These notes summarize the material covered in the Spring 2013 graduate algebra course taught by S. Paul
Smith. Written by Josh Swanson; any errors are likely mine.
Note: “A3” below refers to the April 3rd lecture, and similarly with May and June.

Theorem 1 (Hilbert’s Basis Theorem, A1) If R is a commutative noetherian ring, so is the polynomial
ring R[x]. o

Definition 1 A graded ring is a ring R with a direct sum decomposition (as an abelian group)
R=Ry®R,®-,

where R;R; c R;,; for all ¢,j. The elements of UR; are called homogeneous.

Remark 1 (A1) If R is a graded ring, so is its center, Z(R). o

Remark 2 (A1, A3) I is a graded ideal if it satisfies these equivalent conditions:

1. I is generated by homogeneous elements.

2. I=®%,(INR,).

Remark 3 (A1) If R is graded ideal, then R/I is a graded ring in such a way that m: R — R/I preserves
degree. o

Definition 2 (A3) Let R be a graded ring. A graded left R-module is a left R-module M endowed with
an abelian group decomposition

M=, _M,,

where R; - M,, c M;,,,. o

Definition 3 (A3) If M and N are graded left R-modules and f: M — N is an R-module homomorphism,
we say f preserves degree if f(M;) € N;. o

Theorem 2 (Hilbert, A3) If G is a finite group of degree-preserving automorphisms of Cxy,...,2,], then
the set of G-invariant polynomials, C[x1,...,2,]%, is finitely generated as a k-algebra.

Remark 4 (A3) C[zy,...,7,]% is a graded subalgebra of C[z1, .. .,x, ] because it is equal to @®;2, C[z1,...,2,]$,

where subscript k£ denotes the degree k elements. a
Remark 5 (A3) Because G is finite and char C = 0, the G-invariants have a complement as a G-module:
Clz1,y. .-y zn]k =Clx,. .. ,xn]kG o F,
where E is a G-module. Similarly,
Clzy,...,xn] =Clz1,...,2,]° ® D,

where D is a G-module. o

Proposition 1 (A3) Let S be a commutative graded ring and R a graded subring such that S = R® K as
R-modules for some graded R-submodule K of S. If S is a finitely generated k-algebra, then so is R. O



Proposition 2 (A5) Let S be a graded quotient of the polynomaal ring
klx1,...,xn] with Sy = k. Let R be a graded subalgebra of S (i.e. R = @2 ,(RNS;)). If there exists a
graded R-submodule K of S such that S = R® K as R-modules, then R is a finitely generated k-algebra. 4

Corollary 1 (A5) If Gc GL(n,k), let G act on automorphisms of k[x1,...,2,] by extending its action on
kxy+kxo+-+kx,. Ifk[z1,...,2,]¢ has a graded complement in k[x1,...,x,] that is a k[x1,...,2,]% -module
then k[xy,...,2,]% is finitely generated as a k-algebra. a

Proposition 3 (A5) Let R € S be commutative rings and suppose S = R® K as R-modules for some
R-submodule K of S. If S is noetherian, then so is R. O

Proposition 4 (A5) Let R be an integral domain, F = frac(R), and S € R such that 1 € S and 0 ¢ S. Define
R[Sfl] ={qeF|q-= zs[lms;l for some x € R,s; € S}.

Then R[S7'] is a noetherian ring if R is noetherian. o

Definition 4 (A5) Let R < T be commutative domains. We say x € T is integral over R if it satisfies a
monic polynomial over R with coefficients in R. O

Remark 6 (A5) 1. Every element of R is integral over R.
2. \/p is integral over Z because it satisfies the monic polynomial 22 -p=0.

3. e, m are not integral over Q.

Proposition 5 (A8) Let RcT be commutative domains and x € T. The following are equivalent:
1. = is integral over R.
2. R[x] is a finitely generated R-module.

3. There exists a ring T' such that R[] €T €T and T' is a finitely generated R-module.

Definition 5 (A8) Let Rc T be commutative rings. If T is a finitely generated R-module, call T a finite
R-algebra.

Remark 7 (A8) If Rc S c T, S is a finite R-algebra, and T is a finite S-algebra, then T is a finite
R-algebra. o

Corollary 2 (A8) Let RcT be rings and a1, ... ,a, € T where each a; is integral over R. Then the ring
Rlaq,...,a,] is a finite R-algebra and every element in R[ay,...,an] is integral over R. o

Definition 6 (A8) Let R cT be commutative domains. Say T is integral over R if every element of T is
integral over R.

