology, and Ext groups.

45 Theorem
Let (R,m, k) be a local noetherian ring and

ωR := Hom(Hd
m(R), E(R/m)).

Then the functor
M 7→ ExtpR(M,ωR) =: M∨

gives a duality between Cohen-Macaulay modules M of depth p and Cohen-Macaulay modules
of depth d− p. In particular, the natural map M →M∨∨ is an isomorphism.

46 Remark
First some remarks on the classification of indecomposable injective modules over a noetherian ring.
This is related to the problem of reconstructing a commutative ring R from the category of R-modules.
The next theorem for instance allows us to in a way to reconstruct specR from R mod .

47 Definition
An R-module M is indecomposable if M = M ′ ⊕M ′′ implies either M ′ = 0 or M ′′ = 0. Likewise if

M = M ′ ⊕M ′′, we call M ′ or M ′′ a direct summand of M .

48 Remark
In nice categories we can write any object as a sum of indecomposables, though generally not
uniquely. Coherent sheaves offer an exception.

13



49 Definition
Let M be an R-module. Define the injective envelope of M (also called the injective hull ), written

E(M) , as the “smallest” injective module which contains M . To make this precise, we first say

that a submodule P ⊂ M is an essential submodule of M if for all non-zero submodules Q ⊂ M ,

P ∩Q 6= {0}. In this situation we call M an essential extension of P . M is an essential extension of
itself trivially.

The set of essential extensions of a module M has maximal elements by Zorn’s lemma. One may
check the following:

50 Proposition (Matsumura, Theorem B4)
An R-module M is injective if and only if it has no essential extensions other than M .

We define E(M) as such a maximal extension. One may show that any two such maximal extensions
are isomorphic in a way which fixes M , though not in general uniquely.

Finally, E(M) is a minimal injective extension of M . Indeed, suppose E′ is a module such that
M ⊂ E′ ⊂ E(M). Any non-zero module P ⊂ E(M) has P ∩M 6= 0, so trivially P ∩ E′ 6= 0, hence
E(M) is an essential extension of E′. If E′ 6= E(M), by the theorem above E′ is not injective.

51 Remark
One may justify the above definitions in a variety of ways. The above is taken from Matsumura’s
Appendix B. Another way proceeds by first considering the case R = Z, since injectivity there is
simply equivalent to divisibility. In general we have an (exact) forgetful functor R -mod→ Z -mod.
It has an adjoint which sends injective Z-modules to injective R-modules. One can then compute
an injective envelope for M as a Z-module and apply the adjoint to get that M embeds as an
R-module into the corresponding injective object.

52 Theorem
Let R be a commutative ring.

(1) If p ∈ specR, then E(R/p) is indecomposable.

(2) Let E be an injective R-module and p ∈ Ass(E). Then E(R/p) is a direct summand of E. In
particular, if E is indecomposable, then E ∼= E(R/p).

(3) If p, q ∈ specR, then E(R/p) ∼= E(R/q) if and only if p = q.

Proof (1) Suppose M,N are non-zero submodules of E(R/p). We will show M ∩N 6= {0}, which
implies E(R/p) is indecomposable. Because R/p is an essential submodule of E(R/p), M∩R/p 6=
0 and N ∩ R/p 6= 0. These intersections correspond to non-zero ideals of R/p, say I and J .
Since p is prime, 0 6= IJ ⊂ I ∩ J ; the result follows.

To be continued next lecture.

October 8th, 2014: Local Cohomology Defined

53 Remark
We continue proving the theorem from the end of last lecture. A minor note: ER/p(R/p) = Frac(R/p),
whereas this is not the case in general for ER(R/p). Unless otherwise stated, our E’s are ER.

Proof (2) Let E be injective, p ∈ Ass(E). There is a submodule of E that is isomorphic to R/p,
namely some (m) ∼= R/Ann(m). Hence we have
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0 R/p E(R/p)

E

α

β
γ

γ exists since E is injective. Claim: γ is injective. Proof: since R/p is an essential submodule of
E(R/p), if ker γ 6= 0, then α(R/p)∩ ker γ 6= 0. But β is injective, forcing ker γ = 0. Hence there
is an exact sequence

0→ E(R/p)
γ→ E.

Because E(R/p) is injective, γ splits, whence E(R/p) is a direct summand of E. If E is
additionally indecomposable, E(R/p) is all of E.

(3)⇐ is trivial. For⇒, identify E(R/p) and E(R/q) and call them E. Hence E has essential
submodules isomorphic to R/p and R/q. Those submodules have nonzero intersection from the
essential condition. That intersection is then of the form I/p ⊂ R/p or J/q ⊂ R/q for ideals
I ) p, J ) q. Moreover, their intersection is annihilated by p+ q ⊂ R, so q(I/p) = 0, i.e. qI ⊂ p,
and likewise pJ ⊂ q. Pick x ∈ I − p, q ∈ q; then qx ∈ p, but x 6∈ p, so q ∈ p. In this way, q ⊂ p
and likewise p ⊂ q, so p = q.

54 Corollary
If R is a commutative noetherian ring and p ∈ specR, then Ass(E(R/p)) = {p} and each element of
E(R/p) is annihilated by some power of p.

Proof R/p ⊂ E(R/p), so {p} = Ass(R/p) ⊂ Ass(E(R/p)). On the other hand, if q ∈ Ass(E(R/p)),
from the previous theorem, E(R/q) ∼= E(R/p), so p = q.

Let 0 6= x ∈ E(R/p). R/Ann(x) ∼= Rx ↪→ E(R/p), so Ass(R/Ann(x)) = {p}. Hence
Ann(x) is p-primary, i.e. Rad Ann(x) = p (see Matsumura, Theorem 6.6). Thus any p ∈ p
has pn ∈ Ann(x) for n large enough, so pnx = 0. Letting p range over a (necessarily finite)
generating set for p, we see pNx = 0 for N large enough.

55 Theorem
A ring R is left noetherian if and only if every direct sum of injective left R-modules is injective.

56 Exercise
A product of injective modules is injective.

Proof (Sketch.) One uses Baer’s criterion, which says that a left R-module E is injective if and only
if for all inclusions of ideals α : I ↪→ R the dashed arrow always exists given the other arrow β:

0 I R

E

α

β
∃γ

(A similar characterization of projectives would require an affirmative answer to Whitehead’s
conjecture: an abelian group G is free if and only if Ext1Z(G,Z) = 0. Shelah proved that
Whitehead’s conjecture, among other things, is undecidable in ZFC.)

57 Theorem
If R is commutative noetherian, then every injective R-module is isomorphic to a direct sum of
E(R/p)’s for p ∈ specR with various multiplicities.

Proof Roughly, apply Zorn’s lemma and the fact that a sum of injectives is injective in a noetherian
ring.
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58 Definition
Let (R,m, k) be a local noetherian ring. The 0th local cohomology group of an R-module M is

H0
m(M) := {a ∈M : ∃n s.t. mna = 0}.

Indeed, this is an R-submodule of M .

59 Proposition
H0

m(−) : R -mod→ R -mod is a left exact functor.

Proof If φ : M → N is an R-module homomorphism and a ∈ H0
m(M) is such that mna = 0, then

0 = φ(mna) = mnφ(a), so φ(a) ∈ H0
m(N). Hence φ restricts to give H0

m(M) → H0
m(N),

proving functoriality. For left exactness, if 0→ L
α→M

β→ N is exact, we get a complex

0→ H0
m(L)

α→ H0
m(M)

β→ H0
m(N).

α here is trivially injective. For exactness at H0
m(M), we need only show kerβ ⊂ imα.

Take a ∈ H0
m(M) and suppose β(a) = 0. By hypothesis there exists some b ∈ L such that

α(b) = a. If mna = 0, then 0 = mnα(b) = α(mnb), but α was injective, so mnb = 0, so
b ∈ H0

m(L).

60 Example
Since every x ∈ E(R/m) is annihilated by a power of m, H0

m(E(R/m)) = E(R/m).

61 Definition
Let (R,m, k) be a local noetherian ring. The ith local cohomology group functor, Hi

m(−) , is the

ith right derived functor of H0
m(−).

Explicitly, to compute Hi
m(M), take an injective resolution of M ,

0→M → I0 → I1 → · · ·

and Hi
m(M) is the ith (co)homology group in the complex

0→ H0
m(I0)→ H0

m(I1)→ H0
m(I2)→ · · · .

As usual, this is independent (up to isomorphism) of the injective resolution. Also as usual, if
0→ L→M → N → 0 is an exact sequence of R-modules, there is a long exact sequence

0→ H0
m(L)→ H0

m(M)→ H0
m(N)

→ H1
m(L)→ H1

m(M)→ H1
m(N)

→ · · ·

62 Definition
Let (R,m, k) be a local noetherian ring. The depth of an R-module M is the smallest integer d such

that Hd
m(M) 6= 0.

There are several different ways to define depth. For instance one definition uses the smallest d
such that ExtdR(k,M) is nonzero. We’ll prove this eventually.

October 10th, 2014: Examples of Injectives and Injective Hulls
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63 Example
Here are some examples of injective modules. Unlike projectives, these tend to be more “slippery.”

(1) If R is a commutative domain, the injective envelope E(R) of R as an R-module is the field of
fractions K := Frac(R). A special case of this was mentioned last lecture.

Proof Certainly R ⊂ K. R is an essential submodule of K since if 0 6= a ∈ K, then a = xy−1

for some x, y ∈ R, so x ∈ Ra ∩ I 6= 0. It suffices to show that K is injective. For that, we
use Baer’s criterion. Suppose we have an ideal I in R together with a map f : I → K. If
a, b ∈ I − 0, then f(ab) = af(b) = bf(a), so a−1f(a) = b−1f(b) is well-defined; call this k.
Define g : R → K by g(x) = xk, so for a ∈ I − 0, g(a) = aa−1f(a) = f(a). That is, the
following commutes:

0 I R

K

f
g

Hence K is injective.

(2) If R is a PID and K := Frac(R), then K/R is an injective R-module. Note that K/R is noetherian,
hence is a direct sum of indecomposable R-modules, namely

K/R ∼=
⊕

m∈Max(R)

E(R/m) ∼=
⊕

x “irred.”

E(R/(x))

where “irred.” refers to taking irreducibles only up to associates, i.e. picking only one generator of
each m ∈ Max(R). (Here we use the fact that a PID has Krull dimension 0 or 1.) For instance,
Q/Z is an injective Z-module and

Q/Z ∼=
⊕

p prime

E(Z/(p)).

(It turns out that E(Z/(p)) is a “Prüfer group,” namely the direct limit of the groups Z/(pn).)

For x ∈ R, we have a sequence of R-submodules of K: xR ⊂ R ⊂ x−1R ⊂ x−2R ⊂ · · · ⊂ R[x−1].
Here

R[x−1]

R
∼= E

(
R

(x)

)
.

Note x−n−1R
x−nR

∼= R
(x) . (For instance, try R = Z, x = 2.)

(3) The situation is more complicated for non-PID’s. Consider C[x, y] and the sequence

0→ C[x, y]→ C(x, y)→ C(x, y)/C[x, y]→ 0.

Let R = C[x, y]. It turns out that

0→ C[x, y]→ C(x, y)→
⊕

ht(p)=1

E(R/p)→
⊕

m∈MaxR

E(R/m)→ 0,

so in particular Frac(R)/R here is not just ⊕mE(R/m).

(4) Let (R,m, k) be a local noetherian commutative ring. Note that (Rm)/(mnRm) ∼= (R/mn)m ∼=
R/mn. For instance, if R = k[x, y]m with m = (x, y) we have

k[x, y] = k ⊕m

= k ⊕ (kx+ ky)⊕m2

= k ⊕ k[x, y]1 ⊕ k[x, y]2 ⊕m3

= · · · .
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Roughly, we “slice” R using powers of m, which corresponds to “slicing” E(R/m) using

HomR(mi/mi+1, R/m).

We next make this precise.

64 Remark
Let (R,m, k) be a local noetherian ring. Apply the functor HomR(−, E) to the sequence

· · · → R/mn → · · ·R/m2 → R/m→ 0.

to get
0→ HomR(R/m, E)→ HomR(R/m2, E)→ · · · .

Each of our original maps was surjective, so each of the induced maps are injective (since HomR(−, E)
is contravariant and left exact). Take the direct limit of the second sequence, lim

−→
HomR(R/mn, E).

The result is sometimes called the “directed union” when the underlying maps are injective. Because
R → R/mn is surjective, there is an injective map HomR(R/mn, E) → HomR(R,E) ∼= E. We may
then add E to the second diagram above, so by the universal property of direct limits, there is a
morphism Φ: lim

−→
HomR(R/mn, E) → E. Φ is surjective since every element e of E = E(R/m) is

annihilated by a power of m as proved last lecture. Hence we have a map R/mn → E for n large
enough with image e in E; by commutativity, e is in the image of Φ. On the other hand, since each of
the maps to E are injective, Φ is injective, so Φ is an isomorphism.

Next consider the sequence

0→ mn/mn+1 → R/mn+1 → R/mn → 0.

Because E is injective, the sequence

0→ HomR(R/mn, E)→ HomR(R/mn+1, E)→ HomR(mn/mn+1, E)→ 0

is exact. Since mn/mn+1 is an R/m-vector space, HomR(mn/mn+1, E) ∼= HomR(mn/mn+1, R/m).

This E will come up more in future lectures.

October 13th, 2014: Local Cohomology and Depth through Ext;
Matlis Duality

65 Proposition
Let (R,m, k) be a local noetherian ring. Then

Hd
m(−) = lim

−→
n

ExtdR(R/mn,−).

Proof Recall that

H0
m(M) = {a ∈M : mna = 0 for n large}

=

∞⋃
n=1

{a ∈M : mna = 0} =

∞⋃
n=1

HomR(R/mn,M)

= lim
−→
n

HomR(R/mn,M)

using digram of R/mn’s from last time and applying the HomR(−,M) functor to get a directed
system in which to compute the direct limit. The above computation is functorial, so H0

m(−) =
lim
−→

HomR(R/mn,−). Derived functors commute with lim
−→

in this case to give the result.
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66 Proposition
Let (R,m, k) be a local noetherian ring. Recall the depth of an R-module M is inf{i : Hi

m(M) 6= 0}.
Equivalently, the depth is inf{i : ExtiR(k,M) 6= 0} where k := R/m as an R-module.

Proof Write d for the first infimum and e for the second one; we show d = e. If d < e, then
ExtdR(k,M) = 0 and by induction on n ≥ 0, ExtdR(R/mn,M) = 0:

Sketch of induction argument: take a short exact sequence 0 → L → X → N → 0 of
R-modules of finite length, so there exists t such that mtL = mtX = mtN = 0. Consider the
following part of the associated long exact sequence:

· · · → ExtdR(N,M)→ Extd(X,M)→ Extd(L,M)→ · · · .

