
26 §23.3: Harish-Chandra’s Theorem

This section seemed especially dense to the seminar. The following is simply an
expanded version of Humphreys’ account. (Author: Josh Swanson.)

Notation In this section, L is a semisimple Lie algebra over an algebraically
closed field of characteristic 0, H is a maximal toral subalgebra, Φ is a root
system, ∆ = {α1, . . . , α`} is a base, Λ is the set of integral weights, λ1, . . . , λ`
is the set of fundamental dominant weights in Λ, U(L) and U(H) are universal
enveloping algebras, Z is the center of U(L), Z(λ) is the standard cyclic module
of highest weight λ ∈ H∗, S(V ) is the symmetric algebra on V , P(V ) := S(V ∗)
is the algebra of polynomial functions on V , T(V ) is the tensor algebra of V ,
G = IntL is the set of inner automorphisms of L generated by exponentials of
adjoints of ad-nilpotent elements of L.

Section 23.2 introduced characters of the center Z of U(L) determined by λ ∈ H∗.
In particular, for a maximal vector v+ ∈ Z(λ), for each z ∈ Z there is a unique
constant χλ(z) such that z · v+ = χλ(z)v+. Now χλ : Z → F is an F-algebra
homomorphism. For instance, it sends 1 ∈ U(L) to 1 ∈ F. That section ended
by giving a sufficient condition for two weights λ, µ ∈ Λ to give equal characters,
namely if λ+δ is W-conjugate to µ+δ, then χµ = χλ. (While λ, µ were integral
weights in this part of §23.2, below we will amplify this result to all λ, µ ∈ H∗.)
The point of section 23.3 is to give the converse:

Theorem 121 (Harish-Chandra) If λ, µ ∈ H∗ and χλ = χµ, then λ+ δ and
µ+ δ are W-conjugates.

We begin by giving an alternate definition of the characters. To describe this,
first note that every µ : H → F may be viewed as an associative algebra homo-
morphism µ : U(H) → F, which sends a monomial h1 · · ·hk to µ(h1) · · ·µ(hk).
We think of µ as evaluating a polynomial in the hi’s at hi = µ(hi). Applying
this observation to λ+ δ, we will show:

Proposition 122 There exists an explicit algebra homomorphism ψ : Z→ U(H)
such that

χλ(z) = (λ+ δ)(ψ(z))

for all λ ∈ H∗ and z ∈ Z.

Proof Pick the usual basis for L, written as {hi, 1 ≤ i ≤ `;xα, yα, α � 0}.
Corollary 17.3C of the PBW theorem allows us to order these basis elements,
say with yα’s first, hi’s next, and xα’s last, to give a basis for U(L) given
by the weakly increasing monomials from our basis, namely monomials of the
form

∏
α�0 y

iα
α

∏
i h

ki
i

∏
α�0 x

jα
α . Write some z ∈ Z in this basis and consider

how a particular monomial acts on a highest weight vector v+ ∈ Z(λ). If any
jα > 0, that xα will annihilate v+, so such monomials may be ignored. If
each jα = 0, the hi’s will simply scale v+, while if some iα > 0, the resulting
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monomial will land v+ in a lower weight space and will not contribute to the
eigenvalue (indeed, the sum of all such monomials will kill v+). In this way, only
monomials coming entirely from hi’s contribute to χλ(z), and each hi multiplies
v+ by λ(hi). Precisely, if we let ξ : U(L)→ U(H) be the linear map which sends
a basis monomial in h1, . . . , h` to itself and all other basis elements to 0, we’ve
just observed that

χλ(z) = λ(ξ(z)), ∀z ∈ Z.

In fact, ξ|Z is an algebra homomorphism, as follows. We observed that χλ is an
algebra homomorphism, so that λ(ξ(z1z2)) = λ(ξ(z1))λ(ξ(z2)), for all λ ∈ H∗.
Since H is abelian, by the above usage of the PBW theorem, U(H) is just the
commutative polynomial algebra F[h1, . . . , h`] = S(H). Hence we may consider
λ(ξ(z1z2)) as evaluating a polynomial in the hi’s at (λ(h1), . . . , λ(h`)), so that
ξ(z1z2) ≡ ξ(z1)ξ(z2) as polynomials under every evaluation. Since F is infinite,
we have equality as formal polynomials, i.e. ξ(z1z2) = ξ(z1)ξ(z2).