Corollary 3 (A8) Let Rc T be commutative domains such that T is a finitely generated R-algebra. Then
T is integral over R if and only if T is a finite R algebra. o

Theorem 3 (Noether Normalization, A8, A10) Let k be a field and R = k[ay,...,a,] a finitely gener-
ated commutative k-algebra. Then there exists m <n and algebraically independent elements y1,...,ym € R
such that R is integral over the polynomial ring k[y1,...,yn] € R. O



Lemma 1 (A10) Let T be a commutative domain and R T such that T is integral over R. Then T is a
field if and only if R is a field. o

Corollary 4 (A10) If k is a field and k[ay,...,a,] is a finitely generated k-algebra that is a field, then
dimg k[aq, ... ,a,] is finite. O

Theorem 4 (Hilbert’s “Weak” Nullstellensatz, A10, A12) Let k be an algebraically closed field. The
maximal ideals of k[x1,...,x,] are given precisely by

(P1y---,Pn) < (X1 = D1y Ty = Dn)s

for p; € k arbitrary. o

Definition 7 (A12) We write A} or just A” for k™ and call it affine n-space.

e The Zariski topology is defined by declaring the closed sets to be the zero loci of finite sets of
polynomials. These are called affine algebraic varieties.

e If Jis an ideal in k[x1, ...z, ], then
V(J):={peA"| f(p) =0, for every f e J},
and this is closed. Because J is finitely generated, if J = (f1,..., fr) then V(J) =V (f1,..., fr).
o If X c A" we define
I(X):={feS]|f(p)=0 for every pe X }.
Proposition 6 (A12) Let I, J, and {I\} be ideals in k[z1,...,2,].
1. IcTJ=V()2V(J);
V(0) = A™;
V(S)=g;
M V(L) = V(EXL);
V(I UV (J)=V(IJ)=V(InJ).

S S

Proposition 7 (A12) Let X, Y c A",
1. XY =I(X)21(Y);
2. X cV(I(X)), with equality if and only if X is a closed variety.
3. If J is an ideal of k[z1,...,2,], then J < I(V(J)).

Example 1 (A12) There are two ways for J ¢ I(V(J)).
1. If J is not “reduced”: A', J = (z?) c k[x]. Then (x) = I({0}) = I(V(J)) # (z?).
2. If k is not algebraically closed: R[z], V(z?+1) =@, I(V(2? +1)) = [(@) = R[]

Lemma 2 (A15) Let X c A"™. Then
1L VI(X)=X



2. If X is closed, then V(I(X)) =X.

Definition 8 (A15) If J is an ideal of a commutative ring R, its radical is
ViJ:={aeR|a" e J for n>>0}.
Notice J € V/J, J is an ideal, and V(J) = V/(\/J). o

Theorem 5 (Hilbert’s Nullstellensatz, “Strong” Form, A15) Let k be an algebraically closed field.
Let A = k[xy,...x,] be the polynomial ring and J an ideal in A. Then

1. If J+ A, then V(J) 2.
2. [(V(J)) =VJ.

3. There is a bijection
{radical ideals} < {closed subsets of A™}

J=J - V(J)
I(X) i X=X

Definition 9 (A15, A17) If X ¢ A", define the coordinate ring or the ring of regular polynomial

functions on X to be

O(X) = k["glj(X)x"]

Each element of O(X) is a well-defined function f: X — k. If k = k, there is a bijection

{closed subsets of X} < {radical ideals in O(X)}
Y - I(Y) <2 O(X)

Moreover, the points of X are in bijection with the maximal ideals in O(X). o

Lemma 3 (A17) If X and Z are disjoint closed subsets of A™ over k = k, then there exists a function
gek[z,...,x,] such that g(x) =0 for all z € X and g(2) =1 for all z€ Z. o

Definition 10 (A17) An ideal p in a commutative ring R is prime if it satisfies the following equivalent
conditions:

1. R/p is a domain.
2. xy € p= either z ep or y € p.

3. If I and J are ideals such that IJ c p, then either I S p or J C p.

Remark 8 (A17) Let R be a domain and z € R be a non-zero non-unit. Then zR is prime < z is prime.
Where a non-zero, non-unit element x is prime if whenever z|yz, then z|y or z|z. o

Theorem 6 (A17) Every ideal in a noetherian ring contains a finite product of primes. o

Theorem 7 (A19) Let J be an ideal in a commutative noetherian ring R. Then there exists a finite number
of minimal primes over J, pi1,...,pn and moreover \/J =pi 00 p,. -

Lemma 4 (A19) If p1 2 ps 2 is a descending chain of prime ideals in a commutative ring, then N2y p; s
prime. o

Lemma 5 (A19) If I is an ideal in a commutative ring, then there exist minimal primes over I. o



Remark 9 (A19) If p is prime, then p=,/p. o

Definition 11 (A19) A topological space X is noetherian if every descending chain of closed subspaces is
eventually constant.