If length is 1, the L and N are R/m and inductively the left and right terms vanish, so the
middle term (with X of length 2) vanishes; continue in this way.

Hence lim
−→n

ExtdR(R/mn,M) = 0, contradicting the definition of d. Therefore d ≥ e. Because

Exte−1R (k,M) = 0, Exte−1R (mn/mn+1,M) = 0 for all n: mn/mn+1 is a k-vector space (finite
dimensional from the noetherian hypothesis); distribute the finite sum over the Ext. By
induction, Exte−1R (mn/mq,M) = 0 for all q ≥ n ≥ 0. For instance, consider the sequence
0 → m/m2 → R/m2 → R/m → 0 and the associated long exact sequence at the e− 1 part to
see how the induction works.

Now, the natural map ExteR(R/mn,M) → ExteR(R/mq,M) is injective for all n ≤ q: use
the short exact sequence 0→ mn/mq → R/mq → R/mn → 0 and the corresponding long exact
sequence. HenceHe

m(M) is the union of its submodules ExteR(R/mn,M), but ExteR(R/m,M) 6= 0,
so He

m(M) is non-zero. Therefore d ≤ e, so d = e.

(There is a minor fiddle: what happens if the inf’s above were over empty sets? We may
conventionally set them to −∞ in this case, though we will essentially ignore it.)

67 Definition
Let (R,m, k) be a local noetherian ring. Write E := E(R/m). The Matlis dual of an R-module M is

M ′ := HomR(M,E).

For instance, R′ = E.

There is a natural map M →M ′′ given by a 7→ Φa where Φa : M ′ → E is given by Φa(f) := f(a).

68 Theorem
Let (R,m, k) be a local noetherian ring.

(1) The canonical map M →M ′′ is injective.

(2) If M has finite length `(M), then `(M ′) = `(M) and M →M ′′ is an isomorphism.

(3) If M is artinian, then M →M ′′ is an isomorphism.

(4) E′ = HomR(E,E) ∼= R̂, the completion of R at m; this will be defined shortly.

(5) If R is complete (i.e. R = R̂), then HomR(−, E) is a duality between the categories of noetherian
and artinian R-modules.

Here a duality between categories C and D is a pair of contravariant functors F : C → D, G : D → C
such that FG ∼= idD and GF ∼= idC . Another name for this is an antiequivalence of categories.
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Proof For (1), let 0 6= a ∈M . Then

Ra ∼= R/Ann(a) � R/m ↪→ E,

and the composite f : Ra→ E has f(a) 6= 0. Since E is injective, f extends to a homomorphism
f : M → E such that f(a) 6= 0. The image of a in M ′′ is the map that sends f to f(a) 6= 0, so
the image of a in M ′′ is non-zero, giving (1).

For (2), we argue by induction on `(M). When `(M) = 1, M ∼= R/m and M ′ ∼=
HomR(R/m, E). However, E is the injective envelope of R/m so contains a unique submod-
ule isomorphic to R/m. It follows that HomR(R/m, E) ∼= HomR(R/m, R/m) ∼= R/m. Hence
`(M ′) = `(M) in this case. Take `(M) ≥ 2. Inductively, suppose the result is true for modules
of length strictly smaller than `(M). Take a short exact sequence

0→ L→M → N → 0

with L 6= 0 and N 6= 0 (any non-zero proper submodule L will do). Since E is injective,
0→ N ′ →M ′ → L′ → 0 is exact, so

`(M ′) = `(N ′) + `(L′) = `(N) + `(L) = `(M).

Now, M →M ′′ is injective and `(M) = `(M ′) = `(M ′′), so M →M ′′ is also surjective, hence
an isomorphism.

For (3), first a lemma:

69 Lemma
If (R,m, k) is a local noetherian ring with finite length and E := E(R/m), then E′ ∼= R.

Proof From (1) we have an injection R→ R′′ = E′. Since `(R) is finite, from (2) this
is an isomorphism.

To be continued next time.

October 15th, 2014: Matlis Duality Continued

70 Remark
We continue proving the theorem from last time. (It’s like “tossing a salad”: the more you do it, the
better it gets.)

Proof Let En = {E : mna = 0}. Then E = ∪nEn, E0 ⊂ E1 ⊂ E2 ⊂ · · · . Since En ∼=
HomR(R/mn, E) = (R/mn)′ and `(R/mn) < ∞, `(En) < ∞, so E is the union of finite
length modules. Indeed, En ∼= ER/mn(R/m) since R/m is essential in En and En is an R/m
module; it is injective by a quick application of Baer’s criterion.

Now let f ∈ E′. Then f(En) ⊂ En. Write fn := f |En , so fn ∈ HomR(En, En). If n ≥ m,
fn|Em

= fm. Conversely, given homomorphisms gn ∈ Hom(En, En) such that gn|Em
= gm for

all n ≥ m, we can define g : E → E by g(a) = gn(a) for a ∈ En. Hence

E′ = HomR(E,E) = lim
←−
n

HomR(En, En)

= lim
←−
n

HomR/mn(En, En) = lim
←−

(En)′R/mn

= lim
←−

(R/mn)′′R/mn = lim
←−

(R/mn)

=: R̂ .
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This gives (4).

We next consider (5). Every submodule of an artinian module is artinian (from the descending
chain condition on submodules), so Ra ∼= R/Ann(a) for a ∈M is artinian. Since R is noetherian,
Ra is as well, so has finite length. Hence M is the union of finite length modules.

71 Lemma
Let (R,m, k) be a noetherian local ring and E := E(R/m). If M is an artinian R-module,
then M embeds in En for some n.

Proof Consider all pairs (f, n) where f : M → En is a homomorphism. Pick (f, n) such
that ker f is minimal among such kernels. If ker f = 0, we’re done; if ker f 6= 0, pick
0 6= a ∈ ker f . Now there exists a homomorphism g : M → E such that g(a) 6= 0
(see proof of (1)). Then f ⊕ g : M → En ⊕ E has smaller kernel, a 6∈ ker(f ⊕ g), a
contradiction.

By the lemma, we have 0→M → En injective. Apply HomR(−, E) to get (En)′ →M ′ → 0
exact, but (En)′ = (E′)n = Rn by (4). Hence M ′ is noetherian.

On the other hand, if N is a noetherian R-module, there exists a surjection Rn → N for
some n, hence an injective map N ′ → (Rn)′ = (R′)n = En. We have seen that E is artinian so
N ′ is artinian as well. Hence HomR(−, E) sends noetherian modules to artinian modules and
vice-versa.

(3) is incomplete at present. It is partially proved at the end of the October 17th lecture.

72 Proposition
Let (R,m, k) be a local noetherian ring.

(1) If P is a projective R-module then P ′ is an injective R-module.

(2) ExtiR(M,N ′) ∼= TorRi (N,M)′.

Proof For (1), let P be a projective R-module. Then

HomR(M,P ′) = HomR(M,HomR(P,E)) ∼= HomR(M ⊗R P,E),

so HomR(−, P ′) is the composition of the exact functors −⊗R P and HomR(−, E), so is exact.
Hence P ′ is injective. (Indeed, we only needed P flat.)

For (2), when i = 0,

HomR(M,N ′) = HomR(M,HomR(N,E)) ∼= HomR(M ⊗R N,E) = (M ⊗R N)′,

as required. Now let P∗ → N be a projective resolution. Since E is injective, HomR(−, E)
sends exact sequences to exact sequences and therefore commutes with homology, i.e. if C∗
is a complex, then HomR(Hi(C∗), E) = Hi(HomR(C∗, E)). Therefore N ′ → P ′∗ is an exact
sequence, and therefore an injective resolution of N ′ by (1). Hence

ExtiR(M,N ′) = Hi(HomR(M,P ′∗)) = Hi((M ⊗R P∗)′) = (Hi(M ⊗R P∗))′ = TorRi (M,N)′.

73 Remark
Last time we showed that Hi

m(M) ∼= lim
−→n

Exti(R/mn,M). We had commuted lim
−→

and derived functors

at one point; here we justify that step.

74 Lemma
Direct limits of exact sequences are exact. More precisely, given exact sequences Xi

fi→ Yi
gi→ Zi,

together with morphisms αi, βi, γi such that the following commute for all i ≥ 0
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Xi Yi Zi

Xi+1 Yi+1 Zi+1

fi

αi

gi

βi γi

fi+1 gi+1

then there is an induced exact sequence

lim
−→

Xi
f→ lim
−→

Yi
g→ lim
−→

Zi.

Proof The induced sequence always exists; we must only show exactness. Let y ∈ ker g.
We have maps αi : Xi → lim

−→
Xi and if αkj := αk−1 · · ·αj+1αj for j < k, αkαkj = αj

for all j < k. Do the same with the β’s. Let yi ∈ Yi be such that y = βi(yi). Then
0 = g(y) = gβi(yi) = γigi(yi). Therefore for all sufficiently large k, 0 = γkigi(yi) =
gkβki(yi). Hence there exists xk ∈ Xk such that fk(xk) = βki(yi). Let x = αk(xk). Then
f(x) = βkfk(xk) = βkβki(yi) = βi(yi) = y.

To be continued.

October 17th, 2014: Local Cohomology and Injective Hulls
Continued

75 Remark
We conclude the remark at the end of last time, namely:

76 Proposition (Direct limits commute with homology)
Suppose Xi

fi→ Yi
gi→ Zi are sequences of R-modules such that gifi = 0 for all i. Further suppose

that there are commutative diagrams

Xi Yi Zi

Xi+1 Yi+1 Zi+1

αi

fi

βi

gi

γi

fi+1 gi+1

Then

H(lim
−→
i

Xi
f→ lim
−→
i

Yi
g→ lim
−→
i

Zi) ∼= lim
−→
i

H(Xi
fi→ Yi

gi→ Zi).

Proof One may prove this directly by diagram chasing in a manner analogous to the previous
lemma. Alternatively, we may use several general facts: the category of R-modules is an
abelian category; the category of chain complexes of an abelian category is abelian; in
this sense, the direct limit is an exact functor between abelian categories; exact functors
commute with homology for general abelian categories.

77 Corollary
Hi

m(M) ∼= lim
−→

ExtiR(R/mn,M), as was shown above, modulo the proposition.

78 Definition
Let M be an R-module. A minimal injective resolution

0→M → I0
d0→ I1

d1→ · · ·

is an injective resolution such that dj(Ij) is an essential submodule of Ij+1 for each j.
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79 Lemma
Let (R,m, k) be a noetherian local ring, M an R-module. If every element of M is killed by a power of
m, then so is every element of E(M).

Proof We first show Ass(M) = {m}. Suppose p ∈ Ass(M), so we have some x ∈M with Ann(x) = p.
Hence R/p = R/Ann(x) ∼= Rx ⊂ M . In particular, 1 + p is killed by a power of m, so
mn ⊂ p for n large enough. Hence we have a surjection R/mn → R/p. Since R/mn is finite
length, so is R/p, which is also noetherian, hence is artinian. We had showed last lecture
that an artinian R-module embeds into a power of E := E(R/m), so R/p ↪→ Em. But then
{p} = Ass(R/p) ⊂ Ass(Em) = {m}, so p = m.

We next note that if M ⊂ N is essential, then Ass(M) = Ass(N). It suffices to show this
for N = E(M), since Ass(M) ⊂ Ass(N) ⊂ Ass(E(M)). If p ∈ Ass(E(M)), then from the
theorem above E(R/p) is a direct summand of E(M), so M ∩ E(R/p) 6= 0. But we have
∅ 6= Ass(M ∩ E(R/p)) ⊂ Ass(E(R/p)) = {p}, so {p} = Ass(M ∩ E(R/p)) ⊂ Ass(M), giving
the reverse inclusion.

Hence Ass(E(M)) = Ass(M) = {m}, so E(M) is a sum of copies of E(R/m). Each element
of E(R/m) is killed by some power of m, and the same is true of the direct sum, completing the
proof.

80 Proposition
Let (R,m, k) be a noetherian local ring, M an R-module.

(1) If 0→M → I0 → I1 → I2 → · · · is an injective resolution of M , then

0→ H0
m(I0)→ H0

m(I1)→ H0
m(I2)→ · · ·

is a subcomplex of the original injective resolution and

Hi
m(M) ∼= Hi(0→ H0

m(I0)→ H0
m(I1)→ · · · ).

(2) If every element of M is annihilated by a power of m, then H0
m(M) = M and Hi

m(M) = 0 for all
i > 0.

Proof We first note that

H0
m(Ij) = lim

−→
n

Hom(R/mn, Ij)

= lim
−→
n

Hom(R/mn, H0
m(Ij))

since each element of the image of f : R/mn → Ij is annihilated by a power of m. (As far as
I can tell, while true, this is irrelevant.) Each H0

m(Ij) is a submodule of Ij , so the suggested
complex is evidently a subcomplex. Further, it is the result of applying the H0

m(−) functor to
an injective resolution of M , so by definition of right-derived functors,

Hp
m(M) = Hp(H0

m(I0)→ H0
m(I1)→ · · · ).

For (2), first suppose our injective resolution is minimal. Since every element of M is
annihilated by a power of m, by the lemma, so is every element of I0. Therefore every element
in the cokernel of M → I0 is killed by a power of m. Hence I1, being the injective envelope of
that cokernel, again has the property that every element in it is killed by a power of m; etc.
That is, H0

m(Ij) = Ij for each j. The complex

0→ H0
m(I0)→ Hm

0 (I1)→ · · ·

is then the same as our original resolution, so is exact, except possibly at I0.
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81 Proposition
Let (R,m, k) be a local noetherian ring. Suppose m = (a1, . . . , an). Then

R̂ ∼= R[[x1, . . . , xn]]/(x1 − a1, . . . , xn − an).

In particular, R̂ is noetherian.

Proof Taking power series over a noetherian ring yields a noetherian ring, so the second claim follows
from the first. For the first, define S = R[x1, . . . , xn], I = (x1, . . . , xn), J = (x1−a1, . . . , xn−an).
The homomorphism φ : S → R defined by φ|R = idR, φ(xi) = ai is surjective with kernel J , so
R ∼= S/J . Hence we can think of R as an S-module. Notice that φ(I) = m, φ(I2) = m2, etc.
Thus the m-adic topology on R is the same as the I-adic topology on R viewed as an S-module.

(Reminder: given an ideal I in a ring R, the open sets are of the form x + In for all x, n.
Given an R-module M , the open sets are of the form a+ InM .)

Hence
R̂ ∼= Ŝ/J ∼= Ŝ/Ĵ = Ŝ/JŜ = R[[x1, . . . , xn]]/(x1 − a1, . . . , xn − an).

