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This is a difficult topic to summarize briefly. I decided to assume a fair amount of
background and leave numerous definitions as “black boxes” while still making literally true
claims. The general discussion largely follows the intro of [Nak99] as well as parts of Lothar
Göttsche’s segment of [FGI+05]. The final examples are discussed in more detail in [MS05].
Grothendieck’s original construction is in [Gro62].

1. Hilbert Schemes

Definition 1.1. Let X be a projective scheme over an algebraically closed field k. The
Hilbert scheme of X is the scheme HilbX characterized by the following property. The set of
k-scheme morphisms U → HilbX is in bijection with closed k-subschemes Z ⊂ X × U such
that the induced projection map Z → U is flat. Moreover, this bijection is contravariantly
functorial.

In fact, HilbX is projective. The case U = Spec k is instructive, since then Z is literally
the set of closed k-subschemes of X. In this context the k-rational points and the closed
points of HilbX coincide. This is a rigorous version of the slogan that the Hilbert scheme of
X parameterizes the closed subschemes of X. For general U , we intuitively imagine Z to be
the “graph” of a continuously deforming family of subschemes of X.

We can refine the construction in two distinct ways. First, for each Z above, we can
associate a Hilbert polynomial P (t) ∈ Q[t] to each fiber π−1(u). We may then restrict to
using only those Z above whose fibers have a fixed Hilbert polynomial P (t), resulting in the
closed subscheme HilbPX . On the other hand, we may pick an open subscheme Y of X and
restrict to Z ⊂ Y × U above, resulting in an open subscheme HilbPY of HilbPX .

Definition 1.2. Let X be a quasiprojective k-scheme. Let P (t) = n be constant. The Hilbert
scheme of n points in X is

X [n] := HilbPX .

The name arises from the fact that, given n closed points x1, . . . , xn ∈ X, the closed
subscheme Z = {x1, . . . , xn} is a closed point of X [n]. Indeed, these points form an open
subset of X [n]. As we will see, the “interesting” part of the Hilbert scheme is the complement
of this set.
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2. A First Order Approximation

Definition 2.1. Let X be a quasiprojective k-variety. The nth symmetric product of X is
the quasiprojective k-variety informally described as

X(n) := X × · · · ×X/Sn
where Sn acts by permuting factors. If X is affine, this is the k-scheme Spec((k[X]⊗n)Sn)
where k[X] is the coordinate ring of X.

It can be shown that X(n) is the geometric quotient of X by Sn, i.e. that it satisfies an
appropriate universal property. By definition, the orbits of X(n) are orbits of n-tuples of
elements of X. This gives rise to a stratification

X(n) =
∐
ν`n

X(ν)

where X(ν) consists of those multisubsets of n elements of X whose multiplicities are described
by ν. When ν = (1n) we recover n-element subsets of X, which is an open subset of X(n).
Informally, X(n) is a “first order” approximation to a moduli space of n points in X. Geometric
quotients like the above “rarely” exist as schemes while X [n] is a special case of a vastly more
general construction.

Theorem 2.2. Let X be a smooth quasiprojective variety over k. There is a surjective
morphism of k-schemes

π : X
[n]
red → X(n)

called the Hilbert-Chow morphism, given on the level of points by

π(Z) :=
∑
x∈X

length(Zx)[x].

In fact, π is an isomorphism from X((1n)) to its inverse image. In this sense, the Hilbert
scheme X [n] and the first order approximation X(n) agree “except at the edges.”

3. The First Two Interesting Cases

When X is a smooth quasiprojective curve, we have X [n] = X(n). For instance, the Hilbert
scheme of points in the line X = A := Spec k is informally

A[n] = {I ⊂ k[t] | I is an ideal, dimk k[t]/I = n}
= {f(z) ∈ k[z] | zn + a1z

n−1 + · · ·+ an, ai ∈ k}
= A(n).

This is perhaps the first non-trivial example of a Hilbert scheme: we’ve used the second-
simplest possible variety (a line instead of a point) and we’ve used the simplest family of
Hilbert polynomials.

The second non-trivial example is then (A2)[n], the Hilbert scheme of n points in the plane.
Indeed, a theorem of Fogarty says that if X is a smooth quasiprojective surface, then X [n] is
smooth and irreducible, and π is a resolution of singularities. In fact, X(n) in this latter case
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is not smooth for n ≥ 2, so in this case the two constructions genuinely differ and X [n] is
“better-behaved.”

The geometry of (A2)[n] is extraordinarily rich and connects immediately to the combina-
torics of Young diagrams. To see this, note that, at the level of closed points,

(A2)[n] = {I ⊂ k[x, y] | I is an ideal, dimk k[x, y]/I = n}.
Fixing, say, lexicographic ordering with x > y, we have

dim k[x, y]/I = dim k[x, y]/LT(I).

It is easy to see that the exponents (a, b) of the monomials xayb not in LT(I) form a lower
order ideal in Z2

≥0 under the component-wise partial order, consisting of n elements. This is
precisely a Young diagram with n boxes. Moreover every such Young diagram arises in this
way for some unique monomial ideal Iλ (generated by the “outer corners”).

Thus to each point of (A2)[n] we may associate an ideal Iλ, and in fact we may “continuously
vary” the ideals in an appropriate sense to travel from I to Iλ inside (A2)[n]. Since V (Iλ) =
{(0, 0)} for all λ, the subscheme associated to Iλ is highly non-reduced, i.e. it is very much
not the coordinate ring of a classical affine variety. Intuitively, it tracks extra information
about the collisions of points as they all go to zero. Since we may also continuously deform
I ∈ (A2)[n] which vanish at n distinct points into each other, we have informally arrived at
the fact that (A2)[n] is connected.

Interestingly, some of the nice properties of the Hilbert scheme in dimension 1 and 2 begin
to fail already at n = 3. For instance, the Hilbert-Chow morphism need not be a resolution
of singularities, and the Hilbert scheme may have “unexpectedly” large dimension. It would
nonetheless be interesting to see more combinatorial connections between plane partitions
and (A3)[n], since plane partitions index the relevant monomial ideals. Everything I found in
this direction concerned Haiman’s use of (A2)[n] for the n! conjecture.
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