Remark 10 (A19) Every affine algebraic variety is noetherian. o

Definition 12 (A19) A topological space X is irreducible if it is not the union of two proper closed
subspaces.

Example 2 (A19) In a commutative noetherian ring, v/.J =p1n...Np,, s0o V(V/J) = V(p1)u-uV(pn).o
Remark 11 (A19) If R is a UFD, VZR =p1 R0 np, R where py, -, p, are the prime divisors of z. o
Example 3 (A19) In A2 the union of the two axes is not irreducible in the Zariski topology because
V(zy) =V(z) vV (y). o
Proposition 8 (A19) Let X be a closed subvariety of A™. The following are equivalent

1. X is irreducible

2. I(X) is prime

3. O(X) is a domain

Definition 13 (A22) A function f:X — Y is a morphism (or polynomial map or regular map) if
there are elements fi,..., fin € O(X) such that f(p) = (f1(p),..., fn(p)) for all pe X. a

Theorem 8 (A22) Let X €A™, Y < A™ be closed subvarieties.

1. A morphism f: X =Y induces a k-algebra homomorphism
fLo(Y) > 0(X) by fHg)=gof.
2. Ewery k-algebra homomorphism O(Y) - O(X) is of the form f' for some morphism f: X - Y.

3. IfX Ly B 7 are morphisms, then (ho f)t = floht.

4. The category of affine algebraic varieties over k is anti-equivalent to the category of finitely generated
reduced commutative k-algebras. (Any ring R is reduced if /0 = 0.)

Corollary 5 (A22) Let X €A™ and Y € A™ be affine varieties. Then X =Y < O(X) 2 O(Y). o

Example 4 (A24) Let C c A% be the curve y = f(x), for some polynomial f. Then C' = A'. That is, O(C)
is isomorphic to the polynomial ring in one variable. o

Example 5 (A24) The closed sets on Al are the finite sets and A'. So every bijective function f:A! — Al
is a homeomorphism in the Zariski topology, but not all are morphisms. Only those of the form z — ax + 3,
[ € k are morphisms. O

Lemma 6 (A24) Ifk is a field of characteristic p >0 and R is a commutative k-algebra, the function r — 1P
is a k-algebra homomorphism. In particular, if char(k) = p >0 and X is a closed subvariety of A™ the function
F:X - X defined by F(ay,...,a,) = (a},...,aP) is a morphism because F¥: O(X) - O(X) isrw1rP. F is
the Frobenius morphism. o



Example 6 Let C = V(y?-2?). Define f:A' - C by f(a) = (a?,a?). Although f is a morphism, its inverse
(o, B) = Bat if a#0 and (a, B) = 0 if a = 0 is not a morphism.
This is captured by f*: f:0O(C) = k[z,y]/(y* - 2%) - k[t] by fi(z) = 2, fi(y) = t3, so f! is not

surjective. o

Proposition 9 (A24) Let f:X - Y be a morphism between Zariski-closed subspaces of A™ and A™ and
1 O(Y) - O(X) the corresponding k-algebra homomorphism.

1. If Z<Y s closed, then f~(Z) =V (f;(1(2))).
2. f is continuous.
3. If W c X is closed, then
(a) I(f(W)) =I(f(W)) = f{ (I(W))
(b) F(W) =V (' I(W))
4. ker(fy) = I(f(X)) and f(X) =V (ker(fy))-
5. ¢ is injective < f(z) is dense in'Y.

. The fibers f~1(y) for yeY are closed.

6
7. mpx) = ¢ (mx) is the mazimal ideal in O(Y') vanishing at f(X).

Example 7 (A24) A morphism that sends a closed set to a non-closed set: Let C' = V(xy—1) c A% and
take f: ' - A'. Then f':O(A') = k[t] - k[z,y]/(zy - 1) = O(C) by t + x. The image of f is A - {0}, so
f(C) is not closed. g

Proposition 10 (A26) Let f: X — Y be a morphism of affine varieties and f*:O(Y) - O(X). Suppose
O(X) is a finitely generated O(Y)-module.

1. The fibers of f are finite.

2. If f¥ is injective, then f is surjective.

3. If Zc X is closed, then f(Z) is closed in'Y .

Lemma 7 (A26) Let R be a commutative ring.
1. R artinian = every prime ideal in R is mazximal.
2. R noetherian and every prime ideal in R maximal = R is artinian.
3. If R is a finite dimensional k-algebra then R has only a finite number of prime ideals and they are all

maximal.