82 Proposition
Let (R,m, k) be a local noetherian ring. Then E := E(R/m) is artinian.

Proof Let E ⊃ X1 ⊃ X2 ⊃ · · · be submodules of E. Then HomR(−, E) can be considered a functor

from R-modules to R̂-modules because End(E) = R̂. Now

HomR(E,E) � HomR(X1, E) � HomR(X2, E) � · · · .

Since R̂ = HomR(E,E) is noetherian, the ascending chain of kernels of R̂ � HomR(X,Ei)
eventually stabilizes. That is, X ′i � X ′i+1 is eventually an isomorphism. But

0→ Xi+1 → Xi → Xi/Xi+1 → 0

gives an exact sequence
0→ (Xi/Xi+1)′ → X ′i → X ′i+1 → 0,

so (Xi/Xi+1)′ = 0 for i large. We showed that M ′ = 0 if and only if M = 0, so Xi/Xi+1 = 0
for i sufficiently large.

October 20th, 2014: Auslander-Buchsbaum Formula; Nakayama’s
Lemma

83 Proposition (Neglected Proposition)
Let R be a noetherian ring. Every element in E(R/p) is killed by pn for n� 0. (Note: an alternative
version of this proposition with a different proof was added to the October 8th lecture sometime last
week.)

Proof The only associated prime of E(R/p) is p. Let e ∈ E(R/p). If e = 0, then pe = 0, so take
e 6= 0. Then Re ∼= R/I, where I = Ann(e). Ass(Re) contains all minimal primes over I, and
Ass(Re) ⊆ Ass(E(R/p)) = {p}, so the only minimal prime over I is p. So I ⊇ pn for n � 0.
Therefore pne = 0.

84 Example
Recall that depth(M) is the smallest d so that Hd

m(M) 6= 0. Let R = k[x, y](x,y)/(x
2, xy). Then
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0 Rx R R/(x) 0

R/m k[y](y)

∼= ∼=

These have depths 0, 0, 1, respectively.

85 Remark
Recall that the projective dimension of an R-module M , pdim (M), is the smallest n such that

there exists a projective resolution

0→ Pn → · · · → P1 → P0 →M → 0

or ∞ if no such n exists.

If pdim(M) = n, then Extn+iR (M,−) ≡ 0 for all i > 0.

86 Lemma
Let (R,m, k) be a noetherian local ring and let

0→ L→M → N → 0

be a short exact sequence of finitely generated R-modules. Write ` := depth(L), m := depth(M),
n := depth(N). Then:

(a) ` ≥ min{m,n+ 1}

(b) m ≥ min{`, n}

(c) n ≥ min{`− 1,m}.

Proof Use the long exact sequence

· · · → Hi
m(L)→ Hi

m(M)→ Hi
m(N)→ · · · .

87 Theorem (Auslander-Buchsbaum Formula)
Let (R,m, k) be a local noetherian ring and M a non-zero finitely generated R-module of finite
projective dimension. Then

pdim(M) + depth(M) = depth(R).

Proof We induct on pdim(M) =: n. If n = 0, M is projective, hence free (by the proposition below),
so depth(M) = depth(R).

For n = 1, let 0→ Rp
f→ Rq →M → 0 be “the” minimal projective resolution of M . Then

f is right multiplication by a p× q matrix all of whose entries are in m. The map f∗ in the long
exact sequence

· · · → ExtiR(k,Rp)
f∗

→ Exti(k,Rq)→ Exti(k,M)→ · · ·
is zero because k = R/m is annihilated by m. So there is a short exact sequence

0→ Exti(k,Rq)→ Exti(k,M)→ Exti+1(k,Rp)→ 0.

As shown previously, depth(R) is the smallest i such that Exti(k,R) 6= 0. By examining the
depth(R)− 1 case of the above sequence, it follows that depth(M) = depth(R)− 1.

For n ≥ 2, there is a short exact sequence

0→M ′ → Rp →M → 0

where pdim(M ′) = pdim(M)−1. By the induction hypothesis, pdim(M ′) = depth(R)−n+ 1 <
depth(R). By the lemma, depth(M ′) = depth(M) + 1 < depth(R). Hence depth(M) =
depth(R)− n = depth(R)− pdim(M).
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88 Lemma (Nakayama)
Let (R,m, k) be a local noetherian ring, M a finitely generated R-module.

1. M = mM implies M = 0.

2. If N is a submodule of M such that M = N + mM , then N = M .

3. If a1, . . . , an ∈M provide a basis for M/mM , then M = Ra1 + · · ·+Ran.

Proof Suppose M 6= 0. Because M is finitely generated, it has a simple quotient, say M/M ′ ∼= R/m.
Thus mM ⊂M ′; this yields (1). For (2), by hypothesis, m(M/N) = (mM +N)/N = M/N , so
by (1), M/N = 0. For (3), by hypothesis, M = Ra1 + · · ·+Ran + mM . Use (2).

89 Proposition
Let (R,m, k) be a noetherian local ring, M a finitely generated R-module. The following are equivalent:

(1) M is free;

(2) M is projective;

(3) M is flat;

(4) TorR1 (M,k) = 0.

Proof (1) ⇒ (2) ⇒ (3) ⇒ (4) are all immediate. For (4) ⇒ (1), pick a basis a1, . . . , an ∈ M for
M/mM as in Nakayama’s lemma, part (3). There is a short exact sequence

0→ K → Rn →M → 0.

Notice that since R is noetherian, K is finitely generated. Applying − ⊗R R/m and the fact
that R/I ⊗RM ∼= M/IM yields the usual long exact sequence

· · · → TorR1 (M,k)→ K/mK → (R/m)n
β→M/mM → 0.

By Nakayama (3) β is an isomorphism, so K = mK. By Nakayama (1), K = 0, so M ∼= Rn is
free.

90 Theorem (Rees)
Let R be a ring, x ∈ R a non-unit, non-zero-divisor. Let M be an R-module such that AnnM (x) = 0.
(That is, x is M -regular.) Then

ExtnR/(x)(L,M/xM) ∼= Extn+1
R (L,M)

for all n ≥ 0 and all R/(x)-modules L.

(We may either assume R is a commutative ring or roughly that xR = Rx; we take the former
approach.)

Proof Consider the right-derived functors of the left exact functor Ext1R(−,M) : R/(x) -mod→ Ab.
(Note: we didn’t end up using this method.) Continued next lecture.

October 22nd, 2014: Dimension Shifting, Rees’ Theorem, Depth
and Regular Sequences

91 Remark
Paul will be out of town on Friday, so there will be no lecture then.
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92 Proposition (Dimension Shifting)
Let 0 → X → P → Y → 0 be a short exact sequence of R-modules with P projective. If M is an
R-module,

Extn+1(Y,M) ∼= Extn(X,M).

for n ≥ 1.

Proof There is an exact sequence

· · · → Extn(P,M)→ Extn(X,M)→ Extn+1(Y,M)→ Extn+1(P,M)→ · · ·

If n ≥ 1, then since P is projective, the left and right terms vanish.

93 Remark
Here we continue proving Rees’ theorem from the end of last lecture.

Proof We first show this is true for n = 0 and n = 1, and then apply dimension shifting for n > 1.
For n = 0, consider the short exact sequence of R-modules 0 → M

x→ M → M/xM → 0.
(Injectivity of the first map uses the fact that AnnM (x) = 0.) Viewing L as an R-module, we
get a long exact sequence of Ext groups

0→ HomR(L,M)
x→ HomR(L,M)→ HomR(L,M/xM)

→ Ext1R(L,M)
x∗→ Ext1R(L,M)→ · · · .

HomR(L,M) = 0, since if f : L → M , then xf(`) = f(x`) = f(0) = 0 for all `, so f(`) = 0.
On the other hand, the map x∗ induced by multiplication by x is injective as follows. Let
0→M → I1 → I2 → · · · be an injective resolution of M . We have

0 M I0 I1 · · ·

0 M I0 I1 · · ·

x x x

We compute ExtnR(L,M) by applying HomR(L,−) and computing homology. The induced map

HomR(L, I1)
x→ HomR(L, I1) is zero since f : L → I1

x→ I1 is given by ` 7→ xf(`) = f(x`) =
f(0) = 0. The induced map on homology is then zero, so x∗ is zero. Hence the connected
map HomR(L,M/xM)→ Ext1R(L,M) is an isomorphism. But since L and M/xM are in fact
R/xR-modules, it follows that HomR(L,M/xM) ∼= HomR/xR(L,M/xM) (as abelian groups,
say).

For n = 1, since 0
x→ R→ R/xR→ 0 is exact (using the fact that x is not a zero-divisor),

pdimR(R/xR) ≤ 1. Hence ExtkR(R/xR,−) = 0 for k ≥ 2. Let P be a projective R/xR-module
and 0 → K → P → L → 0 an exact sequence of R/xR-modules. Since P is projective, it is
a direct summand of a free R/xR-module. It follows that ExtkR(P,−) = 0 for all k ≥ 2, since
we can pull direct sums out of Ext in exchange for a direct product. Now we have long exact
sequences

· · · → Ext1R(P,M)→ Ext1R(K,M)→ Ext2R(L,M)→ Ext2R(P,M)→ · · ·

and

· · · → HomR/xR(P,M/xM)→ HomR/xR(K,M/xM)

→ Ext1R/xR(L,M/xM)→ Ext1R/xR(P,M/xM)→ · · · .

Since P is projective over R/xR, the rightmost terms on each sequence are zero. We’ve shown
the first two terms of each sequence are (naturally) isomorphic in pairs, so it follows that the
third terms are isomorphic.

Now suppose n ≥ 2. Take a projective resolution of L as an R/xR-module, P∗ → L. Writing
out kernels gives
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· · · P2 P1 P0 L 0

K1 K0

0 0 0

We have exact sequences
0→ Ki → Pi → Ki−1 → 0

so pieces of long exact sequences

0 = ExtnR(Pi,M)→ ExtnR(Ki,M)→ Extn+1
R (Ki−1,M)→ Extn+1

R (Pi,M) = 0.

Hence Extn+1
R (Ki−1,M) ∼= ExtnR(Ki,M) for all n ≥ 2 and i ≥ 0 (letting K−1 = L). Hence

Extn+1
R (L,M) ∼= ExtnR(K0,M) ∼= · · · ∼= Ext2R(Kn−2,M) ∼= Ext1R/xR(Kn−2,M/xM).

By dimension shifting,

Ext1R/xR(Kn−2,M/xM) ∼= Ext2R/xR(Kn−3,M/xM) ∼= · · · ∼= ExtnR/xR(L,M/xM).

The result follows.

94 Definition
An element x ∈ R is M -regular for an R-module M if xM 6= M and AnnM (x) = 0. (This

differs slightly from our previous version of this definition, where we didn’t require xM 6= M .) An

M -regular sequence is a sequence x1, . . . , xn ∈ R such that x1 is M -regular, x2 is M/x1M -regular,

x3 is M/(x1M + x2M)-regular, etc.

95 Theorem
Let (R,m, k) be a local noetherian ring and M 6= 0 a noetherian R-module. If x1, . . . , xd is an
M -regular sequence, then

depth(M) ≥ d.

In fact, depth(M) is the maximal length of an M -regular sequence. (This was the definition of “depth”
before cohomology came around.)

Proof Since depth(M) is the smallest n such that ExtnR(k,M) 6= 0, we must show that ExtnR(k,M) = 0
for all n < d. So, let n < d. By Rees’ Theorem,

ExtnR(k,M) ∼= Extn−1R/xR(k,M/(x1M)).

(Here we use the fact that k is an R/m-module and hence an R/x1R-module because x1 ∈ m is
a non-unit.) For convenience, write Mn := M/(x1, . . . , xn)M . We can iterate Rees’ theorem to
get

Extn−1R/xR(k,M1) ∼= Extn−2R/xR(k,M2) ∼= · · · ∼= HomR/xR(k,Mn).

Since d > n, n+ 1 ≤ d, so AnnMn(xn+1) = 0. However, if 0 6= f ∈ HomR(k,Mn), then f(k) 6= 0
and xn+1f(k) = 0 because xn+1 ∈ m is a non-unit, a contradiction. Hence the right-hand side is
zero, as we needed.

depth(M) is then ≥ the maximal length of an M -regular sequence. For the converse, see
next lecture.

October 27th, 2014: Krull Dimension of Modules
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96 Remark
We continue proving the theorem from the end of last time.

Proof Now suppose x1, . . . , xn is an M -regular sequence with n as large as possible (which is
bounded above by the previous inequality). For convenience, write Rn := R/(x1, . . . , xn),
Mn := Rn⊗RM = M/(x1M+· · ·+xnM). Suppose n < d; then ExtnR(k,M) = 0. The dimension
shifting argument for the d ≥ n implication last time gives ExtnR(k,M) ∼= HomRn

(k,Mn), so
HomRn(k,Mn) = 0. That is, m 6∈ Ass(Mn). Since Mn 6= 0, there exists some p ∈ Ass(Mn). The
set of non-zero-divisors of Mn is R−∪q∈Ass(Mn)q. Since m is not contained in any q ∈ Ass(Mn),
by the prime avoidance lemma, there is some y ∈ m such that y 6∈ ∪q∈Ass(Mn)q, so y is not a
zero-divisor on M . Also, Mn 6= mMn by Nakayama, so yMn 6= Mn. Hence {y} is an Mn-regular
sequence, so that x1, . . . , xn, y is an M -regular sequence, a contradiction. Hence equality holds.

97 Remark
M is Cohen-Macaulay of depth d if Hi

m(M) = δi,dC for some C, i.e. there is a unique non-zero Hi
m.

Our next goal is to show that M is Cohen-Macaulay if and only if depth(M) = Kdim(M). The classical
definition is as follows: M is a Cohen-Macaulay if the maximal length of an M -regular sequence is the
Krull dimension of M .

98 Definition
If R is a ring, the Krull dimension of R , Kdim(R) , is the supremum of the number of strict inclusions

of any chain of prime ideals. If M is an R-module, the Krull dimension of M is defined as

Kdim(M) := Kdim(R/AnnM).

Note: if M = R/I, then Kdim(R/I) = Kdim(R/Ann(R/I)) = Kdim(R/I), where R/I on the left is
an R-module and R/I on the right is a ring.

99 Proposition
Let R be a noetherian ring, M a noetherian R-module.

(1) If I ⊂ J are ideals, then Kdim(R/J) ≤ Kdim(R/I).

(2) Kdim(R/I) is the maximum of {Kdim(R/p)}p where p ranges over the minimal primes of R over
I.

(3) Kdim(R/I) = Kdim(R/In) for all n (since I and In have the same minimal primes).

(4) If In ⊂ J ⊂ I, then Kdim(R/I) = Kdim(R/J).

(5) Kdim(R1 ⊕R2) = max{Kdim(R1),Kdim(R2)}.

(6) Kdim(R/I1 ∩ I2) = max{Kdim(R/I1),Kdim(R/I2)}.