Next consider the algebra automorphism η : U(H)→ U(H) given by hi 7→ hi−1.
(It has inverse induced by hi 7→ hi + 1.) We claim that ψ := η ◦ ξ|Z has the
desired property.

To see this, first recall from §13.3 that δ := 1
2

∑
α�0 α satisfies δ =

∑`
i=1 λi.

Further recall that λ(hj) = 〈λ, αj〉 for all λ ∈ H∗. (I haven’t found a proposition
or lemma explicitly giving this. One argument is to see the final sentences of §9.4
and Proposition 8.4(e), which together show that 〈β, α〉 = r− q = β(hα) for all
non-proportional roots α, β. For proportional roots, say α = β = αi, we have on
the one hand 〈αi, αi〉 = 2(αi, αi)/(αi, αi) = 2. On the other hand, Proposition
8.3(g) gives hi = 2ti/(ti, ti), and the discussion after Corollary 8.2 gives by
definition αi(hi) = (ti, hi), so that αi(hi) = 2. Extend this to all β ∈ H∗ using
linearity in the first argument.) By definition we have 〈λi, αj〉 = δij , so that

altogether we have δ(hj) =
∑`
i=1 λi(hj) =

∑
i〈λi, αj〉 =

∑
i δij = 1. We may

now compute

(λ+ δ)(hi − 1) = (λ+ δ)(hi)− (λ+ δ)(1)

= λ(hi) + δ(hi)− 1 = λ(hi) + 1− 1

= λ(hi).

That is, (λ + δ)(hi − 1) = λ(hi), which extends to the full algebra U(H) since
the hi are an algebraic generating set, i.e. (λ+δ)(η(h)) = λ(h) for all h ∈ U(H).
Since ξ maps Z into U(H), we further have (λ+δ)(ψ(z)) = λ(ξ(z)) for all z ∈ Z.
Combined with the displayed equation above, this gives the result.

Note: a rough description of (λ + δ)(ψ(z)) is that it evaluates z viewed as a
“polynomial” in xα, hi, yα (ordered!) at xα = 0, yα = 0, and hi = (λ+ δ)(hi −
1) = λ(hi). �

Our next goal is to show that ψ : Z → U(H) maps surjectively onto the W-
invariants of U(H). While W acts on H∗, it is not immediately clear how
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W actually acts on H. It is natural to define the Killing form identification
F : H∗ → H given by F (φ) := tφ (in the notation of §8.2; for instance, F (αk) =
tαk) to be an isomorphism of W-modules. That is, σ · h := F (σ ·F−1(h)). This
action respects evaluation of linear functionals in the following sense, which is
implicit in Humphreys but does not seem to appear formally anywhere:

Lemma 123 For all λ ∈ H∗, σ ∈W, and h ∈ H, we have

λ(σ · h) = (σ−1 · λ)(h).

Proof Write ti := tαi . The ti are a basis, being dual to the α∨i := 2αi/(αi, αi).
By linearity, we may then verify the identity for all λ and h by considering the
case when λ = αi and h = tk. Moreover, we may then check it on generators
σ = σαj =: σj after noting that

λ((σ1σ2) · h) = λ(σ1 · (σ2 · h))

= (σ−1
1 · λ)(σ2 · h)

= (σ−1
2 · (σ−1

1 · λ))(h)

= ((σ1σ2)−1 · λ)(h).

That is, we have reduced to the case αi(σj · tk) = (σj · αi)(tk). First compute
σj · tk using F above:

σj · tk 7→ σj · αk = αk − 〈αk, αj〉αj 7→ tk − 〈αk, αj〉tj = σj · tk.

Now compute

αi(σj · tk) = αi(tk − 〈αk, αj〉tj)
= αi(tk)− 〈αk, αj〉αi(tj)

and

(σj · αi)(tk) = (αi − 〈αi, αj〉αj)(tk)

= αi(tk)− 〈αi, αj〉αj(tk).