Proposition 11 (A26) If A c B are commutative rings and B is a finitely generated A-module and p a
prime ideal in A, the there exists a prime ideal q in B such that qn A =p. o

Definition 14 (A29) Let S be a multiplicatively closed subset of a commutative ring R containing 1 but
not containing 0. Say (m,s) ~ (m/,s’) if there is some t € S such that t(ms’ —m’s) = 0. Define M[S™1] to
be the R-module whose elements are equivalence classes “m/s“ = [(m,s)] with addition and the r-action
defined as usual for fractions.

In fact, M[S™] can be given an R[S™!]-module structure. M[S™'] is a localization of M. One may
localize rings by viewing them as modules over themselves. O



Proposition 12 (A29) If0 - L - M — N - 0 is an ezact sequence of R-modules, then 0 — L[S™'] —»
M[S7'] - N[S71] - 0 is an ezact sequence of R[S™']-modules. That is, localization is an exact functor. g

Definition 15 (A29) If R is commutative and p is prime, then

Ry = R[R-p]
is the local ring at p. o
Definition 16 (A29) A commutative ring R is local if it has a unique maximal ideal. N
Lemma 8 (A29) If I is an ideal in R[S™'] then I is generated by INR, i.e. I =(InR)R[S']. o
Lemma 9 (A29) pR, is the unique mazimal ideal in R,. o

Lemma 10 (A29) Let R be a commutative ring and M a non-zero finitely generated R-module. Then there
exists a submodule N € M such that M [N is a simple module. o

Lemma 11 (Nakayama, A29) Let R be a local ring with mazimal ideal m. Let M be a finitely generated
R-module. If mM = M, then M = 0. o

Definition 17 (A29) Let R be a commutative ring. Its spectrum is
spec(R) := {all prime ideals}.

Proposition 13 (A29) The Zariski topology on spec(R) is defined by declaring that the closed subsets
to be those of the form

V(I):={pespec(R)|Icp},

as I ranges over all ideals in R. Indeed, we allow arbitrary subsets B of R in place of I; note that

V(B) = V((B)). -

Proposition 14 (M1) Let ¢:R — S be a ring homomorphism and define f:spec(S) — spec(R) by f(p) =
¢ (p)={z e R|¢(x) ep}. Then f is continuous with respect to the Zariski topology. o

Lemma 12 (M1) The closed points in spec(R) are exactly the mazimal ideals. Denote these by max(R).q

Proposition 15 (M1) Let k = k and X < A™ be a subvariety. The map ®:X — spec(O(X)) where
O(X)=myx ={fecO(X)| f(z) =0} is a homeomorphism onto its image, i.e. X = maxO(X). o

Lemma 13 (M1) Let Rc S be an integral extension. If V ¢ R is multiplicatively closed, 0 ¢V, and 1€V,
then R[V 1] c S[V~'] is an integral extension. o

Theorem 9 (Lying Over and Going Up, M3) Given R € S an integral extension of domains, p €
spec(R), q' € spec(S) such that q' € p, there exists q € spec(S) such that q' € q and qn R =p.

R——S§

p=qnR —— 3Jq

~]

q



Corollary 6 (M3) Let f:X - Y be a morphism between irreducible affine varieties such that O(X) is a
finitely generated O(Y)-module via f:O(Y) - O(X). Suppose also that f! is injective. Then

1. If X is closed, then f(X) is closed.

2. Given closed subsets Z €Y and W' ¢ X such that f(W') 2 Z, there exists a closed irreducible set
W e W’ such that f(W) = Z. In particular, f is surjective.

Theorem 10 (Noether Normalization, M3) Let X ¢ A" be a closed irreducible subvariety. Noether
normalization = there exists a polynomial ring k[yi,...,yn] € O(X) such that O(X) is integral over

k[y1,---,Ym]. This inclusion corresponds to a morphism X ER A™ such that
1. The fibers of f are finite.
2. f is surjective.

3. If X is closed, then f(X) is closed.

Definition 18 (M3) Let X be an affine variety. We call a morphism ¢: X - X an automorphism of X
if the corresponding homomorphism of: O(X) - O(X) is a k-algebra automorphism. O

Theorem 11 (Hilbert-Noether, M6) Suppose R is a finitely generated commutative k-algebra and a
domain. Suppose G is a finite group of k-algebra automorphisms of R. Take

RE = {f:f9 = f for every ge G}.
Then
1. RC is a finitely generated k-algebra.
2. R is a finitely generated RS -module.

Definition 19 (M6) Let G € Aut(X) be a finite group of automorphisms. Write X /G for the set of orbits.
Define it as an algebraic variety to have coordinate ring

O(X)% ={feO(X)|d!(f) = f, Vo eG}.
Also define m: X - X/G to be the morphism corresponding to the inclusion O(X)% < O(X).
1. mX - X/G is surjective.