(7) Kdim(R/I1 ∩ I2) = Kdim(R/I1I2).

(8) If 0→ L1 →M → L2 → 0 is exact, then Kdim(M) = max{Kdim(Lj)}.

(9) If Kdim(R) <∞, and if x ∈ R is a regular element, then Kdim(R/xR) < Kdim(R)

(10) If Kdim(M) <∞, x ∈ R, and AnnM (x) = 0, then Kdim(M/xM) < Kdim(M).

(The final two were added during the next lecture.)

Proof (1)-(4) are trivial or immediate. For (5), since (R1⊕ 0)(0⊕R2) = R1R2 = 0, if p ⊂ R1⊕R2 is
prime, then p ⊃ R1 or p ⊃ R2. In any chain of prime ideals p1 ⊃ p2, they must both contain the
same Ri, since otherwise the larger contains both R1 and R2, hence is not proper. The result
follows.
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For (6), R/I1∩I2 embeds in R/I1⊕R/I2 induced by the natural map R→ R/I1⊕R/I2. Hence
I1 ∩ I2 = AnnR(R/I1⊕R/I2), so max{Kdim(R/Ii)} = Kdim(R/I1⊕R/I2) = Kdim(R/I1 ∩ I2).

For (7), use the fact that (I1 ∩ I2)2 ⊂ I1I2 ⊂ I1 ∩ I2. For (8), let Ij := Ann(Lj). Then
I2M ⊂ L1, so I1I2M = 0. That is, Ann(M) ⊃ I1I2, so

Kdim(M) ≤ Kdim(R/I1I2) = Kdim(R/I1 ∩ I2) = max{Kdim(R/Ij)} = max{Kdim(Lj)}.

On the other hand, Ann(M) ⊂ Ij for j = 1, 2, so Kdim(M) ≥ Kdim(R/Ij) = Kdim(Lj), which
gives the reverse inequality.

For (9), let n := Kdim(R/xR) and p0 ( p1 ( · · · ( pn be a chain of prime ideals containing
xR. Since 0 contains a product of minimal primes, x is not in any minimal prime. Hence p0 is
not a minimal prime. But every prime ideal contains a minimal prime, so there exists a prime
q ( p0, so Kdim(R) ≥ n+ 1.

For (10), let I := Ann(M). Since x is M -regular, x 6∈ I. In fact, the image of x in R/I is
regular since if xy ∈ I, then xyM = 0, so yM = 0, so y ∈ I. By (9), since (R/I)/(xR/I) ∼=
R/(xR + I), Kdim(R/(xR + I) < Kdim(R/I) = Kdim(M). Since Ann(M/xM ⊃ xR + I,
Kdim(M/xM) ≤ Kdim(R/(xR+ I)) < Kdim(M).

100 Proposition
If x ∈ R is not a zero-divisor on M , then Kdim(M/xM) < Kdim(M). (In the non-commutative case,
this follows from the definition; in the commutative case, it requires a bit more work.)

Proof We discuss the non-commutative case briefly. The statement is trivial if xM = M , so suppose
xM 6= M . Since x is not a zero-divisor on M , xM ∼= M as R-modules, giving a strictly
descending chain of isomorphic submodules

M ) xM ) x2M ) · · ·

with successive quotients M/xM . One defines Krull dimension in the non-commutative case in
terms of “slices” of this form needing to be finite, yet we have an infinite sequence, which ends
up giving the suggested inequality immediately.

October 29th, 2014: Local Cohomology over Varying Rings;
Examples: Rings of Invariants

101 Remark
(The final two statements were added to the large proposition on Krull dimension of modules from last
lecture.)

102 Theorem
Let (R,m, k) be a local noetherian ring, M a noetherian R-module. Then depth(M) ≤ Kdim(M).

Proof Let x1, . . . , xn be an M -regular sequence. Write Mj := M/(x1, . . . , xj)M . By (10) of the above
proposition, KdimM > Kdim(M1) > Kdim(M2) > · · · > Kdim(Mn) ≥ 0, so Kdim(M) ≥ n, so
KdimM is ≥ the length of the largest M -regular sequence, which is depth(M) from before.

103 Example
A good source of Cohen-Macaulay rings is the following: if G is a finite group, k is a field, and

S := k[x1, . . . , xn], then if char k - |G|, SG is a Cohen-Macaulay ring. By the characteristic condition, S
is a semisimple kG-module, so decomposes as some ⊕ni=1Si where V1, . . . , Vn are the simple kG-modules
and Si is the sum of all kG-submodules of S isomorphic to Vi. Taking V1 as the trivial representation,
S1 = SG. Since V1 ⊗ Vi ∼= Vi, every Si is an SG-module.
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104 Theorem
Let (R,m) and (S, n) be local noetherian rings and f : R → S a ring homomorphism such that S
is a finitely generated R-module. If M is an S-module, then Hi

n(M) = Hi
m(M) for all i, i.e. local

cohomology of M is the same whether M is treated as an R-module or an S-module.

Proof Next time.

105 Remark
The preceding theorem has a graded analogue. We next discuss it in the context of the previous
example.

106 Remark
A graded k-algebra A =: A0⊕A1⊕· · · is connected if A0 = k. (The terminology comes from topology,
where the 0th homotopy group counts the number of connected components.) There is a good theory
of local cohomology for noetherian graded modules over a noetherian connected graded k-algebra
where one uses m := A1 ⊕A2 ⊕ · · · . One defines H0

m(M) exactly as before; the Hi
m(−) are again the

right-derived functors of H0
m(−), though now the category has changed slightly; one defines the depth

exactly as before; there is a theorem that depth(M) is the minimum d such that ExtdA(k,M) 6= 0;
there is an analogue of the above theorem; etc.

107 Example
Continuing the notation of the previous example, suppose G ⊂ GL(n), i.e. G acts on the degree 1 part
of S by linear automorphisms. We now view S as a graded k-algebra with deg xi = 1. (We really just
need the action of G to preserve degree.) Each Si is a graded vector space since G preserves degree and
by Hilbert SG is noetherian and S is a finitely generated SG-module. By the graded analogue of the
preceding theorem, if M is a graded S-module, then its local cohomology Hi

m(M) (where m consists
of the positive degree portion of S) is Hi

n(M), where the right-hand side is the local cohomology
computed with respect to (SG, n := m ∩ SG).

We will show (someday) that S is a Cohen-Macaulay ring, i.e. Cohen-Macaulay as a module over
itself, i.e. depth(S) = n, i.e. Hi

m(S) is non-zero if and only if i = n. By the theorem, Hi
n(S) is non-zero

if and only if i = n. Hence S is Cohen-Macaulay as an SG-module. Since S = ⊕Si as SG-modules,
and since one may check M1 ⊕M2 is Cohen-Macaulay if and only if M1 and M2 are Cohen-Macaulay
of the same depth, each Si is Cohen-Macaulay as an SG-module.

108 Remark
We say M is a maximal Cohen-Macaulay module if M is an R-module and R and M are Cohen-

Macaulay with depth(M) = depth(R). In the previous example, S is a maximal Cohen-Macaulay
SG-module. If R has only finitely many maximal Cohen-Macaulay modules, R is said to have

finite maximal Cohen-Macaulay type .

109 Example
For example, take a finite non-trivial subgroup of SL2(C) acting on C[x, y]. Then C[x, y]G is not

regular, C2/G = spec(C[x, y]G) is called a Kleinian singularity. (Klein classified finite subgroups of
SL2(C).) They are indexed by the Dynkin diagrams of types An, Dn, E6, E7, E8.

For instance, An corresponds to the subgroup consisting of the diagonal matrices with the n+ 1st
roots of unit in the upper left. One checks C[x, y]G ∼= C[xn+1, xy, yn+1], which is C[u, v, w]/(uw−vn+1).
C[x, y]G is Cohen-Macaulay, and the maximal Cohen-Macaulay modules for it are the Si (in the notation

above). The minimal resolution of C2/G, written C̃2/G
π→ C2/G, has exceptional locus π−1(0) which

is a union of P1’s. The dual graph of π−1(0), given by putting a vertex for each P1 in π−1(0) and
connecting them by an edge when their intersection is non-empty, happens to be the Dynkin diagram
above.

Indeed, the bounded derived category of EndC[x,y]G(C[x, y])-modules is equivalent to the bounded

derived category of coh(C̃2/G). In some sense, all of this stems from the above theorem.
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October 31st, 2014: Local Cohomology and Ring Changes; Krull’s
Principal Ideal Theorem

110 Remark
Happy Halloween! We’ll restate and prove the second theorem from last time.

111 Theorem
Let (R,m) and (S, n) be local noetherian rings. Let f : R→ S be a ring homomorphism which makes
S a finitely generated R-module. If M is a finitely generated S-module, then for all i

Hi
m(M) = Hi

n(M).

Note: We suppose Sm ⊂ n. We may need f to be a morphism of local rings to justify this, or it
may follow from the finiteness condition, Paul was unsure.

Proof Because S is a finitely generated R-module, S/Sm is a finitely generated R/m-module, hence
of finite length as an S-module. Thus nt(S/Sm) = 0 for t� 0. That is, nt ⊂ Sm ⊂ n. Hence

H0
m(M) = {a ∈M : mka = 0 for k � 0}

= {a ∈M : nta = 0 for k � 0}
= H0

n(M).

While f induces a functor S -mod → R -mod, and under this functor we have H0
m = H0

n , the
right-derived functors of H0

n are computed in S -mod, not R -mod, so we can’t immediately
conclude the remaining local cohomology functors are equal.

112 Aside
Let F be a left exact functor on S-modules. To compute the right derived functors of F
we use an injective resolution typically. However, we can more generally compute RiF by
using an acyclic resolution.

113 Definition
Given a functor F , an S-module J is acyclic for F if RnF (J) = 0 for all n ≥ 0.

An acyclic resolution of M is an exact sequence

0→M → J0 → J1 → · · ·

where each Ji is F -acyclic.

Indeed, the usual proof that derived functors are, up to isomorphism, independent of
which injective resolution you chose can be easily generalized to cover this case.

Since H∗n(M) is computed by taking a resolution of M by injective S-modules, it suffices to
show that injective S-modules are acyclic for H∗m(−). For this, it suffices to show that every
indecomposable injective S-module I has the property that Hi

m(I) = 0 for all i > 0. We had
classified the indecomposable injectives in this case above. If I is the injective envelope of S/n
(as an S-module), then every element of I is annihilated by a power of n, and therefore by a
power of m. We showed that Hi

m(N) = 0 for all i > 0 if every element of N is annihilated by a
power of m, so the E(S/n) case works.
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Now suppose I 6∼= E(S/n) is an indecomposable injective S-module. Let P∗ → R/mk be a
projective resolution of R-modules for some k. Then

HomS(TorRn (S,R/mk), I) ∼= HomS(Hn(S ⊗ P∗), I)
∼= Hn(HomS(S ⊗ P∗), I))
∼= Hn(HomR(P∗,HomS(S, I)))
∼= Hn(HomR(P∗, I))

∼= ExtnR(R/mk, I).

To compute TorRn (S,R/mk), we take a projective resolution of S as an R-module. Because S is
finitely generated as an R-module and R is noetherian, we can assume that all the projective
R-modules in the projective resolution of S are finitely generated. Applying − ⊗R R/mk

to this projective resolution will give a complex of finitely generated R/mk-modules. Hence
TorRn (S,R/mk) is a finitely generated R/mk-module.

However, I 6∼= E(S/n), from which it follows that no elements in I are annihilated by a power
of n, hence no element of I is annihilated by a power of m. Hence HomS(TorRn (S,R/mk), I) = 0,
i.e. ExtnR(R/mk, I) = 0 for n ≥ 0. In particular, H0

m(I) = lim
−→k

ExtnR(R/mk, I) = 0 for all n.

Hence I is acyclic for H0
m(−). The result follows.

114 Theorem (Krull’s Principal Ideal Theorem)
Let R be a noetherian ring, x ∈ R, and p a minimal prime over Rx. Then ht(p) ≤ 1.

115 Definition
Recall the height of a prime ideal p ⊂ R is the biggest n such that there exists a chain of prime

ideals p = pn ) pn−1 ) · · · ) p1 ) p0.

Proof Suppose not. That is, suppose p is minimal over xR and q, q′ are distinct primes different
from p with xR ⊂ p ⊂ R and q′ ⊂ q ⊂ p. We can localize at p and pass to (xR)p ⊂ pRp ⊂ Rp

and q′Rp ⊂ qRp ⊂ pRp. One must show the primes remain distinct here; use lying over/going
up. In any case, we can thus assume without loss of generality that R is local with maximal
ideal p. We may then quotient by q′ without loss of generality, so suppose q′ = 0.

Let y ∈ p− q and define Ik := {r ∈ R : rxk ∈ yR}. Then I1 ⊂ I2 ⊂ · · · stabilizes at some
It = It+1 = · · · . Without loss of generality, we can replace x by xt and take t = 1. Hence if
rx2 ∈ yR, then rx ∈ yR. Since R/xR has only one prime ideal, it has finite length. (Recall that
every ideal contains a product of minimal prime ideals, and only p is minimal over xR, so xR is
annihilated by some power of p, which gives a composition series for R/xR by R/pR’s, which
are fields of finite dimension.) Likewise R/x2R has finite length. That is,

Rx+Ry

Rx2
and

Rx2 +Ry

Rx2

have finite length.

116 Lemma
Let x be non-zero element in a domain R. Then

(a) If y ∈ R, Rx+Ry
Rx

∼= Rx2+Ry
Rx2+Rxy

(b) If y ∈ R− {0} has the property that bx2 ∈ yR implies bx ∈ yR, then

Rx2 +Ry

Rx2 +Rxy
∼=

R

Rx
.

Proof Exercise. (Note: the statement of this lemma was modified in several ways during
the November 3rd lecture. The original proof has been removed.)
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To be continued.

November 3rd, 2014: Generalized Principal Ideal Theorem

117 Remark
We begin by finishing off the proof of Krull’s intersection theorem from last time.

Proof Using parts (1) and (2) of the lemma from last time,

R

Rx
∼=
Rx+Ry

Rx

and both have (the same) finite length. However, this is absurd since Rx + Ry 6= R, so the
right-hand side is a proper submodule, forcing the left-hand side to have strictly larger length
than the right hand side, a contradiction. The theorem follows.

118 Corollary
Let p ⊆ q be prime ideals in a noetherian ring R. If there exists a single prime ideal strictly between p
and q, then there exists infinitely many.

Proof By passing to R/p, we can assume p = 0. By localizing at q, all primes are contained in q.
Suppose p1, . . . , pn are all the prime ideals strictly between 0 and q. By the prime avoidance
lemma applied to q, there exists an element x ∈ q such that x 6∈ p1 ∪ · · · ∪ pn. By Krull’s
theorem, the height of q is ≤ 1, a contradiction since n ≥ 1 by assumption. Therefore there
must be infinitely many primes strictly between 0 and q.