Hence we must show (αk, αj)αi(tj) = (αi, αj)αj(tk). First recall that by defini-
tion φ(h) = (tφ, h) for all φ ∈ H∗ and h ∈ H. Further recall that by definition
(tα, tβ) = (α, β). Hence αi(tj) = (ti, tj) = (αi, αj) and αj(tk) = (tj , tk) =
(αj , αk) = (αk, αj), which gives the desired equality. �

As in the introduction to §23.2, we may extend this W-action from H to U(H).
A formal verification shows that the lemma remains true in this setting, i.e. when
h ∈ U(H). We are now ready to show:

Proposition 124 ψ(z) is W-invariant, so ψ : Z→ S(H)W.
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Proof If λ, µ ∈ Λ, Corollary’ of §23.2 says that if λ+δ is W-conjugate to µ+δ,
then χλ = χµ. Indeed, every W-conjugate of λ + δ is of the form µ + δ with
µ ∈ Λ—use µ = σ(λ + δ) − δ, which is in Λ since W preserves inner products
and δ ∈ Λ. Hence in this case

(λ+ δ)(ψ(z)) = χλ(z) = χµ(z) = (µ+ δ)(ψ(z)), z ∈ Z

so ψ(z) is the same on all W-conjugates of λ+ δ for all λ ∈ Λ. Since Λ = Λ− δ,
ψ(z) is the same on all W-conjugates of all λ ∈ Λ, i.e. (σ · λ)(ψ(z)) = λ(ψ(z))
for all λ ∈ Λ and σ ∈ W. From the lemma, we then have λ(σ · ψ(z)) =
(σ−1 ·λ)(ψ(z)) = λ(ψ(z)), which is to say that all W-conjugates of ψ(z), viewed
as polynomials in the hi, have the same evaluations at all Λ.

Consider now the W-invariant polynomial z′ := 1
|W|

∑
σ∈W σ · ψ(z) ∈ S(H).

Note that z′ and ψ(z) yield the same evaluations at each Λ. Now z′ and ψ(z)
agree at infinitely many inputs, so we have equality of formal polynomials,
i.e. z′ = ψ(z), so ψ(z) is W-invariant, completing the result.

We may incidentally now amplify the result of Corollary’ of §23.2, namely we
may replace λ, µ ∈ Λ with λ, µ ∈ H∗. To see this, note that we have λ(ψ(z)) =
λ(σ ·ψ(z)) = (σ−1 ·λ)(ψ(z)) for all λ ∈ H∗ (not just λ ∈ Λ!) and σ ∈W. Hence

χλ(z) = (λ+ δ)(ψ(z)) = (µ+ δ)(ψ(z)) = χµ(z)

for all λ, µ ∈ H∗ where λ+ δ and µ+ δ are W-conjugate. �

To prove Harish-Chandra’s theorem, we first consider what goes wrong when
λ+ δ and µ+ δ are not conjugate:

Lemma 125 Let λ1, λ2 ∈ H∗ lie in distinct W-orbits. Then λ1, λ2 take distinct
values at some element of S(H)W.

Proof We must find some W-invariant polynomial in the hi’s for which evalu-
ating at hi 7→ λ1(hi) and hi 7→ λ2(hi) yield distinct values. By (multivariable)
Lagrange interpolation, there is a polynomial which is 1 at λ1 and vanishes at
every other W-conjugate of λ1 as well as every W-conjugate of λ2. The sum of
the W-conjugates of this polynomial is W-invariant and evaluates to |W| 6= 0 at
λ1 and to 0 at λ2. �

Now suppose λ, µ ∈ H∗ and that χλ = χµ. From the Proposition, we then have

(λ+ δ)(ψ(z)) = χλ(z) = χµ(z) = (µ+ δ)(ψ(z)).