2. The fibers of 7 are exactly the G orbits, i.e. 7 sets up a bijection between points of X /G and the
G-orbits.

3. The degree of 7 is |G|.

4. If p: X - Y is a morphism that is constant on G-orbits, then there is a unique morphism § : X/G - Y
such that p=4§om.



Definition 20 (M6) Let f: X — Y be a morphism such that f*:O(Y) - O(X) is such that O(X) is a
finitely generated @O(Y )-module. We define k(X) := frac O(X). Suppose also f! is injective, making the
following diagram commute:

oY) — O(X)

[ [

E(Y) -- 5 k(X)

Since O(X) is a finitely generated O(Y)-module, k(X) is a finite dimensional k(Y )-vector space. Define

deg(f) = [k(X) : k(Y)]. o
Theorem 12 (M6) There exists a proper closed subvariety Z ¢ X such that [f~*(y)] = deg(f) for all
yeY -Z. o

Definition 21 (M8) Ext%(M,N): Let R be a ring. Suppose 0 > N - N' > N”" - 0and 0> M - M’ -
M'" - 0 are exact sequences of R-modules. Then there are exact sequences
0 - Homg(M,N) - Homg(M,N') - Homg(M,N")
- BExtR (M, N) - Extp(M, N'0 - Exth (M, N")
- Exth(M,N) - -,
0 - Homgr(M",N) - Homg(M',N) - Homgr (M, N)
- BExtp(M",N) - Exth(M',N) - Exth(M, N)
- Exth(M",N) - -

Indeed, Ext%(M, N) = Homg(M, N). If R is commutative, then Ext7 (M, N) is an R-module. o
Definition 22 (M8) A projective resolution of an R-module M is an exact sequence
Py >3 P8 PS M0,
where each P; is a projective left R-module.
Example 8 (M8) Let R = k[z]/(2?), M = R/(z).

~>R5RER-M-0.

Definition 23 (M8) Apply the functor Homp(—, N) to the projective resolution above to get a cochain
complex

4
Qg

0 - Homp (M, N) S Homp(Py, N) 4 Hompg(P,N) = -,

where o/, = (-) o a,. Take homology:

ker o]
Ext%(M,N) = ——2+
imaj,
(We can analogously use an injective resolution.)
Theorem 13 (M8) Exti(M,N) is independent of the choice of resolution. o




Definition 24 (M8) A chain complex (C,d) is a sequence of abelian groups and homomorphisms

dn+1 dn
n+l On - Cn—l -

such that d? =
e The n-cycles are Z,(C) = kerd,,
e the n-boundaries are B, (C) :=imd,,1,

e and the nth homology groups are H,(C) := gﬁﬁgg

Definition 25 (M8) A chain map f:(D.,d’) - (C.,d.) is a collection of maps and homomorphisms
fn: Dy = C), such that the following commutes:

(This gives an abelian category of chain complexes.) o
Lemma 14 (M8) If f:D. - C. is a chain map, it induces maps H,(fn): H,(D) - H,(C) for all n. o

Definition 26 (M8) Let f,g: D — C be chain maps. We say f is null-homotopic if for all n there exists
Sn: Dy = Chyq such that f, = dpi18n + Sn-1dp.-

- > Dn 1 >
L i% b |
1 dn
n+1 ”+ / C / > R

We say f is homotopic to g if f - g is null-homotopic.

Lemma 15 (M8) Homotopic maps induce the same map on homology, i.e. f~g= H,(fn)=Hn(9n)- o

Proposition 16 (M10) Let 3: M’ — M be a module homomorphism. Let - — Py — M" and - - Py > M
be projective resolutions. Then there exists 3.: P’ — P that “lifts” (3, and B is unique up to homotopy. That is,

d, /
» Pl —— P} —— M’ > 0
J’HEI J’E,’B} lﬁ
y P -1y Py — M > 0

Theorem 14 (M13) Let 0 - C” L0 B0 50 be an ezact sequence of complexes. For each n, there exists
a natural homomorphism
57L:HTL(C) - Hn—l(C")

defined by 6,(z + B,(C)) =it ,d!, P, (2) + B,_1(C"). o

Definition 27 (M13) Isomorphism of functors Let F,G:C - D be functors. A natural transforma-
tion 7: F — G is a collection of morphisms 7x for X € Ob(C), 7,: FX - GX, such that if /:X > Y isa
morphism, then the diagram below commutes:

10



If 7x is an isomorphism for all X € C, we say that 7 is a natural isomorphism and that F and G are
isomorphic functors, F' 2 G. We say C and D are equivalent if there are functors F:C - D and G:D - C
such that F oG 2idp and Go F 2id¢. o

Theorem 15 (M15) Let E™:Mod(R) - Ab be a sequence of contravariant functor for n >0 such that

1. for every short exact sequence 0 > M — M’ — M" - 0 in Mod(R), there is a long exact sequence with
natural connected homomorphisms

e En(M/I) N En(M/) N En(M) 5_7; En+1(M//) e
2. there exists a right R-module N such that E°(=) = Homp (-, N);

3. E™(P)=0 for alln>1 and all projectives P.

If F™:Mod(R) — Ab is another sequence of contravariant functors satisfying these conditions and F°(-) =
Hompg(—, N) for the same N, then F™ = E™ for all n. o

Lemma 16 (M15) Let P be an R-module. The following are equivalent.
1. P is projective.
2. Extp(P,-) =0.
3. Exty(P,-) =0 for alln > 1.

Definition 28 (M15) The projective dimension of a module M is the smallest n such that Ext’;™ (M, -) =
0 for all ¢ > 0.

Example 9 (M15) The projective dimension of M is 0 if and only if M is projective. o
Definition 29 (M15) The global homological dimension of R is the smallest n such that Ext’;™ (-, -) =
0 for all 4 > 1.
Remark 12 (M15) e The global dimension of R is 0 if and only if R is semisimple.

e If R is a PID, then the global dimension of R is 1.

e If M is a finitely generated R-module, M is torsion if and only if the projective dimension of M is 1.

e The global dimension of k[x1,...,z,] is n.
e The projective dimension of k[x1,...,z,]/m is n for all maximal ideals m.
e The projective dimension of k[z1,...,z,]/p is the transcendence degree of its field of fractions, which

is n — dim V' (p), when p is prime.

If X is an irreducible affine variety, then the global dimension of O(X) is finite if and only if X is
“smooth”.

11



Definition 30 (M17) Tensor products of vector spaces: given bases v; of V and w; of W, v; ® w; is

a bases for V @, W, where V, W are k-vector spaces. There is a linear map V @ W* 2 Homy (W, V') given by
®(v® A\)(w) = Mw)v. This is injective, and moreover if dim V,dim W < oo, then ® is a linear isomorphism.
Moreover, V ® V* > Homy(V, V).

If v; is a basis for V and ); is the dual basis for V*, then (Y v; ® A;) =idy. If dim V,dim W < oo, then

Vew 3 Homy (W*,V) is an isomorphism. O

Definition 31 (M17) The double dual functor (-) = * from finite dimensional vector spaces to itself is
isomorphic to the identity functor. (There is also a single dual functor.) o

Definition 32 (M17) If T:U — U’ is a linear transformation, then rank(7") is the smallest n such that T'
factors as U - k" - U’.

Example 10 (M17) The rank one 2 x 2 matrices are those of the form

(aib)

g2 D g (@) 2

Proposition 17 (M17) Let V and W be finite dimensional vector spaces and f € V@ W. Then rank(f) is
the smallest n such that f =vy @ wi + -+ + v, ® wy, for some v; €V and w; e W. O

Definition 33 (M17) Let R be any ring. Let M be a right R-module and N a left R-module. Define the
tensor product M ®r N as follows. First let F' be the free abelian group with basis (m,n) € M x N. Let
K be the subgroup generated by elements
(m,n+n") - (m,n) - (m,n")
(m+m',n) - (m,n0 - (m',n)
(mr,n) - (m, rn)

for all m,m’ e M, ne N, r € R. Define M @ g N as an abelian group to be F'/K. Write m ® n for the coset
(m,n) + K. The relations ensure ® is “bilinear”, and mr @ n = m ® rn.

Example 11 (M17) . 3% ®z % =0
e More generally, if I and J are ideals in a commutative ring such that I + J = R, then

R R

—®r—=0.
1T
e Even more generally,
N
—Q®pr Nz —.
1T TN

Proposition 18 (M17) Let a: M x N > M ®r N be the homomorphism of abelian groups a(m,n) =m @ n.
If f: M x N - G is a homomorphism to an abelian group G such that
fim,n+n') = f(m,n) + f(m,n')
f(m+m/;n)=f(m,n)+ f(m',n)
f@mr,n) = f(m,rn)

for all m,m’ € M, n,n’ € N, r € R, then there exists a unique group homomorphism ¢: M ®r N - G such
that f=¢oa:
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MxN %3 M®r N

\¢
<~

G

Lemma 17 (M20) Let R, S be rings.