119 Theorem (Generalized Principal Ideal Theorem, GPIT)
Let R be a noetherian ring and x1, . . . , xn ∈ R. If p is a minimal prime over (x1, . . . , xn), then
ht(p) ≤ n.

Proof By localizing at p, we reduce to the case where R is local and p is maximal. Pick p ) p1
as large as possible (using the noetherian condition). Since p is minimal over (x1, . . . , xn),
(x1, . . . , xn) 6⊂ p1. Hence without loss of generality we may take x1 6∈ p1. By maximality of p1,
p is the unique minimal prime over (x1, p1). Hence pk ⊂ (x1, p1) for k � 0. Thus we can write
xki = x1ai + bi for ai ∈ R, bi ∈ p1, i = 2, . . . , n. Now

p =
√

(x1, . . . , xn) =
√

(xk1 , . . . , x
k
n) ⊆

√
(x1, b2, . . . , bn) ⊂ p

where the final ⊂ follows since p is maximal. Hence p is the unique minimal prime over
(x1, b2, . . . , bn). Therefore p/(b2, . . . , bn) is the unique minimal prime in R/(b2, . . . , bn) that
contains the image of x. Krull’s Principal Ideal Theorem implies the height of p/(b2, . . . , bn) is
at most 1. Thus p1 is minimal over (b2, . . . , bn). By induction, p1 has height ≤ n− 1, and this
reasoning holds for all primes strictly contained in pi, so p has height ≤ n.

120 Corollary
We have:

(1) In a noetherian ring, every prime ideal has finite height.

(2) If (R,m) is a local noetherian ring, then Kdim(R) <∞. Indeed, Kdim(R) = ht(m).

(3) If (R,m) is local noetherian, then every finitely generated non-zero R-module has finite depth.

Proof (1) If p ∈ spec(R), then p is finitely generated, so is a minimal prime over itself whose height
is bounded above by the number of generators of p. (2) follows from (1) applied to m since any
chain of prime ideals can have m added at the top. (3) depth(M) ≤ Kdim(M) ≤ Kdim(R) since
Rn �M for some n.

34



121 Corollary
If k = k is an algebraically closed field, then Kdim k[x1, . . . , xn] = n.

Proof 0 ( (x1) ( (x1, x2) ( · · · ( (x1, . . . , xn) is a chain of prime ideals, so ht(x1, . . . , xn) ≥ n. On
the other hand, ht(x1, . . . , xn) ≤ n by the theorem. Hence KdimR(x1,...,xn) = n. Every maximal
ideal is, up to a linear change of variables, of this form, and the result follows.

November 5th, 2014: Krull Dimension of Polynomial Rings;
Systems of Parameters

122 Remark
Paul was unconvinced by a key step in our proof of the generalized principal ideal theorem from last
time, so he presented another argument. The original argument has been replaced by this one. Similarly,
the next corollary’s proof was replaced/completed later. An alternate argument and statement appears
in the November 19th lecture. The example at the end of this lecture was also added later.

123 Corollary (Converse to GPIT)
If R is noetherian, p ∈ spec(R), and n := ht(p), then p is minimal over some ideal generated by n
elements.

Proof We construct a sequence of elements x1, x2, . . . , xn such that each xk ∈ p is contained in no
minimal primes containing (x1, . . . , xk−1). Indeed, having chosen x1, . . . , xk, (x1, . . . , xk) has
finitely many minimal primes over it. If one of these is p, we are done. Otherwise, by the prime
avoidance lemma, there is an element xk+1 ∈ p not contained in any of these minimal primes.
Next we claim that p is minimal over (x1, x2, . . . , xn). Choose a prime qn ⊂ p minimal over
(x1, . . . , xn). We construct a sequence of primes q0 ( · · · ( qn such that qk is minimal over
(x1, . . . , xk). Indeed, having chosen qk ( · · · ( qn, qk contains (x1, . . . , xk−1), so it contains
some minimal prime qk−1 over (x1, . . . , xk−1). Since xk ∈ qk is not contained in any minimal
prime over (x1, . . . , xk−1), we have qk−1 ( qk. Now q0 ( · · · ( qn ⊂ p is of length n = ht p, so
qn = p, completing the result.

124 Theorem
If R is noetherian, then KdimR[x1, . . . , xn] = n+ KdimR.

Proof It suffices to treat the n = 1 case. Write x := x1. If p ∈ spec(R), then R[x]/pR[x] ∼= (R/p)[x],
which is a domain, so pR[x] ∈ specR[x]. If p0 ( p1 ( · · · ( pm is a chain of primes in R,
then p0R[x] ( p1R[x] ( · · · ( pmR[x] ( pmR[x] + xR[x] is a chain of primes in R[x], so
Kdim(R[x]) ≥ Kdim(R) + 1.

On the other hand, if Kdim(R) = ∞, Kdim(R[x]) = ∞, so take Kdim(R) < ∞. Let
q ∈ spec(R[x]) and let p := R ∩ q. It suffices to show that ht(q) ≤ Kdim(R) + 1. For this, it
suffices to show that ht(qRp[x]) ≤ Kdim(R) + 1. Hence we can assume R is local with maximal
ideal p. We will show that q is minimal over an ideal generated by Kdim(R) + 1 elements and
use the generalized principal ideal theorem to get ht(q) ≤ Kdim(R) + 1.

Since ht(p) ≤ Kdim(R), by the previous corollary p is minimal over an ideal I := (x1, . . . , xm)
where m := Kdim(R). Since (R, p) is local, p is the unique minimal prime over (x1, . . . , xm),
so some power of p is contained in it, i.e. pk ⊂ I for k � 0. Now the image of p in (R/I)[x] is
nilpotent. We claim that if N is a nilpotent ideal in a ring T , then Kdim(T/N) = Kdim(T ).
This is just because N is contained in every prime ideal, so any chain of primes in T contains N
already. Hence Kdim((R/I)[x]) = Kdim((R/p)[x]). Since p is maximal, (R/p)[x] is a polynomial
ring over a field, hence has Krull dimension 1.

35



Since R[x]q/IR[x]q is a localization of (R/I)[x], Kdim(R[x]q/IR[x]q) ≤ 1. Hence ht((qR[x]q+
IR[x]q)/IR[x]q) ≤ 1, so (qR[x]q + IR[x]q)/IR[x]q is minimal over a principal ideal generated
by the image of some z. Thus qR[x]q is minimal over (x1, . . . , xm, z). Therefore ht(qR[x]q) ≤
m+ 1 = Kdim(R) + 1.

There is a paper in the American Mathematical Monthly (2005) by T. Coquand and H. Lombardi
which gives this (at least when R = k) in < 2 pages. It’s elementary and short, though complicated.

125 Definition
A system of parameters in a local noetherian ring (R,m, k) of Krull dimension n is a sequence

x1, . . . , xn ∈ m such that m =
√

(x1, . . . , xn). Equivalently, the length of R/(x1, . . . , xn) <∞.

Every local noetherian ring has a system of parameters because m has some finite height n, so m
will be a minimal prime over an ideal generated by n elements.

126 Example
Let R = k[[x, y, z]]/(x) ∩ (y, z). Note in general that if p, p′ ∈ specR and p ( p′, p′ ( p, then p and
p′ are the only minimal primes over p ∩ p′. Here we take p = (x), p′ = (y, z). Now R/(x) ∼= k[[y, z]]
and R/(y, z) ∼= k[[x]]. Since Kdim(R) is the same as the Krull dimension of the quotient of R by some
(not any) minimal prime, in this case we have Kdim(R) = 2.

Claim: y, x+ z is a system of parameters for R i.e. mn ⊂ (y, x+ z) for n� 0. For proof, consider
x2 = x(x+ z) ∈ (y, x+ z) and z2 = z(x+ z) ∈ (y, x+ z) (in the quotient), whence (x, y, z)2 ⊂ (y, x+ z).
Notice, however, that xy = 0, so y is not a regular element in R. Hence a minimal system of parameters
need not be a regular sequence.

November 10th, 2014: Generalized Generalized Principal Ideal
Theorem; Regular Rings

127 Theorem (Generalized Generalized Principal Ideal Theorem)
Let I := (x1, . . . , xn) be an ideal in a noetherian ring R. Suppose p is a prime ideal containing I. Then

ht(p) ≤ htR/I(p/I) + n.

Proof We argue by induction on the number k := htR/I(p/I). The case k = 0 is exactly the
generalized principal ideal theorem. Suppose k ≥ 1. Let p1, . . . , pt be the minimal primes over
I. Since k ≥ 1, p is not in this list. By the prime avoidance lemma, p 6⊂ p1 ∪ · · · ∪ pn, that is,
there exists x ∈ p such that x 6∈ pi for all i. Hence every chain of prime ideals between p and
I + xR does not contain any of the pi’s. Indeed, any such chain can be extended by a longer
chain since the smallest element in the chain is a non-minimal prime over I so contains one of
the pi properly. That is,

ht(p/(I + xR)) < ht(p/I) = k.

That is, ht(p/(I + xR)) ≤ k − 1. Applying the induction hypothesis to I + xR gives

ht(p) ≤ (k − 1) + (n+ 1) = n+ k = n+ ht(p/I),

completing the proof.

128 Corollary
Let p be a prime ideal of height k in a noetherian ring R and x ∈ p. Then htR/xR(p/xR) is

(1) either k or k − 1 and
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(2) is k − 1 if x is not contained in any minimal prime.

Proof Take n = 1 in the GGPIT, so that k = ht(p) ≤ htR/xR(p/xR) + 1, i.e. ht(p/xR) ≥ k − 1.
However, ht(p/xR) ≤ ht(p), giving (1). If x is not in any minimal prime, then we can use the
argument in the proof of the theorem to show that ht(p/xR) < ht(p) = k by extending a chain
for p/xR. Hence ht(p/xR) = k − 1.

129 Proposition
Let (R,m, k) be a local noetherian ring. Let x ∈ m−m2. Write R := R/xR, m := m/xR. Then

dimk(m/m2) = dimk(m/m2)− 1.

Proof Let x1, . . . , xn ∈ m be such that their images x1, . . . , xn in m/m2 are a basis. Now m =
m2 + Rx1 + · · · + Rxn + Rx, so by Nakayama’s lemma, x, x1, . . . , xn generate m and their
images span m/m2. To show these images are linearly independent, we must show that if
ax+ a1x1 + · · · anxn ∈ m2 then a, a1, . . . , an ∈ m. Sending this linear combination to R gives
a1x1 + · · ·+ anxn ∈ m, so ai = 0 for each i, i.e. ai ∈ m. It follows that a0x ∈ m2, but x 6∈ m2 by
assumption, so a0 ∈ m, completing the proof.

130 Theorem
Let (R,m, k) be a local noetherian ring with Krull dimension n. Then dimk(m/m2) = n if and only if
m is generated by n elements.

Proof (⇒) is Nakayama’s lemma. For (⇐), suppose false. Then dimk(m/m2) < n. Hence m is
generated by < n elements by Nakayama’s lemma, so n > ht(m) = Kdim(R) by the GPIT, a
contradiction.

131 Definition
A local noetherian ring (R,m, k) is regular if m can be generated by Kdim(R) elements, i.e. if

dimk(m/m2) = Kdim(R). A (not necessarily local) noetherian ring R is regular if Rm is regular for

all maximal ideals m.

132 Proposition
Let (R,m, k) be a regular local noetherian ring and x ∈ m − m2. Then R/xR is regular and
Kdim(R/xR) = Kdim(R)− 1.

Proof Let n := Kdim(R). Then dimk(m/m2) = n and (with R := R/I and m := (m + xR)/xR)
dimk(m/m2) = n− 1. Hence m is generated by n− 1 elements, so ht(m) ≤ n− 1, i.e. Kdim(R) ≤
n−1. However, we also showed Kdim(R) is either n or n−1, so Kdim(R) = n−1 = Kdim(m/m2),
so R is regular with the suggested dimension.

November 12th, 2014: Krull’s Intersection Theorem

133 Theorem (Krull’s Intersection Theorem)
Let R be noetherian, I an ideal in R, M a finitely generated R-module, and define N := ∩∞n=1I

nM ⊂M .
Then N = IN .

Proof Define L as the set of all submodules L ⊂ M such that L ∩N = IN . L is non-empty since
it contains IN . Let L be a maximal member of L, which exists since R is noetherian. We
will show that InM ⊂ L for n � 0. Let x ∈ I and define Mn := {m ∈ M : xnm ∈ L}. Note
that Mn ⊂ Mn+1. Since M is finitely generated over a noetherian ring, this ascending chain
eventually stabilizes, say Mn = Mn+1 = · · · . We will now show IN = (xnM + L) ∩N , which
implies by maximality that xnM ⊂ L. For the claim, IN ⊂ L ∩ N ⊂ (xnM + L) ∩ N . On
the other hand, given m ∈ (xnM + L) ∩N , write m = xnm′ + ` where m′ ∈ M, ` ∈ L. Then
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xm ∈ xN ⊂ IN ⊂ L. This gives xn+1m′ ∈ L, i.e. m′ ∈ Mn+1 = Mn, so xnm′ ∈ L. Therefore
m ∈ L, so m ∈ L ∩N = IN , giving the reverse inclusion.

We have shown xnM ⊂ L, for any arbitrary x ∈ I, with n depending on x. In particular, this
is true for the finitely many generators xi of I, and taking n sufficiently large, each xniM ⊂M .
Indeed, increasing n even further and applying the multinomial theorem, InM ⊂ L. Now
N ⊂ InM ⊂ L, so IN = L ∩N = N .

134 Theorem
Let R be noetherian, I a proper ideal in R, and M a finitely generated R-module. If R is a domain
and M is a torsion-free R-module, then ∩∞n=1I

nM = 0.

Proof Let N := ∩∞n=1I
nM . Since R is noetherian and M is finitely generated, N is finitely generated,

say by m1, . . . ,mk. By Krull’s Intersection Theorem, IN = N , so there are elements aij ∈ I
such that mi =

∑k
j=1 aijmj for all 1 ≤ i ≤ k. If A = (aij), we have

(id−A)

m1

...
mk

 = 0.

Multiplying by the adjugate, det(id−A) annihilates all the mi’s, hence it annihilates N . But
det(id−A) = 1 + a for some a ∈ I by Laplace expansion. Since I is proper, a 6= −1, but M is
torsion-free, so N = 0.

135 Corollary
If R is a noetherian domain and I is an ideal in R, then ∩∞n=0I

n = 0.

Proof Apply the preceding theorem to M = R.

136 Remark
We used a linear-algebraic fact in the proof of the previous theorem. We discuss it further here.
Let A = (aij) be an n × n matrix with entries in a commutative ring R. Define determinants and
minors in the usual way, eg. Aij is the matrix obtained by deleting row i and column j. We define the

adjoint matrix or adjugate , adj(A) , to be the n × n matrix with (i, j)th entry (−1)i+j det(Aji).