That is, λ+δ and µ+δ agree on ψ(Z) ⊂ S(H)W. If ψ(Z) = S(H)W, then λ+δ
and µ + δ must be W-conjugate to avoid creating a contradiction through the
lemma. Thus the following will prove the theorem:

Proposition 126 ψ : Z→ S(H)W is surjective.
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Proof The main idea is to express ψ in terms of the surjection (isomorphism)
θ from §23.1. There are several natural isomorphisms which allow us to turn
θ into a map from Z to S(H)W, though this composite doesn’t quite yield ψ.
However, on certain homogeneous elements they will only differ by lower order
terms, which will allow an inductive argument to finish off the result.

Our first goal is to explain the following (non-commutative) diagram:

S(L)G S̃(L)G Z S(H)W

P(L)G P(H)W

π ψ

θ

Recall that P(V ) := S(V ∗), so if V ∗ has a G-action, a linear isomorphism
V → V ∗ can be declared to be a G-module isomorphism, which induces a G-
module isomorphism S(V ) ∼= S(V ∗) = B(V ). In our case, H∗ is a W-module
and L is a G = IntL-module. The Killing form identifications L ∼= L∗ and
H ∼= H∗ then yield a G-module isomorphism P(L) ∼= S(L) and a W-module
isomorphism P(H) ∼= S(H). In particular, S(L)G ∼= P(L)G and S(H)W ∼=
P(H)W. By composing these and θ : P(L)G → P(H)W, we now have a map
S(L)G → S(H)W.

As for S(L)G ↔ S̃(L)G, recall the discussion at the beginning of §17.1. In the

characteristic 0 case we identified a certain subset S̃(V ) ⊂ T(V ) of “symmetric

tensors” with S(V ). Precisely, S̃(V ) is obtained by considering the Sn-invariant
tensors in the degree n piece of T(L) under the natural Sn-action. Averaging
over the Sn-action allows us to symmetrize the nth homogeneous component of
a given element of T(L). The canonical surjection σ : T(V )→ S(V ) = T(V )/I
(where I is generated by all x⊗ y− y⊗x) now restricts to a linear isomorphism

σ : S̃(V ) → S(V ) whose inverse is given by this symmetrizing process. In
the case when V = L carries the above G-module structure, we see that I
is G-invariant, so σ : S̃(L) → S(L) is a G-module isomorphism. This yields

S(L)G ∼= S̃(L)G.

For the final map, there is a linear isomorphism π : S̃(L)G → Z given as follows.
Recall that U(L) was constructed as the quotient of T(L) by a certain two-sided
ideal J , so let π : T(L)→ U(L) be the canonical projection. G acts on T(L) and
it leaves the ideal J invariant since J is generated by all x ⊗ y − y ⊗ x − [x, y]
and g ∈ G ⊂ Aut(L) satisfies

g · (x⊗ y − y ⊗ x− [x, y]) = (g · x)⊗ (g · y)− (g · y)⊗ (g · x)− [g · x, g · y].

Hence G acts on the quotient U(L), so π : T(L) → U(L) is a surjection of G-

modules. It is clear that S̃(L) is G-invariant, so π : S̃(L)→ U(L) is a G-module
morphism (though not an algebra morphism). Indeed, this last map is a linear
isomorphism, as follows. Write Un for the part of U(L) coming from at most

n-fold tensors in T(L) and V n for the part of S̃(L) coming from precisely n-fold

66



tensors in T(L). Note that S̃(L) = ⊕i≥0V
i and U(L) = ∪i≥0Ui. Corollary E of

Theorem 17.3 (PBW) says that the restriction of π to V n is a linear isomorphism
onto a vector space complement of Un−1 in Un. Supposing inductively that π is
an isomorphism from ⊕n−1

i=0 V
i onto Un−1, we then have that π is an isomorphism

from ⊕ni=0V
i onto Un, which gives the result as n → ∞. We now take G-

invariants of π : S̃(L) → U(L). From Lemma 23.2, U(L)G = Z, giving the

advertised linear isomorphism π : S̃(L)G → Z.

To get a feel for the preceding maps and to see how to proceed, we pause to
work through an example.