1. For modules (Mg, rNs, Xs), there is an isomorphism of abelian groups

®:Homg(M @ N, X) > Hompg (M, Homg (N, X))
O(f)(m)(n) = f(men).

2. For modules (sMp, rN,sY), there is an isomorphism of abelian groups
®:Homg (M ® N,Y) > Hompg (N, Homg(M,Y))

given by
(f)(n)(m) := f(me&n).

Remark 13 (M20) If Mg, gNg, then
e M ®gN is a right S-module via (m ®n)s=m® (ns).

e Homg(N, X) is a right R-module via «-7)(n) = a(rn).

Definition 34 (M20) Let C,D be categories and let F:C - D and G:D — C be functors. We say F is left
adjoint to G and G is right adjoint to F' if there are bifunctorial isomorphisms

7¢,p:Homp (F'C, D) 5 Home (C,GD)
for all C € C and D € D. That is, if a:C — C’ in C, then the following commutes:

Homp(FC, D) —=2% Home(C,GD)

(—)oFaT T(—)oa

Homp (FC’, D) ~“2 Homc(C',GD),
and similarly if 3: D - D’. o

Theorem 16 (M20) Let R and S be rings, RNs a bimodule. Then — ®g N:Mod"(R) — Mod"(S) is left
adjoint to Homg (N, -):Mod"(S) - Mod" (R) (where r indicates right-modules). The isomorphisms

7ar,x: Homg (FM, X ) 5 Hompg(M,GX)
are the ®’s in the previous lemma. o

Proposition 19 (M20) If F:C - D and G:D — C are an adjoint pair of functors with F left adjoint to G
in abelian categories, then F is right exact and G is left exact.

Example 12 (M22) If zpNg, then - ® g N:Mod" R — Mod" S is left adjoint to Homg(N,-):Mod" S —
Mod" R. Thus - ®g N is right exact, and Homg (N, -) is left exact. o

Lemma 18 (M22) The following are equivalent.
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1.0-ASB I C is an ezxact sequence of left R-modules

2. 0 > Homp(X, A) % Homp(X, B) % Homp(X,C) is exact for all X.
The following are also equivalent.

1. A-» B—-C -0 is exact.

2. 0 > Homp(C,Y) - Homp(B,Y) - Homg(A,Y) is exact for all Y.

Lemma 19 (M22) If M is a left R-module, themap M A R®g M given by f(m) =1®m is an isomorphism
of left R-modules. o

Lemma 20 (Change of Rings, M22) Suppose f: R — S is a ring homomorphism. We have functors
f*=8®g-:Mod’R - Mod* S
f+ = Homg (S, -):Mod* S - Mod* R
f" = Homp(S,-):Mod® R — Mod* S,

where f* is left adjoint to f., f+ 1s left adjoint to f', so [f* is right exact, f. is exact, and [ is left exact.q

Lemma 21 (M24) The map % ®r M L % given by f([r+I]®m) = [rm + IM] is an isomorphism.

. R R_ R
Similarly T ®r 7 = 1.5 O

Definition 35 (M24) A left R-module M is flat if 0 > X @g M - Y ®r M - Z®r M — 0 is exact for all
short exact sequences of right R-modules 0 > X - Y — Z — 0, that is, if - ® g M is an exact functor.

Example 13 (M24) R is flat as a module over itself, since X = X ®g R. o

Proposition 20 (M24) ® distributes over (arbitrary) @.
1. A module Ny ® Ny is a flat R-module if and only if N1, Ny are flat R-modules.
2. In particular, projective R-modules are flat.
3. If R is noetherian, every finitely generated flat R-module is projective.
4. More generally, finitely presented flat modules over arbitrary rings are projective.

Example 14 (M24) Q is a flat Z-module but is not projective. o

Lemma 22 (M24) There is a natural isomorphism
Mep R[S - M[S™]

given by

1 1

me®xrs ~ - mxs .

Lemma 23 (M29) The map g:M - M[S™'] given by g(m) =m ® 1 is an R-module homomorhism, and
kerg={me M |ms=0 for some s€S}. o

Definition 36 (M29) If R is any ring, M is a right R-module, and N is a left R-module, we define the Tor
groups TorlR (M, N) for i >0 as follows. Take a projective resolution of M (by projective right R-modules),
and define the Tor groups Torf(M ,IN') as the homology groups associated to the complex obtained from the
projective resolution by applying the — ® g N functor. o

14



Theorem 17 (M29) 1. Tor/(M,N)=M ®r N;
2. TorzR(M,N) does not depend on the choice of projective resolution;
3. If0> X —>Y - Z -0 is an exact sequence of left R-modules, then there is a long exact sequence
- = Tor?(M, X) - Tor?(M,Y) - Tor®(M, Z) -
Tor® (M, X) - - - Tor, (M, Z)
MrX->MerY - MegrZ — 0.
4. If Q. > N - 0 is a projective resolution of N, then TorZR(M,N) is isomorphic to the homology group
of the complex M ®r Q.