For each i, we have det(A) =
∑n
j=1(−1)i+jaij det(Aij). This type of reasoning gives det(A)I =

A(adjA) = (adjA)A.

We also mention the “principal of permanence of identities” or perhaps the “Lefshetz principle”.
Let’s say we have two “polynomials functions”, f(a1, . . . , an) and g(a1, . . . , an). Suppose that for every
field K and every choice of a1, . . . , an ∈ K we have f(a1, . . . , an) = g(a1, . . . , an). We want to say
that for every commutative ring R and every a1, . . . , an ∈ R, these polynomials are equal. Here our
polynomials have integer coefficients, so they make sense in any ring.

Let R = Z[x1, . . . , xn] and let K = Frac(R). By assumption, plugging in coefficients in K yields an
identity. In particular, f(x1, . . . , xn) = g(x1, . . . , xn). Now if a1, . . . , an are elements in any ring, there
is a homomorphism φ : Z[x1, . . . , xn]→ R given by φ(xi) = ai for arbitrary ai. But then

f(a1, . . . , an) = φ(f(x1, . . . , xn)) = φ(g(x1, . . . , xn)) = g(a1, . . . , an).

Indeed, it is enough to have the identity f = g for the complex numbers because C contains a subring
isomorphic to Z[x1, . . . , xn] for all n.

137 Lemma
Let A = (aij) be an n× n matrix with entries in a commutative ring R. Let C be an n× 1 matrix
over R. If AC = 0, then det(A)C = 0.

Proof det(A)C = adj(A)AC = 0.

38



138 Lemma
If A = (aij) is an n× n matrix over R and M is an R-module generated by k elements, then there is

an injective homomorphism R/Ann(M) ↪→M⊕k.

Proof Write M = Rm1 + · · ·+Rmk. Define φ : R→M⊕k by φ(x) = (xm1, . . . , xmk).

kerφ = {x : xmi = 0 for all i} = {x : xM = 0} = Ann(M).

139 Proposition
Let A = (aij) be an n× n matrix with entries in an R-module M . Let C be an n× 1 matrix over M .
If M is generated by the entries in C and AC = 0, then det(A)M = 0.

Proof SayM = Rm1+· · ·+Rmn where C = (m1; . . . ;mn). By hypothesis, det(A)C = adj(A)AC = 0,
so det(A)mi = 0 for all i, so det(A)M = 0.

November 14th, 2014: Consequences of Krull’s Intersection
Theorem

140 Remark
We attempted to finish the proof of the fact above that in a noetherian ring each prime is minimal
over an ideal generated by as many elements as its height above. We did not quite finish, though we
added an example afterwards.

141 Theorem
Let R be noetherian, p ∈ specR. Suppose ht(p) = n and p is minimal over (x1, . . . , xn).

(1) If a1, . . . , ak ∈ p, then ht(p/(a1, . . . , ak)) ≥ n− k.

(2) For every k, ht(p/(x1, . . . , xk)) = n− k.

Proof Let I := (a1, . . . , ak) and write m := htR/I(p/I). By a previous corollary, p/I is minimal

over some (b1, . . . , bm) for some bi ∈ R. Therefore p is minimal over (a1, . . . , ak, bm, . . . , bm).
By the generalized Krull’s theorem, ht(p) ≤ m + k, i.e. m ≥ n − k, giving (1). For (2), since
p/(x1, . . . , xk) is minimal over (xk+1, . . . , xn), ht(p/(x1, . . . , xk)) ≤ n− k. Combined with (1),
ht(p/(x1, . . . , xk)) = n− k.

142 Corollary
(. . . to Krull’s Intersection Theorem.) Let (R,m, k) be a local noetherian ring, I an ideal in R, M a
finitely generated R-module. If I is proper, then ∩∞n=1I

nM = 0.

Proof It suffices to prove this when I = m. Write N := ∩∞n=1m
nM . By Krull’s Intersection Theorem,

mN = N . By Nakayama, N = 0.

143 Corollary
Let (R,m, k) be a local noetherian ring, x ∈ R. Suppose R is not a domain. If xR is a prime ideal,
then it is minimal.

Proof Suppose not. Let p ( xR be prime. If a ∈ p, then a = xy for some y ∈ R. Since x 6∈ p, y ∈ p.
Therefore a ∈ xp, so p ⊂ xp, giving p = xp = x2p = · · · . Hence p ⊂ ∩∞n=1x

nR. By the previous
corollary, this intersection is 0, so p = 0. This contradicts the fact that R is not a domain.

November 17th, 2014: Hilbert Series
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144 Remark
We again tried to prove the converse to the GPIT above and got stuck. Next time.

145 Proposition
Regular local rings are Cohen-Macaulay. Specifically, if (R,m, k) is a regular local ring of Krull
dimension n, then R is Cohen-Macaulay of depth n.

Proof Let m = x1R + · · · + xnR. It suffices to show x1, . . . , xn form a maximal regular sequence.
x1 ∈ m − m2 since m is generated by no fewer than n elements. R/(x1) is regular local of
dimension n − 1, so by induction x2, · · · , xn form a regular sequence on R/(x1). But R is a
domain, so x1 is regular in R. Hence x1, x2, . . . , xn is a regular sequence in R. This is maximal
because (x1, . . . , xn) = m is the maximal ideal.

146 Theorem
Let (R,m, k) be a local noetherian ring of Krull dimension n. Then R is regular if and only if
R/m⊕m/m2 ⊕m2/m3 ⊕ · · · is isomorphic to k[x1, . . . , xn]. Explaining and proving this result is our
next goal.

147 Lemma
Let A := A0 ⊕A1 ⊕ · · · be a graded commutative ring such that A0 has finite length as a module over
itself. Then A is noetherian if and only if it is finitely generated as an algebra over A0.

Proof (⇐): A0[x1, . . . , xn] is noetherian since A0 is, so the quotient A is. (⇒): Since A is noetherian,
A≥1 := ⊕∞i=1Ai is an ideal, so is finitely generated, say by x1, . . . , xn. We may take each xi
homogeneous of positive degree. We will show by induction on k that Ak ⊂ A0[x1, . . . , xn].
This is trivial for k = 0. For k ≥ 1, Ak ⊂ A≥1 = x1A + · · · + xnA, and we can write Ak ⊂
x1Ak−deg x1 +· · ·+xnAk−deg xn . Inductively, this is ⊂ x1A0[x1, . . . , xn]+· · ·+xnA0[x1, . . . , xn] ⊂
A0[x1, . . . , xn].

148 Definition (Hilbert Functions for Graded Noetherian Rings)
Let A := A0 ⊕A1 ⊕ · · · be a graded commutative ring such that A0 has finite length as a module over
itself. Suppose M is a finitely generated graded A-module. Because M is finitely generated, M−n = 0
for n� 0. Also, M≥i := ⊕∞j=iMj is a submodule of M . Now M≥i/M≥i+1

∼= Mi as A0-modules. Since
M≥i is finitely generated, Mi is a finitely generated A0-module, hence is of finite length `(Mi)

Hence it makes sense to define the Hilbert series of M as the formal Laurent series

H(M ; t) :=
∑
n∈Z

`(Mn)tn ∈ Z[[t]][t−1].

Let Gr(A) denote the category of graded A-modules with degree-preserving morphisms. Let

gr(A) denote the full subcategory of noetherian modules.

Given M ∈ Gr(A), write M(p) := M as an A-module but with a different grading, namely

M(p)i := Mp+i.

149 Lemma
If A := A0 ⊕ A1 ⊕ · · · is noetherian with `(A0) <∞, L,M,N ∈ gr(A) are finitely generated graded
A-modules, and

0→ L→M → N → 0

is an exact sequence in gr(A), then

H(M ; t) = H(L; t) +H(N ; t).

Proof For all n, 0 → Ln → Mn → Nn → 0 is an exact sequence of finite length A0-modules, so
`(Mn) = `(Ln) + `(Nn).
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150 Theorem (Hilbert, Serre)
Let A := A0[x1, . . . , xn] be a graded ring with `(A0) <∞ and di := deg(xi) (so A is noetherian). If
M ∈ gr(A), then

H(M ; t) =
f(t)∏n

i=1(1− tdi)

for some f(t) ∈ Z[t, t−1].

Proof Induct on n. If n = 0, `(M) <∞, so H(M ; t) will only have a finite number of terms, so is in
Z[t, t−1]. Take n ≥ 1. Consider the exact sequence

0→ Ks →Ms
·xn→→M(dn)s → C(dn)s → 0

where ·xn is multiplication by xn and Cs+dn denotes its cokernel. Then

H(M ; t) = H(K; t) + tdnH(M ; t)− tdnH(C; t).

Therefore (1− tdn)H(M ; t) = H(K; t)− tdnH(C; t). Since xnK = xnC = 0, the right-hand side

is g(t)/
∏n−1
i=1 (1− tdi) with g(t) ∈ Z[t, t−1].

November 19th, 2014: Hilbert Series and GK Dimension

151 Remark
We first prove the converse to the GPIT above and then continue our discussion of Hilbert series.

152 Lemma
Let p ∈ specR and x ∈ p. Write R := R/(x), p := p/(x). If x is not in any minimal prime, then
ht(p) ≥ ht(p) + 1.

Proof If k := ht(p) = ∞, the result is true. So, suppose k < ∞. Let p = p0 ) p1 ) · · · ) pk
be a chain of primes in R of length k. The preimages in R of the pi’s give a chain of primes
p = p0 ) p1 ) · · · ) pk. Since x ∈ pk, pk is not a minimal prime, so pk contains a minimal
prime, so ht(p) ≥ k + 1.

153 Proposition
If p is a height n prime in a noetherian ring R, then p is minimal over an ideal generated by n elements.

Proof If n = 0, p is a minimal prime, so is minimal over {0} = (∅). Suppose n ≥ 1. Since R is
noetherian, it has only a finite number of minimal primes, q1, . . . , qk, say. Since n > 0, p is not
one of these minimal primes, so by the prime avoidance lemma, p ( q1 ∪ · · · ∪ qk, so we have
x ∈ p−(q1∪· · ·∪qk). By the lemma, n−1 ≥ ht(p/(x)). By the induction hypothesis, p/(x) is then
a minimal prime over an ideal generated by n−1 elements, (x1, . . . , xn−1). We claim p is minimal
over (x, x1, . . . , xn−1). Indeed, if p ⊃ q ⊃ (x, x1, . . . , xn−1), then p/(x) ⊃ q/(x) ⊃ (x1, . . . , xn−1),
so by minimality of p/(x), p/(x) = q/(x), so p = q.

154 Remark
From now on, A := A0⊕A1⊕· · · is a graded noetherian ring with `(A0) <∞. We showed last time that
A is generated algebraically over A0 by finitely many homogeneous elements, say A = A0[x1, . . . , xn]
with di := deg xi. If M ∈ gr(A), then we had shown

H(M ; t) :=
∑
j

`(Mj)t
j =

f(t)∏n
i=1(1− tdi)

for f(t) ∈ Z[t, t−1].
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155 Definition
We define d(M) to be the order of the pole of H(M ; t) at t = 1. For instance, if `(M) <∞, d(M) = 0.

(This is the Gelfand-Kirillov Dimension in this context, though this doesn’t seem to be common
terminology among commutative algebraists.)

156 Corollary
If x ∈ A is homogeneous and AnnM (x) = 0, then d(M/xM) = d(M)− 1.

Proof Let n := deg x. There is a short exact sequence

0→M(−n)
·x→M →M/xM → 0.

Now H(M ; t) = tnH(M ; t) +H(M/xM ; t), so H(M/xM ; t) = (1− tn)H(M ; t). Hence the order
of the pole at t = 1 on the right is one less than the order on the left.

157 Proposition
If 0→ L→M → N → 0 is an exact sequence in gr(A), then d(M) = max{d(L), d(N)}.

Proof Write m := d(M), n := d(N), ` := d(L). Then H(M ; t) = H(L; t) +H(N ; t), so we may write

f(t)

(1− t)mf2(t)
=

g(t)

(1− t)`g2(t)
+

h(t)

(1− t)nh2(t)

where f(1)g(1)h(1) 6= 0, f2(t)g2(t)h2(t) ∈ Z[t], and f2(1)g2(1)h2(1) 6= 0. Suppose ` < n. Now

f(t)(1− t)n−m =
f2(t)g(t)(1− t)n−`

g2(t)
+
f2(t)h(t)

h2(t)
.

At t = 1, this gives n−m = 0. If n < `, then m = `. If n = `, the result also works.

158 Lemma
Let V and W be Z-graded vector spaces such that dim(Vi) <∞ and dim(Wi) <∞ for all i, and for
i� 0, Vi = Wi = 0. Define the Hilbert series of V and W exactly as before. Then

H(V ⊗W ; t) = H(V ; t)H(W ; t).

Proof We have (V ⊗W )n := ⊕i(Vi⊗Wn−i). This corresponds precisely to polynomial multiplication
of the underlying dimensions.

159 Proposition
If S := k[x1, . . . , xn] is the polynomial ring with its standard grading deg xi := 1, then H(S; t) = 1

(1−t)n .

Proof We induct on n. Trivial for n = 0. For n = 1, this is just the geometric series. In general, we
may apply the lemma to get H(S; t) = H(k[x]⊗n; t) = 1

(1−t)n .

160 Remark
Note that

1

(1− t)d
=

∞∑
n=0

(
d+ n− 1

d− 1

)
tn.

Indeed, letting S be as in the preceding proposition, this says dimSn =
(
d+n−1
d−1

)
. Sn has basis

{xi11 · · ·x
id
d } for i1 + · · ·+ id = n. We prove by example. If d = 4, n = 8, then we associate x21x

2
2x

2
3x

2
4

to 11 ? 22 ? 33 ? 44. Evidently, the number of monomials is the number of ways to insert 3 = 4− 1 ?’s
in a string of length 8 + 3, i.e.

(
8+3
3

)
. This is the “stars and bars” bijection counting compositions of a

certain length.
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November 21st, 2014: Associated Graded Rings of (m-adic)
Filtrations

161 Aside
Another construction of the p-adics: Z[[x]]/(x− p).

162 Theorem
Let (R,m, k) be a local noetherian ring. Then Kdim(R) is the smallest integer s such that m is a
minimal prime over an ideal generated by s elements.

Proof Given s minimal with corresponding ideal (x1, . . . , xs), the GPIT says that htm ≤ s. If
ht(m) < s, then m is minimal over an ideal generated by < s elements, contradicting the
minimality of s. Hence s = ht(m) = Kdim(R).