Example Let L = sl(2,F), with the standard basis (x, y, h) ⊂ L. One may com-
pute the dual of this basis in L relative to the Killing form, giving ( 1

4y,
1
4x,

1
8h) ⊂

L. Recall the Killing form identification of L with L∗, given by φ 7→ tφ where
φ(v) = (tφ, v) for all v ∈ L. Another way to obtain dual vectors given a basis
v1, . . . , vn is by sending vi ∈ L to v∗i ∈ L∗ where v∗i (vj) = δij. This procedure
yields a basis dual to that obtained by the Killing form identification since

(tv∗i , vj) = v∗i (vj) = δij .

We may therefore compute the Killing form identification of (x∗, y∗, h∗) in L∗

by computing the dual basis of (x, y, h) in L as above. That is, 1
4y ↔ x∗, 1

4x↔
y∗, 1

8h↔ h∗ under the Killing form identification.

The fundamental dominant weight λ is dual to α∨ = α (here (α, α) = 2), from
which one finds λ = 1

2α. A trace polynomial calculation (see §23.1) allows us

to compute θ on particular elements, which yields θ(h∗
2

+ x∗y∗) = λ2. Under
P(L)G → S(L)G, we then find h∗2 + x∗y∗ 7→ 1

82h
2 + 1

42 yx. The map S(L)G →
S̃(L)G is given by symmetrizing with respect to the S2 action, which yields

1

2

(
1

64
h⊗ h+

1

16
y ⊗ x +

1

64
h⊗ h+

1

16
x⊗ y

)
=

1

64
h⊗ h+

1

32
(x⊗ y + y ⊗ x) ∈ S̃(L)G

7→ 1

64
h2 +

1

32
(xy + yx) ∈ Z

where we have applied π in the final step. To compute the image of this latter
element under ψ, we must write it as a polynomial in the y, h, x (in this order),
so we rewrite xy as [xy] + yx = h + yx to get 1

64h
2 + 2

32yx + 1
32h ∈ Z. Now ξ

applies x = 0, y = 0 to obtain 1
64 (h2 + 2h), and η replaces h with h− 1 to obtain

1
64 (h2 − 1) ∈ S(H)W, which is the image under ψ. Finally, consider sending
this to P(H)W. One may check that λ = h∗, so that applying the Killing form
identification sends λ to 1

8h, giving λ2 − 1
64 . Since this is not λ2 and we went

all the way around the diagram, it indeed does not commute. However, the
“discrepancy” is measured by an invariant (here, 1

64) of lower “degree” than the
element we started with.
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Incidentally, here the Weyl group is generated by the element α 7→ −α, and it
follows that P(H)W consists precisely of even-degree pieces, so α2 or equivalently
λ2 generates P(H)W.

Now we complete the proof. Since ψ(1) = 1, ψ is surjective in degree 0. Let
θ′ : S(L)G → S(H)W and ψ′ : S(L)G → S(H)W denote the composite of θ or
ψ with the various isomorphisms above. We will shortly show that θ′−ψ′ sends
homogeneous elements of degree n to elements of degree at most n−1. We may
then induct: if ψ′ surjects onto elements of degree ≤ n − 1, then any degree n
element is of the form θ′(v), which differs from ψ′(v) by an element in the image
of ψ′, so the original element is in the image of ψ′.

For the last claim, recall how θ : P(L)G → P(H)W was defined. Namely, write
f ∈ P(L) as a polynomial in the duals of a basis {vi} for L containing a basis
{hi} for H and set the variables not in H to zero. Essentially the same procedure
is used for θ′ : S(L)G → S(H)W, except without the duals.

The map ψ′ : S(L)G → S(H)W is much the same, except we must reorder the
monomials so their variables appear in weakly increasing order before setting
the variables not in H to zero, and then we apply the η map. If we begin with a
homogeneous element of degree n, we may reorder the variables in a monomial of
degree n at the cost of introducing lower degree terms, since vivj = [vi, vj ]−vjvi
where [vi, vj ] ∈ L may be rewritten in the vi basis. Replacing each hi with
hi−1 similarly may be done at the cost of introducing lower-degree terms while
preserving the degree n terms. Hence ψ′ and θ′ differ by terms of degree at
most n− 1, which proves the claim, proposition, and theorem. �
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