5. If0 > A—- B - C — 0 is an exact sequence of right R-modules, there is a long eract sequence

<= Tor1(C,N) > A®r N> Ber N - C®r N - 0;

6. Tor®(M,-) =0 for all n > 1 if and only if M is a flat right R-module;
7. Tor®(=,N) =0 for all n.> 0 if and only if N is a flat left R-module.

Remark 14 (M29) If R is commutative, M, N are projective, then M ® g N is projective. o

Example 15 (M29) If R = k[x1,...,2,], k= R/(x1,...,&,), then Tor’(k, k) = k() o

Definition 37 (M31) A Dedekind domain is a ring with the following properties:
e Commutative noetherian domain that is not a field;
e Integrally closed in its field of fractions;

e Every non-zero prime ideal is maximal.

Example 16 (M31) 1. Rings of integers in number fields: a number field is a finite field extension of
Q. The ring of integers in K, sometimes written Ok, is the integral closure of Z in K, i.e. the set of
elements of K which satisfy a monic polynomial with coefficients in Z.

2. If C is a “smooth” irreducible affine curve, then O(C) is a Dedekind domain. For instance, y? = 23

gives k[t?,t3]. This is not a smooth curve, and the ideal (¢2,3) is not “generated by one and a half
elements”; see below for a definition.

3. If R is a domain and p is a minimal nonzero prime ideal, then R, is a Dedekind domain if and only if
% is a 1-dimensional vector space over the field %.
If X is a smooth affine algebraic variety of dimension n and Y c X is an irreducible subvariety of

dimension n -1 and p is the ideal I(Y"), then O(X), is a Dedekind domain.

Definition 38 (M31) Let R be a commutative noetherian domain and K its field of fractions. A non-zero
R-submodule of K is a fractional ideal if zM c R for some 0 # z € R.

Remark 15 (M31) e Fractional ideals are noetherian R-modules.
e If M is a nonzero finitely generated R-submodule of K, then M is a fractional ideal.

e Every nonzero ideal in R is a fractional ideal.
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e A product of fractional ideals is a fractional ideal.
e If M and N are fractional ideals, then M n N # 0.

e The set of fractional ideals forms an abelian monoid (a group except without inverses).

Definition 39 (M31) If M is a fractional ideal, we define
M ':={zeK|xzMcR}.
Note that M~ is also a fractional ideal, and MM~ c R.

Example 17 (M31) Homg (M, R) =2 M~! as R-modules. o

Proposition 21 (J3) Let m be a marimal ideal in a Dedekind domain, then mm™ = R. o

Theorem 18 (J3) Every nonzero ideal in a Dedekind domain is a product of maximal (< prime) ideals in
a unique way.

Corollary 7 (J3) The set of fractional ideals for a Dedekind domain is a group under multiplication with
identity R. O

Definition 40 (J3) The principal ideals (a slight abuse of notation) in the group of fractional ideals are
those generated by a single element as an R-module. In a Dedekind domain, they form a subgroup, and the
quotient of of the group of fractional ideals by this subgroup is the ideal class group or the Picard group
of R. The class number of K is the order of the ideal class group. o

Proposition 22 (J3) If m is a mazimal ideal in a Dedekind domain R, then Rm is a valuation ring. The
valuation of v € K —{0} is the largest n such that x e m™. o

Proposition 23 (J5) Let R be a Dedekind domain, m a mazimal ideal, and k = R/m. Then
1. dimpm™/m™* =1 for alln>0 m° = R);
2. Iftem—m?2, then m? =m"™ + Rt? for all integers 1 <d <n.

3. The only ideals containing m¢ are m"™ for n <d.

Lemma 24 (J5) If Ry,..., R, are rings in which every ideal is principal, so is R=R, & ® R,,. o

Proposition 24 (J5) Every ideal in a Dedekind domain can be generated by “one and a half elements”.
This means that given an ideal I and an arbitrary element 0 # x € I, there is some element y € I such that

I=(z,y)-
Lemma 25 (J5) If I is a non-zero ideal in a Dedekind domain R, then R/I has finite length. o

Proposition 25 (J5) Let m be a mazimal ideal in a Dedekind domain R.
1. Rm is a PID.
2. IftemRy, —m2Ry,, then (t") for n >0 are all the nonzero ideals of Rm.

3. Rm is a valuation ring.
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