163 Remark
Recall our earlier notation, A := A0 ⊕ A1 ⊕ · · · is a graded commutative ring, `(A0) < ∞—so
A is noetherian—, A = A0[x1, . . . , xn], M ∈ gr(A), d(M) is the order of the pole at t = 1 of
H(M ; t) =

∑∞
n=0 `(Mn)tn. We had shown that given a short exact sequence of M ’s, d of the middle is

the maximum of the d’s of the left and right terms.

164 Theorem
With the notation and hypotheses above, suppose further that A is generated over A0 by homogeneous
elements of degree 1, i.e. deg xi = 1. (This is not an essential assumption, but makes the arguments
less tedious.) If M is finitely generated and graded with d := d(M), then H(M ; t) = f(t)/(1− t)d for
some f ∈ Z[t, t−1] with f(1) 6= 0. If f(t) = a0 + a1t+ · · ·+ art

r, then there is a polynomial qM (t) of
degree d− 1 such that for n ≥ r + 1− d, `(Mn) = qM (n).

Proof `(Mn) is the coefficient of tn in f(t)/(1− t)d, which is given by

a0

(
d+ n− 1

d− 1

)
+ a1

(
d+ n− 2

d− 1

)
+ · · ·+ ar

(
d+ n− r − 1

d− 1

)
.

Since
(
m
d−1
)

= 1
(d−1)!m(m− 1) · · · (m− d+ 2) is a polynomial in m of degree d− 1, `(Mn) is a

polynomial of degree d− 1 in n, say qM (n). Furthermore, qM (t) = f(1)
(d−1)! t

d−1 + · · · .

165 Example
Let g ∈ k[x1, . . . , xn] be homogeneous of degree r. Let R := k[x1, . . . , xn]/(g). Then qR(t) =

r
(n−1)! t

n−1 + · · · , so this r is telling us the degree of {g = 0} ⊂ Pn−1.

166 Definition
Let (R,m, k) be local noetherian. R[mt] ⊂ R[t] as follows, where in R[t], R has degree 0 and t has
degree 1. Set

R[mt] := R⊕mt⊕m2t2 ⊕ · · · ⊂ R[t].

Define the associated graded ring as

Grm(R) :=
R[mt]

(m)
.

It is easy to see that
Grm(R) ∼= R/m⊕m/m2 ⊕m2/m3 ⊕ · · · ,

with multiplication defined as follows. If x ∈ mp −mp+1 and y ∈ mq −mq+1, then

(x+ mp+1)(y + mq+1) := xy + mp+q+1.
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167 Definition
If R ⊃ I1 ⊃ I2 ⊃ · · · is a chain of ideals in a ring R such that IpIq ⊂ Ip+q, we call this a filtration on R

and the associated graded ring is R/I1 ⊕ I1/I2 ⊕ I2/I3 ⊕ · · · . If (R,m) is local, we have a filtration

R ⊃ m ⊃ m2 ⊃ · · · , called the m-adic filtration . Hence the associated graded ring above is just the
graded ring associated to the m-adic filtration.

168 Proposition
Let (R,m, k) be local noetherian and suppose a is an ideal generated by s elements such that mn ⊂ a
for n� 0. Then there is a surjective homomorphism of graded R/a-algebras

φ : (R/a)[x1, . . . , xs] � Gra(R) = R/a⊕ a/a2 ⊕ · · · ,

where deg xi := 1.

Proof Since R is noetherian and mn ⊂ a for some n, R/a has finite length. By hypothesis, a =
Rx1 + · · · + Rxs, so a/a2 = (R/a)x1 + · · · + (R/a)xs. Define φ by declaring φ|R/a = id and
φ(xi) := xi + a2 ∈ a/a2 ⊂ Gra(R), extending φ to be R/a-linear. φ is a homomorphism
of graded R/a-algebras and is surjective because Gra(R) is generated as an R/a-algebra by
a/a2 = (Rφ(x1) + · · ·+Rφ(xs))/a

2.

169 Corollary
If (R,m, k) is local noetherian with ideal a generated by s elements such that mn ⊂ a for n� 0, then

H(Gra(R); t) =
f(t)

(1− t)d

for some d ≤ s and f ∈ Z[t±1], f(1) 6= 0.

170 Lemma
Let (R,m, k) be a noetherian local ring. If Grm(R) is a domain, then so is R.

Proof Let 0 6= x, y ∈ R. Since ∩∞n=0m
n = 0, there exist integers p, q such that x ∈ mp − mp+1 and

y ∈ mq −mq+1. By hypothesis, 0 6= (x+ mp+1)(y + mq+1) = xy + mp+q+1, so xy 6∈ mp+q+1, and
in particular xy 6= 0.

Note: the converse fails.

November 24th, 2014: (Class Canceled.)

171 Remark
Class canceled.

November 26th, 2014: Regular Local Rings are Domains with
Grm(R) ∼= k[X1, . . . , Xn]

172 Remark
We first wrap up a loose end, namely that regular local rings are domains. We then continue where we
left off last lecture and show that the associated graded ring of the m-adic filtration of a noetherian
local ring R is a polynomial ring if and only if R is regular.

Note: today’s entry was pieced together from notes Paul sent out after the fact. I was gone during
this lecture. It’s likely this was not all covered in full detail in class.
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173 Theorem
A regular local ring is a domain.

Proof Let (R,m, k) be a regular local ring of dimension n. We argue by induction on n. If n = 0,
then R is a field. If n ≥ 1, then m 6= 0 and m2 6= m, for instance since m/m2 has k-dimension
n ≥ 1. Suppose to the contrary R is not a domain. Pick x ∈ m−m2. Now R/(x) is a regular
local ring of dimension n − 1, hence a domain, so xR is prime. By one of our corollaries of
Krull’s Intersection Theorem, xR is a minimal prime. Letting x ∈ m−m2 vary, we may cover
m−m2 by minimal primes, of which there are finitely many. Hence take

m−m2 ⊂ p1 ∪ · · · ∪ pk

with each pi a minimal prime and k minimal. That is, m ⊂ m2 ∪ p1 ∪ · · · ∪ pk.

If m2 ⊂ p1∪· · ·∪pk, then m would be contained in p1∪· · ·∪pk, hence by the prime avoidance
lemma, m ⊂ pi for some i. But then m = pi is a minimal prime, so n = Kdim(R) = 0. Hence
there is some x0 ∈ m2 − p1 ∪ · · · ∪ pk.

If pi ⊂ m2 ∪ p1 ∪ · · · ∪ p̂i ∪ · · · ∪ pk (where −̂ indicates the ommission of −), then m−m2 ⊂
p1 ∪ · · · ∪ p̂i ∪ · · · ∪ pn, so k is not minimal, a contradiction. Hence we may pick

xi ∈ pi −m2 ∪ p1 ∪ · · · ∪ p̂i ∪ · · · ∪ pk.

Let y := x1+x0x2 · · ·xk. Since x0x2 · · ·xk ∈ m2 ⊂ m2∪p2∪· · ·∪pk and x1 6∈ m2∪p2∪· · ·∪pk, we
have y 6∈ m2∪p2∪· · ·∪pk. Now x0 ∈ m and xi ∈ pi ⊂ m for each i, so y ∈ m ⊂ m2∪p1∪· · ·∪pk,
forcing y ∈ p1. However, x1 ∈ p1, so x0x2 · · ·xk ∈ p1, but each of x0, x2, . . . , xk is not in p1, a
contradiction.

174 Corollary
Let (R,m, k) be a regular local ring of dimension n and suppose m = (x1, . . . , xn). Then x1, . . . , xn is
a regular sequence on R and a system of parameters.

Proof Since dimk(m/m2) = n, we have xi ∈ m−m2 for all i. By induction the successive quotients
R/(x1, . . . , xi) are regular local rings of dimension n− i. Since R/(x1, . . . , xi) is a domain, xi+1

is regular on R/(x1, . . . , xi).

175 Theorem (Rees)
Let x1, . . . , xn be a regular sequence on a ring R and define a := (x1, . . . , xn). Let F be a degree d

element of R[X1, . . . , Xn] (where degXi := 1). If F (x1, . . . , xn) ∈ ad+1, then all the coefficients of F
belong to a.

Proof Induct on n. If n = 1, then a = Rx1 and F (X1) ∈ RXd
1 , so F (X1) = rXd

1 . If F (x1) = rxd1 ∈
ad+1 = Rxd+1

1 , then rxd1 ∈ Rxd+1
1 . Since x1 is regular it follows that r is a multiple of x1, so

r ∈ a. So, suppose n ≥ 2.

Claim: let b := (x1, . . . , xn−1). Then xn is regular on R/bj for all j ≥ 1. Proof: induct on j.
The case n = 1 is true since x1, . . . , xn is a regular sequence. Suppose j ≥ 2 and suppose for some
y that xny ∈ bj . Since xny ∈ bj−1 and xn is regular on bj−1, inductively y ∈ bj−1. Elements of
bj−1 are R-linear combinations of words in x1, . . . , xn−1 of length j − 1, so y = G(x1, . . . , xn−1)
for some G ∈ R[X1, . . . , Xn−1]j−1. We may apply the theorem to xnG(X1, . . . , Xn−1) using b,
so the coefficients of xnG(X1, . . . , Xn−1) belong to b. Thus y ∈ bj , so xn is regular on R/bj .

With n ≥ 2 fixed as above, we now induct on d. The case d = 0 is trivial. Suppose d ≥ 1.
We will show it suffices to prove the lemma under the assumption F (x1, . . . , xn) = 0. Indeed, if
F (x1, . . . , xn) ∈ ad+1, we may write this element as a sum of words of length d+ 1 in x1, . . . , xn,
so that F (x1, . . . , xn) = G(x1, . . . , xn) for some G(X1, . . . , Xn) ∈ R[X1, . . . , Xn]d+1. Collecting
terms, we may write G(X1, . . . , Xn) = X1G1 + · · ·+XnGn where Gi ∈ R[X1, . . . , Xn]d. Now
consider the polynomial

F ′(X1, . . . , Xn) := F (X1, . . . , Xn)−
n∑
i=1

xiG(X1, . . . , Xn),
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which is homogeneous of degree d and F ′(x1, . . . , xn) = 0. The coefficients of the sum are each
multiples of some xi, so are in a. Hence the coefficients of F ′ belong to a if and only if the
coefficients of F do, so indeed we may assume F (x1, . . . , xn) = 0.

Collect terms to write F (X1, . . . , Xn) = G + XnH for G ∈ R[X1, . . . , Xn−1]d and H ∈
R[X1, . . . , Xn]d−1. Since

0 = F (x1, . . . , xn) = G(x1, . . . , xn−1) + xnH(x1, . . . , xn)

and since G is degree d, xnH(x1, . . . , xn) ∈ bd. By the above claim, H(x1, . . . , xn) ∈ bd ⊂
ad. Using our induction hypothesis on d, the coefficients of H belong to a. On the other
hand, H(x1, . . . , xn) ∈ bd, so there is some H ′(X1, . . . , Xn−1) ∈ R[X1, . . . , Xn−1]d such that
H(x1, . . . , xn) = H(x1, . . . , xn). Evidently, (G+ xnH

′)(x1, . . . , xn−1) = F (x1, . . . , xn) = 0, so
applying the induction hypothesis (on n) to G+ xnH

′, each coefficient belongs to b ⊂ a. The
coefficients of xnH

′ belong to a, so the coefficients of G belong to a. As above, the coefficients
of H belong to a, so the same is true of the coefficients of G+XnH = F , which completes the
proof.

176 Theorem
Let x1, . . . , xn be a regular sequence on a ring R and define a := (x1, . . . , xn). Write xi := xi+a2 ∈ a/a2.
Then there is an isomorphism of graded R/a-algebras

φ : (R/a)[X1, . . . , Xn]
∼=→ Gra(R) (= R/a⊕ a/a2 ⊕ · · · )

given by sending R/a to R/a and xi to xi.

Proof Write a[X1, . . . , Xn] for the ideal in R[X1, . . . , Xn] consisting of polynomials with coefficients
in a. Let ψ be the composite

ψ : R[X1, . . . , Xn]→ (R/a)[X1, . . . , Xn]
φ→ Gra(R).

It suffices to show kerψ = a[X1, . . . , Xn], and ⊇ is obvious. Since ψ is a homomorphism of
graded rings, its kernel is a graded ideal. Hence it suffices to show that for all d ≥ 0, if F ∈
R[X1, . . . , Xn]d ∩ kerψ, then F ∈ a[X1, . . . , Xn]. Since degF = d, ψ(F ) ∈ Gra(R)d = ad/ad+1.
Since by assumption ψ(F ) = 0, evidently F (x1, . . . , xn) ∈ ad+1. The preceding theorem assures
us that F (X1, . . . , Xn) ∈ a[X1, . . . , Xn], completing the proof.

177 Theorem
Let (R,m, k) be a local noetherian ring of dimension n. Then R is a regular local ring if and only if
there is an isomorphism of graded rings

Grm(R) ∼= k[X1, . . . , Xn]

(where degXi := 1).

Proof (⇒) Suppose R is regular of dimension n. Then m = (x1, . . . , xn) for some elements x1, . . . , xn.
By the proposition from last lecture, there is a surjective homomorphism of graded (R/m)-
algebras φ : (R/m)[X1, . . . , Xn] � Grm(R). By the corollary above, x1, . . . , xn is a regular
sequence on R, so by the preceding theorem, φ is an isomorphism.

(⇐) The existence of such an isomorphism implies that m is generated by n elements, so R
is regular.

December 1st, 2014: Minimal Projective Resolutions of
Noetherian Local Rings
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178 Definition
Let (R,m, k) be a noetherian local ring, M a finitely generated R-module. A projective resolution of
M

· · · d1→ P1
d0→ P0

ε=d−1→ M → 0

(i.e. an exact sequence of R-modules with each Pi projective) is called a minimal projective resolution

if additionally the induced maps P0/mP0 → M/mM and Pi/mPi → ker(di−1)/ im ker(di−1) are

isomorphisms. That is, ker(Pi+1
di→ Pi) ⊂ mPi+1 for all i ≥ 0 (where P−1 := M).

179 Proposition
Let (R,m, k) be a noetherian local ring. Every finitely generated R-module M has a minimal projective
resolution.

Proof Let P0 be the free R-module with basis x1, . . . , xn and suppose the images of m1, . . . ,mn ∈M
in M/mM form a basis and ε : P0 → M is given by ε(xi) := mi. By Nakayama’s lemma,
M = Rm1+· · ·+Rmn, so ε is surjective and P0/mP0 = kx1⊕· · ·⊕kxn, M/mM = km1⊕· · ·⊕kmn,
as required. Next define K0 := ker(ε : P0 →M). Define P1 → K0 in a similar way, i.e. P1 is free
and P1/mP1

∼→ K0/mK0, etc.

180 Proposition
Let (R,m, k) be a noetherian local ring, M a finitely generated R-module. Let · · · → P1 → P0 →M → 0
be a minimal projective resolution. Then

TornR(k,M) ∼= Pn/mPn

Proof Apply k ⊗R − to the projective resolution to get terms of the form k ⊗R Pn = R/m⊗R Pn ∼=
Pn/mPn → Pn−1/mPn−1. Claim: ker(Pi → Pi−1) ⊂ mPi. From our definition, di−1 : Pi/mPi

∼→
Ki−1/mKi−1 where Ki−1 = ker(Pi−1 → Pi−2). If x ∈ Pi and di−1(x) = 0, then under
di−1, x must be sent to zero, so it must be in mPi. Hence Ki ⊂ mPi. Therefore the map
Pn → Pn−1/mPn−1 is zero, so Pn/mPn → Pn−1/mPn−1 is zero.

Now the complex k ⊗ P∗ = · · · 0→ P1/mP1
0→ P0/mP0 → 0 consists entirely of 0 maps. The

result follows.

181 Proposition
Let (R,m, k) be a local noetherian ring. The minimal projective resolution of a finitely generated
R-module M is

· · · → R⊗k TorR1 (k,M)→ R⊗kM/mM →M → 0.

182 Proposition
Let (R,m, k) be local noetherian, M a finitely generated R-module, and P∗ →M its minimal projective
resolution. Then

TorRn (k,M)∗ ∼= ExtnR(M,k) ∼= Homk(Pn/mPn, k).

Proof Apply HomR(−, k) to the projective resolution to get

0→ HomR(P0, k)→ HomR(P1, k)→ · · · ,

i.e.

0→ Homk(M/mM,k)→ Homk(P1/mP1, k)
d∗1→ · · · .

Suppose f : P1/mP1 → k is an R-module homomorphism induced by some f : P1 → k. What
is d∗1(f)? Since f ◦ d1 : P2 → P1 → k has d1(P2) ⊂ mP1 and m annihilates k, f ◦ d1 = 0, so
d∗1(f) = 0. So,

ExtnR(M,k) = Hn(· · · 0→ Homk(Pn/mPn, k)
0→ · · · )

= Homk(Pn/mPn, k).
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183 Theorem
If (R,m, k) is a noetherian local ring such that pdim(k) = n, then pdim(M) ≤ n for all R-modules M .

Proof From the hypotheses, TorRi (k,M) = 0 for all i > n and all M . Therefore ExtiR(M,k) = 0
for all i > n and all finitely generated M . But the ith term in the minimal resolution of M
is the free R-module generated by ExtiR(M,k)∗, so if M is finitely generated, pdim(M) ≤ n.
To extend the result to non-finitely generated modules, we appeal to a theorem of Kaplansky,
namely if pdim(I) ≤ n for all ideals I, then pdim(M) ≤ n for all M .

184 Remark
Our next goal is to prove that gldim(R) = n if (R,m, k) is a regular local ring of dimension n. By the

preceding theorem, it suffices to show that pdim(k) = n, since the global dimension of R is

gldim (R) := sup
M

pdim(M)

where M runs over all R-modules. (It can be shown that one may restrict M to ideals of R, so that if
R is noetherian, one can restrict M to finitely generated R-modules.)

We were originally going to use the Koszul complex (some preliminary definitions follow), though
Paul decided later to use another approach.

185 Definition
Let F := Re1 ⊕ · · · ⊕Ren be a free R-module of rank n. The exterior algebra of F over R is

Λ(e1, . . . , en) := TR(F )/(ei ⊗ ei, ei ⊗ ej + ej ⊗ ei).

Here TR(F ) := R ⊕ F ⊕ (F ⊗R F ) ⊕ F⊗3 ⊕ · · · = R〈e1, . . . , en〉 denotes the free algebra over R on
e1, . . . , en. That is, TR(F ) is a free R-module with basis given by the set of words in the letters
e1, . . . , en and multiplication given by concatenation of words extended R-bilinearly. Note that ei and
ej in TR(F ) do not commute when i 6= j.

186 Lemma
Λ(e1, . . . , en) is a graded R-algebra with {ei1 · · · eip : 1 ≤ i1 < · · · < ip ≤ n} a free R-basis for

Λ(e1, . . . , en)p. Hence rk(Λp) =
(
n
p

)
, so rk(Λ∗) = 2n.

Proof Exercise.

187 Remark
We were going to define

· · · → Λ2
d→ Λ1

d→ R→ R/(x1, . . . , xn)→ 0

with d(ei1 · · · eip) :=
∑p
r=1(−1)rxirei1 · · · êir · · · eip . One may check d2 = 0 directly. One would have

to check exactness as well. This may be used to give a projective resolution of R/(x1, . . . , xn) of length
exactly n.

December 3rd, 2014: Towards the Global Dimension of Regular
Local Rings

188 Remark
If (R,m, k) is local noetherian, a projective resolution

· · · → Pn → · · ·
d1→ P1

d0→ P0
d−1→ M → 0

is minimal if ker di ⊂ mPi+1 for all i. This is a slightly more succinct way of stating our previous
definition. The main properties of minimal projective resolutions are that k ⊗R P∗ and HomR(P∗, k)
have trivial induced differentials. These properties appeared in proofs last lecture.
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189 Remark
Last time we said we would use the Koszul complex to prove that the global dimension of a regular
local ring is its Krull dimension. We’ll instead use the following lemmas.

190 Lemma
Every finitely generated projective module over a local noetherian ring (R,m, k) is free.

Note: Paul says it’s true without the finitely generated hypothesis, but the proof is more involved.

Proof Let M be a finitely generated projective module and m1, . . . ,mn a generating set for M
with n minimal. Let F := ⊕ni=1Rei be free of rank n. Let f : F → M be the homomorphism

defined by f(ei) := mi. Hence we have K such that 0 → K → F
f→ M → 0. By Nakayama,

m1, . . . ,mn is a basis for M/mM . This sequence splits since M is projective, so F ∼= K ⊕M ,
and F/mF ∼= K/mK ⊕M/mM . Now dimk(M/mM) = n = dimK(F/mF ), so K/mK = 0. By
Nakayama, K = 0.

191 Lemma
Let R be any ring (commutative or not). If F is a free R-module, M is a non-projective R-module,
and 0→ K → F →M → 0 is exact, then pdim(M) = 1 + pdim(K).

Proof If n > 0, then 0 = Extn(F,N)→ Extn(K,N)→ Extn+1(M,N)→ Extn+1(F,N) = 0, so the
middle arrow is an isomorphism. Since pdim(M) is the largest n such that Extn(M,N) 6= 0 for
some N , the result follows.

An alternate half-proof: let · · · → P0 → K → 0 be a projective resolution of K. We can
replace the end of the resolution with P0 → F →M → 0 and get a projective resolution of M .
This immediately gives pdim(M) ≤ pdim(K) + 1. There doesn’t seem to be a quick analogous
way to get the reverse inequality.

192 Lemma
Let (R,m, k) be local noetherian, x ∈ m, and M a finitely generated R-module such that x acts
regularly on M . If M/xM is a free R/xR module, then M is a free R-module.

Proof Let m1, . . . ,mn ∈ m be a set of elements whose images in M/xM form a basis. Since
M/xM �M/mM , the images of m1, . . . ,mn span M/mM . By Nakayama, m1, . . . ,mn generate
m. Claim: {m1, . . . ,mn} is a basis for M . Suppose

∑n
i=1 rimi = 0. Projecting to M/xM , each

ri = 0 ∈M/xM , so each ri = xsi for some si ∈ R. Therefore 0 =
∑
rimi = x

∑
simi. Since x

acts regularly on M ,
∑
simi = 0. Now let F be the free R-module with basis e1, . . . , en and

let 0 → K → F
f→ M → 0 be the exact sequence where f : ei 7→ mi. We have shown that if∑

riei ∈ K, then
∑
riei = x

∑
siei and that

∑
siei ∈ K. That is, K = xK, so since x ∈ m,

K = mK. By Nakayama, K = 0.

193 Proposition
Let (R,m, k) be local, x ∈ m a regular element, and M an R-module on which x acts regularly.

(1) pdimR/xR(M/xM) ≤ pdimR(M).

(2) If additionally R is noetherian and M is finitely generated, then pdimR/xR(M/xM) = pdimR(M).

Proof (1) If pdim(M) =∞, the result is true. Suppose pdim(M) = n <∞. We induct on n. If n = 0,
since M is projective, M/xM is projective (since F = M⊕N , we have F/xF = M/xM⊕N/xN ,
so M/xM is projective). Hence the proposition is true when n = 0. Now take n ≥ 1. Let

0 → K → F
f→ M → 0 be exact with F free. Since M is not projective, by the preceding

lemma, pdimR(K) = pdimR(M) − 1. By induction, pdimR/xR(K/xK) ≤ pdimR(K). Now
apply R/xR⊗R − to the right-most three terms of the preceding exact sequence and identify
the resulting kernel to get

0→ (K + xF )/xF → F/xF
f→M/xM → 0.
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The left-hand term is K/(K ∩ xF ). If xf ∈ K, then 0 = α(xf) = xα(f), so α(f) = 0 since x
acts regularly. Hence K ∩ xF = xK. Therefore our sequence is isomorphic to

0→ K/xK → F/xF →M/xM → 0.

Since pdim(M) ≥ 1, the above lemma implies M/xM is not projective. It now follows that
pdimR/xR(K/xK) = pdimR/xR(M/xM)− 1, which combined with the preceding considerations
gives the result.

(2) Essentially, our argument from (1) gives equality in general if it gives equality in the
base case, which follows from one of our lemmas. More precisely, if pdimR/xR(M/xM) = ∞,
the result follows from (1). Suppose pdimR/xR(M/xM) = n <∞. If n = 0, the lemma shows
M is projective also, giving the result. So, suppose n ≥ 1 and induct. Using the same exact

sequence 0→ K → F
f→M → 0 as before, we have 0→ K/xK → F/xF →M/xM → 0 exact,

and M/xM is not projective, so again pdimR/xR(K/xK) = pdimR/xR(M/xM)−1. Inductively,
pdimR/xR(K/xK) = pdimR(K) and the result follows.

December 5th, 2014: Regular Local Rings are Cohen-Macaulay

194 Remark
Recall the proposition from the end of last lecture. We will use it again today. It said the projective
dimension of a quotient of a module over a local noetherian ring by a cyclic submodule generated by a
regular element in the maximal ideal is weakly smaller than the projective dimension of the module.
Also, if the ring is noetherian and the module is finitely generated, equality holds.

195 Theorem
If (R,m, k) is a noetherian local ring, then

gldim(R) = pdimR(k).

Proof By definition, gldim(R) ≥ pdim(k). On the other hand, we showed earlier that pdim(k) ≥
pdim(M) for all R-modules M , so pdim(k) ≥ gldim(R), forcing equality.

196 Theorem
If (R,m, k) is a regular local ring, then gldim(R) = Kdim(R).

Proof From the preceding result, it suffices to show pdimR(k) = n where n := Kdim(R). Induct on
n. If n = 0, then R = k and pdimk(k) = 0 = n. Take n ≥ 1. Suppose x ∈ m−m2, so R/xR is
regular of dimension n− 1, hence pdimR/xR(k) = gldim(R/xR) = n− 1. If n = 1, this is 0, so
R/xR = k and evidently 0→ xR→ R→ k → 0 is a projective resolution of minimal length (x
is a non-zero divisor since R is a domain), so pdimR(k) = 1 = n. So, suppose n ≥ 2.

Since k ∼= (R/xR)/(m/xR), we see pdimR/xR(m/xR) = n − 2. Since (xR)/(xm) ∼= k,
pdimR/xR(xR/xm) = n− 1. Since there is an exact sequence

0→ xR/xm→ m/xm→ m/xR→ 0,

it follows from the long exact sequence for Ext that pdimR/xR(m/xm) ≤ n− 1.

Since Annm(x) = 0, pdimR(m) = pdimR/xR(m/xm) ≤ n − 1. It follows that pdimR(k) =
pdimR(m) + 1 = n, completing the proof.

197 Corollary
A regular local ring of dimension n is Cohen-Macaulay of depth n.
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Proof Let (R,m, k) be a regular local ring of dimension n. The depth of R is again the maximal
length of a regular sequence on R. Since R has dimension n, depth(R) = n. Thus Hn

m(R) 6= 0.
However, Hp

m(R) = lim
−→

ExtpR(R/mt), R) which is zero for p > n because R has global dimension

n. Therefore Hp
m(R) 6= 0 if and only if p = n, so R is Cohen-Macaulay of depth n.

198 Theorem
Let (R,m, k) be local noetherian of dimension n. The following are equivalent:

(1) R is regular.

(2) gldim(R) = n.

(3) pdimR(k) <∞.

Proof (1) ⇒ (2) was the preceding theorem. (2) ⇒ (3) is clear since gldim(R) = pdimR(k). For
(3)⇒ (1), let t be the minimal number of generators for m. If t = 0, we’re done, so suppose t ≥ 1
and pdimR(k) <∞. By the Auslander-Buchsbaum formula, pdimR(k) + depth(k) = depth(R).
Here depth(k) = 0. If pdimR(k) = 0, then we showed before that pdimR(M) = 0 for all
R-modules, which says R is semisimple and local, so R = k. Since t ≥ 1 by assumption,
pdimR(k) ≥ 1. Hence depth(R) ≥ 1, so there exists a regular element, so R does not consist
only of units and zero-divisors, and in particular m does not consist of zero-divisors. If x1, . . . , xt
generate m, one of the xi’s must then be regular. So, pick x ∈ m − m2 regular. To show R
is regular, it is enough to show R/xR is regular. Since x is regular, Annm(x) = 0. Hence
pdimR(m) = pdimR/xR(m/xm). Since 0 → m → R → k → 0 and pdimR(k) < ∞, we get
pdimR(m) < ∞, so the same is true of pdimR/xR(m/xm). To show R/xR is regular, it is
enough to show that pdimR/xR(k) <∞ and induct. If k is a direct summand of m/xm, then

pdimR/xR(k) <∞. Notice that x 6∈ xm since x 6∈ m2. Hence x ∈ m/xm is a non-zero element
annihilated by m. Hence there is a homomorphism α such that

0→ k = R/m
α→ m/xm = N → C → 0,

where α(1) = x. We show α splits. Since mN = m(m/xm) = (m2 + xm)/xm, N/mN =
m/(m2 + xm) = m/m2. Now x 6∈ mN , i.e. x is a non-zero element of the k-vector space N/mN .
Hence there exists β : N/mN → k = R/m with β(x) = 1. Let β : N → k be the composition

N → N/mN
β→ k. Under this map, x 7→ 1. Therefore βα(1) = β(x) = 1, so we’ve constructed

a splitting map, whence k is indeed a direct summand of m/xm, which indeed shows that
pdimR/xR(k) <∞.
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